
Hierarchical Attribute-Based Signatures:
Short Keys and Optimal Signature

Length

Daniel Gardham(B) and Mark Manulis

Surrey Centre for Cyber Security, University of Surrey, Guildford, UK
d.gardham@surrey.ac.uk, mark@manulis.eu

Abstract. With Attribute-based Signatures (ABS) users can simulta-
neously sign messages and prove compliance of their attributes, issued by
designated attribute authorities, with some verification policy. Neither
signer’s identity nor possessed attributes are leaked during the verifica-
tion process, making ABS schemes a handy tool for applications requiring
privacy-preserving authentication. Earlier ABS schemes lacked support
for hierarchical delegation of attributes (across tiers of attribute author-
ities down to the signers), a distinct property that has made traditional
PKIs more scalable and widely adoptable.

This changed recently with the introduction of Hierarchical ABS
(HABS) schemes, where support for attribute delegation was proposed
in combination with stronger privacy guarantees for the delegation paths
(path anonymity) and new accountability mechanisms allowing a ded-
icated tracing authority to identify these paths (path traceability) and
the signer, along with delegated attributes, if needed. Yet, current HABS
construction is generic with inefficient delegation process resulting in sub-
optimal signature lengths of order O(k2|Ψ |) where Ψ is the policy size
and k the height of the hierarchy.

This paper proposes a direct HABS construction in bilinear groups
that significantly improves on these bounds and satisfies the original
security and privacy requirements. At the core of our HABS scheme is a
new delegation process based on the length-reducing homomorphic trap-
door commitments to group elements for which we introduce a new dele-
gation technique allowing step-wise commitments to additional elements
without changing the length of the original commitment and its opening.
While also being of independent interest, this technique results in shorter
HABS keys and achieves the signature-length growth of O(k|Ψ |) which
is optimal due to the path-traceability requirement.

1 Introduction

Attribute-based Signatures, first introduced in [30] and [31], provide privacy-
preserving mechanisms for authenticating messages. An ABS signature assures
the verifier that the signer owns a set of attributes that satisfy the signing
policy without leaking their identity, nor the set of attributes used. Traditional
c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 89–109, 2019.
https://doi.org/10.1007/978-3-030-21568-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_5

90 D. Gardham and M. Manulis

ABS schemes considered two security properties, user privacy and unforgeability.
Informally, a user is anonymous if an ABS signature does not leak their identity,
nor the set of attributes used to satisfy the signing policy, while unforgeability
requires that a signer cannot produce a signature conforming to a policy for
which he does not own a set of suitable attributes. Later constructions [14,16,20]
offered more advanced functionality with an additional property of traceability
which holds signers accountable by allowing a dedicated tracing authority to
identity them if required.

The vast majority of existing ABS schemes [5,13,14,16,20,32,33,35] are non-
interactive, in the standard model and is based on bilinear maps and Groth-Sahai
proofs [21], with the exception of [23], which uses RSA setting and the random
oracle model, and the recent schemes in [15,38] which rely on lattices. Interac-
tive ABS schemes, e.g. [27], where policies must be chosen by verifiers ahead
of the signing phase have also been proposed. In general, signing polices can
have varying levels of flexibility and range from threshold policies [30], to mono-
tone boolean predicates [14,20], and generalised circuits [35]. Typically, more
restrictive policies allow for more efficient constructions. Policy-based Signa-
tures (PBS) [5] can be viewed as a generalisation of ABS schemes, albeit their
security is currently proven in a single-user setting without addressing stronger
non-frameability requirement of more recent ABS schemes [12,14,20].

Hierarchical Attribute-Based Signature and Their Limitations. Hierar-
chical Attribute-based Signatures (HABS), recently introduced in [12], extend
traditional ABS schemes by permitting controlled delegation of attributes from a
root authority (RA) over possibly multiple intermediate authorities (IAs) down
to the users. In this way HABS aims to close the gap between ABS and tradi-
tional PKIs where hierarchical delegation can be achieved at low cost. In HABS,
IAs can delegate attributes to any authority in the scheme and users can acquire
attributes from any authority in the hierarchy that is authorised to issue them. In
addition to strong non-frameability property in a multi-user setting, the authors
extend traditional ABS privacy guarantees to protect not only the identity of
the signer but also the identities of all intermediate authorities in the delega-
tion path, as part of their new path-anonymity property. Traditional traceability
property of ABS schemes has also been extended to hold not only signers but also
intermediate authorities accountable for their actions, through the new notion
of path-traceability where a dedicated tracing authority can reveal the entire
delegation path, along with delegated attributes.

We observe that the HABS scheme in [12] is generic, based on standard cryp-
tographic primitives, i.e., public key encryption, one-time signature, tag-based
signature, and non-interactive zero-knowledge proofs. Its delegation process is
handled using a tag-based signature (TBS) where an authority at level i pro-
duces a TBS signature, using attribute as a tag, on the public key of authority
j together with all public keys appearing previously in the delegation path.
As part of its HABS signature the signer proves knowledge of each TBS at every
delegation of each attribute that is required to satisfy the policy. Clearly this

Hierarchical Attribute-Based Signatures 91

delegation process is highly inefficient. Not only does an additional signature
need to be verified per delegation (and per attribute), the size of the signa-
ture grows linearly in the distance from the root authority. Thus, per attribute,
verification of the delegation path is of order O(k2).

Other Related Work. Attribute-based signatures can be seen as a generali-
sation of group [11] and ring [34] signatures, in which case identities are viewed
as attributes and policies can only contain disjunction over them. The notion of
hierarchical delegation in these, more restricted, primitives have been explored
in [37] and [29] respectively. Attribute delegation has been widely investigated in
anonymous credentials [9,10]. Maji et al. [31] give discussion that ACs are a more
powerful primitive than ABS but with efficiency drawbacks, as attribute acqui-
sition typically requires expensive zero-knowledge proofs. Note that in HABS
intermediate authorities may know each other, and so as discussed in [12], there
is no need to hide their identities from each other during the delegation phase,
which in turn helps to omit costly proofs and make this phase more efficient than
in the case of ACs. Regardless, we note that ACs with hierarchical delegation
have been proposed [4]. Further, a homomorphic ABS scheme [25] has been used
to construct non-delegatable anonymous credentials. In this setting, a signer
obtains attributes directly from the (multiple) root authorities where combining
attributes from different issuers requires an online collaboration. Anonymous
Proxy Signatures [17] also allow for verification of anonymous delegation paths
back to a root authority. However, tasks that are delegated, when viewed as
attributes, remain in the clear and are required for verification of the proxy
signature. Homomorphic Signatures [38] have been claimed to be equivalent to
Attribute-based Signatures, however this equality has been shown to hold in
the weaker security setting that only considers a solitary user. In which, it is
impossible to capture the notion of collusion and non-frameability. Finally, we
note functional signatures [3,8] also allow for delegation of signing rights. Here,
however, keys are dependent on the function f and can only sign on messages
that fall within the range. For an attribute-based scheme, this would require
keys for each possible combination of attributes a user obtains.

Contribution. We address the suboptimal efficiency of the so-far only (generic)
HABS construction [12] and propose a scheme with a completely new delegation
mechanism which no longer relies on the consecutive issue of tag-based signa-
tures from higher-level to lower-level authorities on the delegation path. The
main novelty in our approach is a smart use of the length-reducing homomor-
phic trapdoor commitment scheme to multiple group elements from [21] which
we extend with delegation capabilities. At a high level, at each delegation the
issuing intermediate authority amends the current trapdoor opening such that
the existing commitment incorporates the public key of the next-level authority
or user to whom the attribute is delegated. With this new delegation mechanism
we are able to significantly reduce the lengths of HABS keys and achieve the
optimal growth of O(k|Ψ |) for the length of HABS signatures, depending on the
length k of the delegation path and size |Ψ | of the signing policy. In particular,
verifying delegation of an attribute along the path takes O(k) steps (as opposed

92 D. Gardham and M. Manulis

to O(k2) in [12]). We use the original security model from [12] to show that our
construction satisfies the required properties of path anonymity, path traceabil-
ity, and non-frameability, in the standard model under standard assumptions in
bilinear groups and an additional assumption which we justify using the generic
group model [36]. Our efficiency improvement claims over [12] are reinforced in
a detailed comparison between the two schemes.

2 HABS Model: Entities and Definitions

We start with the description of entities within the HABS ecosystem.

Attribute Authorities. The set of Attribute Authorities (AA) comprises the
Root Authority (RA) and Intermediate Authorities (IAs). All AAs can delegate
attributes to lower-level IAs and users. The RA is at the top of the hierarchy and
upon setup, defines the universe of attributes A. With its key pair (ask0, apk0),
the RA can delegate a subset of attributes to IAs which hold their own key
pairs (aski, apki), i > 0. IAs can further delegate/issue attributes to any end
user (aka. signer). In this way a dynamically expandable HABS hierarchy can
be established.

Users. Users join the scheme by creating their own key pair (usk, upk), and are
issued attributes by possibly multiple AAs.

By Ψ we denote a predicate for some signing policy. A policy-conforming user
can use usk to create a HABS signature, provided their issued set of attributes A
satisfies the policy, i.e. Ψ(A′) = 1 for some A′ ⊆ A. Users are unable to delegate
attributes further and thus can be viewed as the lowest tier of the hierarchy. To
account for this, when an attribute is delegated to a user a dedicated symbol �
will be used in addition to upk to mark the end of the delegation path.

Warrants. An IA or user, upon joining the HABS scheme, receives a warrant
warr that consists of all their delegated attributes a ∈ A and a list of all AAs
in each of the delegation paths. Warrants can be updated at any time, i.e. if
the owner is issued a new attribute, by appending a new entry with the list of
authorities on the delegation path. We use the notation |warr| to denote the
size of the warrant, i.e. the number of attributes stored in the warrant warr,
and we use |warr[a]| to denote the length of the delegation path of the attribute
a ∈ A. Upon signing, the user submits a reduced warrant for an attribute set
A′ ⊆ A that satisfies Ψ(A′) = 1.

Tracing Authority. The tracing authority (TA) is independent of the hierar-
chy. Upon receiving a valid HABS signature, it can identify the signer and all
authorities on the delegation paths for attributes that the signer used to satisfy
the signing policy. The tracing authority can output a publicly verifiable proof
π̂ that the path was identified correctly. The existence of such tracing authority
improves the accountability of signers and IAs from possible misbehaviour.

Hierarchical Attribute-Based Signatures 93

Definition 1 (Hierarchical ABS Scheme [12]). A scheme HABS := (Setup,
KGen, AttIssue, Sign, Verify, Trace, Judge) consists of the following seven pro-
cesses:

• Setup(1λ) is the initialisation process where based on some security parameter
λ ∈ N, the public parameters pp of the scheme are defined, and the root
and tracing authority independently generate their own key pair, i.e. RA’s
(ask0, apk0) and TA’s (tsk, tpk). In addition, RA defines the universe A of
attributes, and a label � for users. We stress that due to dynamic hierarchy, the
system can be initialised by publishing (pp, apk0, tpk) with A and � contained
in pp.

• KGen(pp) is a key generation algorithm executed independently by intermediate
authorities and users. Each entity generates its own key pair, i.e., (aski, apki)
for i > 0 or (usk, upk).

• AttIssue (aski,warri, A, {apkj |upkj}) is an algorithm that is used to dele-
gate attributes to an authority with apkj or issue them to the user with upk.
On input of an authority’s secret key aski, i ∈ N0, its warrant warri, a
subset of attributes A from warri, and the public key of the entity to which
attributes are delegated or issued, it outputs a new warrant for that entity.

• Sign ((usk,warr),m, Ψ) is the signing algorithm. On input of the signer’s
usk and (possibly reduced) warr, a message m and a predicate Ψ it outputs
a signature σ.

• Verify (apk0, (m, Ψ, σ)) is a deterministic algorithm that outputs 1 if a can-
didate signature σ on a message m is valid with respect to the predicate Ψ
and 0 otherwise.

• Trace (tsk, apk0, (m, Ψ, σ)) is an algorithm executed by the TA on input of
its private key tsk and outputs either a triple (upk,warr, π̂) if the tracing is
successful or ⊥ to indicate its failure. Note that warr contains attributes and
delegation paths that were used by the signer.

• Judge (tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) is a deterministic algorithm that
checks a candidate triple (upk,warr, π̂) from the tracing algorithm and out-
puts 1 if the triple is valid and 0 otherwise.

A HABS scheme must have the correctness property ensuring that any signature
σ generated based on an honestly issued warrant will verify and trace correctly.
The output (upk,warr, π̂) of the tracing algorithm on such signatures will be
accepted by the public judging algorithm with overwhelming probability.

2.1 Security Properties

Our security definitions resemble the requirements of path anonymity, path trace-
ability, and non-frameability from [12]. We recall the associated game-based def-
initions assuming probabilistic polynomial time (PPT) adversaries interacting
with HABS entities through the following set of oracles (Fig. 1):

– OReg: A registers new IAs and users through this registration oracle, for which
a key pair will be generated and added to List. The public key is given to

94 D. Gardham and M. Manulis

the adversary. Initially, the entity is considered honest, and so the public key
is also added to the list HU .

– OCorr: This oracle allows A to corrupt registered users or IAs. Upon input of
a public key, the corresponding private key is given as output if it exists in
List. The public key is removed from HU so the oracle keeps track of corrupt
entities.

– OAtt: A uses this oracle to ask an attribute authority to delegate attributes
to either an IA or to the user. In particular, the adversary has control over
which attributes are issued and the oracle outputs a warrant warr if both
parties are registered, otherwise it outputs ⊥.

– OSig: A can ask for a HABS signature from a registered user. The adversary
provides the warrant (and implicitly the attributes used), signing policy, mes-
sage and the public key of the signer. If the attribute set satisfies the policy,
and the public key is contained in HU then the signature will be given to A,
otherwise ⊥ is returned.

– OTr: s A can ask the TA trace a HABS signature (provided by the adversary)
to the output is returned. The TA does verification checks on the signature
and upon failure, will return ⊥.

OReg(·) with (·) = (i) and i /∈ HU

1 : (ski, pki) ← KGen(pp)

2 : List ← List ∪ {(i, pki, ski)}
3 : HU ← HU ∪ {i}
4 : return pki

OCorr(·) with (·) = (i)

1 : if i ∈ HU then

2 : HU ← HU − {i}
3 : return ski from List

OTr(·) with (·) = (m, Ψ, σ)

1 : return Trace(tsk, apk0, (m, Ψ, σ))

OAtt(·)
(·) = (i,warri, a, {apkj |upkj})
1 : L := {a|(a, pka, ska) ∈ List}
2 : if i ∈ L ∧ j ∈ L then

3 : warr ← AttIssue(aski,

warri, a, {apkj |upkj})
4 : return warr

5 : return ⊥

OSig(·) with (·) = (i,warr,m, Ψ)

1 : A ← {a| a ∈ warr}
2 : if i ∈ HU ∧ Ψ(A) then

3 : σ ← Sign((uski,warr),m, Ψ)

4 : return σ

5 : return ⊥

Fig. 1. Oracles used in the HABS security experiments.

Path Anonymity. This property extends the anonymity guarantees of tra-
ditional ABS schemes and hides not only the identity of the signer but also
the identities of all intermediate authorities on delegation paths for attributes

Hierarchical Attribute-Based Signatures 95

included into the signer’s warrant. Path anonymity, as defined in Fig. 2, also
ensures that signatures produced by the same signer remain unlinkable. The
corresponding experiment requires the adversary to distinguish which warrant
and private key were used in the generation of the challenge HABS signature
σb. In the first phase, A1 generates a hierarchy of authorities and users, utilising
the RA’s secret key ask0. If the warrants created by A1 are of the same size, a
challenge HABS signature σb is produced on the randomly chosen user-warrant
pair. In the second phase, with access to the tracing oracle, the adversary A2

must be able to guess the challenge bit b.

Definition 2 (Path Anonymity [12]). A HABS scheme offers path
anonymity if no PPT adversary adv can distinguish between Exppa−0

HABS,A and
Exppa−1

HABS,A defined in Fig. 2, i.e., the following advantage is negligible in λ:

Advpa
HABS,A(λ) = |Pr[Exppa−0

HABS,A(λ) = 1] − |Pr[Exppa−1
HABS,A(λ) = 1]|.

Exppa-b
HABS,A(λ)

1 : (pp, ask0, tsk) ← Setup(1λ)

2 : (st, (usk0,warr0), (usk1,warr1), m, Ψ) ← A1(pp, ask0 : OReg, OCorr, OTr)

3 : if |warr0| = |warr1| then

4 : σ0 ← Sign((usk0,warr0),m, Ψ), σ1 ← Sign((usk1,warr1),m, Ψ)

5 : if Verify(apk0, (m, Ψ, σ0)) = 1 and Verify(apk0, (m, Ψ, σ1)) = 1 then

6 : b′ ← A2(st, σb : OTr)

7 : return b′ ∧ A2 did not query OTr(tsk, (m, Ψ, σb))

8 : return 0

Fig. 2. Path-anonymity experiment

Non-frameability. This property, formalised in Fig. 3, captures the notion of
unforgeability, i.e., that no PPT adversary can create a HABS signature without
having an honestly issued warrant that satisfies the policy, and in particular, they
cannot create one on behalf of an user for which the secret key is not known.
The adversary wins if either he produces a valid HABS signature, or is able to
perform delegation for at least one attribute on behalf of any honest authority
anywhere in the delegation path.

Definition 3 (Non-Frameability [12]). A HABS scheme is non-frameable,
if no PPT adversary A can win the experiment Expnf

HABS,A defined in Fig. 3, i.e.,
the following advantage is negligible in λ:

Advnf
HABS,A(λ) = |Pr[Expnf

HABS,A(λ) = 1]|.

96 D. Gardham and M. Manulis

Expnf
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ, m, Ψ), (upkj ,warr, π̂)) ← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) ∧ Judge(tpk, apk0, (m, Ψ, σ), (upkj ,warr, π̂)) then

4 : if j ∈ HU ∧ A did not query OSig((uskj ,warr),m, Ψ) then, return 1

5 : if ∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , �) = warr[a] ∧
6 : ((∃i ∈ [0, n − 1]. A did not query OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
7 : (A did not query OAtt(n, · , a, upkj) ∧ n ∈ HU)) then, return 1

8 : return 0

Fig. 3. Non-frameability experiment

Exptr
HABS,A(λ)

1 : pp ← Setup(1λ), ask0 ← KGen(1λ), tsk ← TKGen(1λ)

2 : ((σ, m, Ψ), (upk,warr, π̂)) ← A(pp, tsk : OAtt, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) then

4 : if Trace(tsk, (m, Ψ, σ)) = ⊥ then, return 1

5 : if Judge(tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) ∧
6 : (∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upk, �) = warr[a] ∧
7 : ((∃i ∈ [0, n − 1]. i ∈ HU ∧ (i + 1, apki+1, aski+1) /∈ List)∨
8 : (n ∈ HU ∧ (· , upk, usk) /∈ List))) then, return 1

9 : return 0

Fig. 4. Path-traceability experiment

Path Traceability. This property, formalised in Fig. 4, ensures that any valid
HABS signature can be traced (by the tracing authority) to the signer and the
set of authorities that were involved in the issue of attributes used to produce
the signature. The adversary is required to output either a HABS signature that
verifies but cannot be traced, or one in which the tracing algorithm outputs a
warrant for which at least one IA or the user is unknown to the experiment, i.e.,
were not previously registered in List. The attribute-issuing oracle checks that
both entities are registered to prevent the trivial attack where adversary asks
the oracle to delegate to an unregistered entity.

Definition 4 (Path Traceability [12]). A HABS scheme offers path traceabil-
ity if no PPT adversary A can win the experiment Exptr

HABS,A defined in Fig. 4,
i.e., the following advantage is negligible in λ:

Advtr
HABS,A(λ) = |Pr[Exptr

HABS,A(λ) = 1]|.

Hierarchical Attribute-Based Signatures 97

3 Our Short HABS Construction

We start with the description of the underlying hardness assumptions and build-
ing blocks.

3.1 Underlying Hardness Assumptions

In addition to widely used hardness assumptions in the asymmetric bilinear
group setting generated by BG(1λ), namely q-Srong Diffie-Hellman (q-SDH) [7],
Symmetric eXternal Diffie-Hellman (SXDH) [1] and Simultaneous Decision LIN-
ear (SDLIN) [26] assumptions, which we do not recall here, our scheme requires
the following interactive assumption, which we prove to hold in the generic group
model [24,36]. We equip the adversary with an oracle OX0,Y0 and assume that
it is hard to produce group elements that satisfy the verification equations for
an input that has not been queried to the oracle. We note that on input of
(X,Y), the oracle can compute each component without knowledge the discrete
logarithm of X or Y as it has access to r, s, t1, t2.

Assumption 1. Let pp := (p,G1,G2,GT , e, g1, g2) ← BG(1λ). The adversary A
has access to the oracle OX0,Y0(·, ·) which on input (X,Y) returns (A,B, T1, T2,
T3, T4) := (hx0t1

2 hx0t2
5 hxt1

2 hyt1
5 , hy0t1

5 hy0t2
4 hxt2

5 hyt2
4 , f t1

1 , f t2
2 , gt1

2 , gt2
2) for t1, t2 ←

Z
∗
p. We assume that for all p.p.t. adversaries A, the following probability is

negligible in λ.

AdvAssump1
A (λ) :=

Pr

⎡
⎢⎢⎢⎢⎣

x0, y0, r, s ← Z
∗
p;h1 := gs

1, h2 := gs2

1 , h3 := gr
1, h4 := gr2

1 , h5 := grs
1

f1 := gs
2, f2 := gr

2,X0 := hx0
1 ;Y0 := hy0

3 ;
(Â, B̂, T̂1, T̂2, T̂3, T̂4, X̂, Ŷ) ← AOX0,Y0 (pp,X0, Y0, h1, h2, h3, h4, h5, f1, f2) :
e(Â, g2) = e(X0, T̂1T̂2)e(X̂Ŷ , T̂1) ∧ e(B̂, g2) = e(Y0, T̂1T̂2)e(X̂Ŷ , T̂2)
∧ e(g1, T̂1T̂2) = e(h1, T̂3)e(h3, T̂4) where (X̂, Ŷ) was not queried.

⎤
⎥⎥⎥⎥⎦

Theorem 1. Let A denote an adversary in the generic group model against
Assumption 1. A has access to oracles for which he makes qG group queries, qP

pairing queries, and qO oracle queries. The probability ε of A winning the game
for Assumption 1 is bounded by ε ≤ 5(qG + qP + 6qO + 11)2/p, where p is the
prime order of the generic groups.

Proof. See full version [19].

3.2 Cryptographic Building Blocks

The following building blocks will be used in our HABS construction.

Tag-Based Encryption. A TBE scheme has the same algorithms as a tradi-
tional public key encryption scheme, except that its encryption and decryption
procedures take an extra tag t as input. A correctly formed TBE ciphertext C will

98 D. Gardham and M. Manulis

fail to decrypt if the tag used as input to the decryption algorithm is different
from the one used upon encryption. We adopt the TBE scheme from [26] which
relies on the SDLIN assumption. It offers selective-tag witness-indistinguishable
chosen-ciphertext (st-IND-CCA) security, where an adversary is unable to dis-
tinguish between two ciphertexts under the same tag t of their choosing. Kiltz
[28] showed that a st-IND-CCA TBE scheme combined with a strongly unforge-
able one-time signature, where the one-time verification key is used as the tag,
gives rise to an IND-CCA2 secure PKE. Our scheme uses this approach.

One-Time Signature. For the OTS, we use the strongly unforgeable BBS one-
time signature scheme from [7]. It consist of three algorithms (KeyGen, Sig, Ver)
with a verification key in G

2 × Z
∗
p and the corresponding signing key in Z

∗2
p .

Groth-Sahai Proofs. We use the Groth-Sahai proof system [22] to construct
the required non-interactive zero-knowledge proofs NIZK. A GS proof, which
consists of five algorithms (Setup, Prove, Verify, SimSetup, SimProve), allows
proving relations involving multi-linear, quadratic, and pairing-based equations.
We use GS proofs in the asymmetric bilinear group setting with Type-3 curves
[18], i.e., where there is no computable isomorphism between G1 and G2, in
which case their security is based on the SXDH assumption [7].

Homomorphic Trapdoor Commitments to Group Elements. The key
to our short HABS scheme is the length-reducing homomorphic trapdoor com-
mitment scheme by Groth [21], adopted in our new delegation mechanism. With
the HTC scheme, defined by four algorithms (Setup, KeyGen, Commit, Trapdoor),
one can use the trapdoor key tk to open a constant-length commitment (c, d)
to arbitrary group elements with respect to a commitment key. We observe that
due to its construction this HTC scheme has an interesting property that allows
a commitment to group elements step-wise, i.e. an opening (ai, bi) to elements
g1, . . . , gi can be transformed into an opening (ai+1, bi+1) for an extended set of
elements g1, . . . , gi+1 without knowledge of the secret commitment key, i.e., with-
out jeopardising the binding property for the already committed group elements.
In our HABS scheme such step-wise extension of an initial commitment (c, d)
produced by the root authority allows intermediate authorities, upon delegation,
to embed public keys of next-level authorities or users, along with the delegated
attribute, by providing appropriate modification to the opening of (c, d), that
is without changing its value nor increasing its length. Proving ownership of a
delegated attribute amounts to presenting an opening (a, b) for the commitment
(c, d) to the attribute and the list of public keys of authorities on the delega-
tion path, i.e., apk0, . . . ,upk, �. In our scheme we use the asymmetric variant of
Groth’s HTC scheme with security based on the XDLIN assumption [1].

3.3 Specification of Our HABS Scheme

We start with a high-level intuition behind our HABS construction and provide
detailed specification in Figs. 5, 6, and 7.

Hierarchical Attribute-Based Signatures 99

High-Level Overview. As part of the setup process public parameters pp of
the scheme are generated. They include the security parameter λ, the descrip-
tion of bilinear groups (G1,G2,GT), the trapdoor key tk for the HTC scheme, the
initial ‘dummy’ HTC commitment (c, d) with an opening (a0, b0), and the descrip-
tion of the attribute universe A. The independent tracing authority TA generates
the TBE key-pair (tsk, tpk):=((η1, η2), (V1, V2, V3, V4)) with tpk included into pp.
For simplicity we describe the setup phase as a single process involving com-
putations performed by the RA and TA. We stress, however, that generation
of h1, ..., h5, f1, f2 must be trusted in that no entity knows the corresponding
exponents.

Setup(λ)

0 : (G1,G2,GT , g1, g2, e, p) ← BG(1λ)

1 : Sample r, s ← Z
∗
p

2 : h1 := gs
1, h2 := gs2

1 , h3 := gr
1 ,

h4 := gr2

1 , h5 := grs
1

3 : f1 := gs
2, f2 := gr

2

4 : Define H1 : A → Z
∗
p,

H2 : {0, 1}∗ → Z
∗
p, H3 : {0, 1}∗ → Z

∗
p

5 : Sample g̃1 ← G1, g̃2 ← G2

6 : Compute ζ ← e(g̃1, g̃2)

7 : (tsk, tpk) ← TKGen

8 : w1 ← NIZK1.Setup

9 : w2 ← NIZK2.Setup

10 : Define attribute universe A

11 : Sample mr, ms, nr, ns ← Z
∗
p

12 : Sample a0, b0 ← G1

13 : Compute gr ← gmr
2 , gs ← gms

2 ,

hr ← gnr
2 , hs ← gns

2

14 : Compute c := e(a0, gr)e(b0, gs)

d := e(a0, hr)e(b0, hs)

15 : Compute Δ := mrns − nrms

16 : α := ns/Δ, β := −ms/Δ,

γ := −nr/Δ, δ := mr/Δ

17 : tk := (mr, ms, nr, ns, α, β, γ, δ)

18 : pp := (G, c, d, a0, b0, tk, H1, H2,

H3, ζ, g̃1, g̃2, tpk,A, w1, w2)

for G := (G1,G2,GT , g1, g2, e, p

h1, h2, h3, h4, h5, f1, f2)

19 : return pp

Fig. 5. Setup algorithm of our HABS construction.

In our scheme, all attribute authorities and users generate their own pri-
vate/public key pairs (aski, apki) and (usk, upk) respectively, of the form {(x, y),
(X,Y,Z, Ẑ)}. While only X and Y are used in the verification of attribute del-
egation which we prove in the signature, the components (Z, Ẑ) are used in the
issuing phase. To ensure an authority creates a delegation that opens to (X,Y),
we insist that the validity of a public key is checked prior to delegation. This
is done by evaluating e(XY, h1) = e(Z, g2) and e(XY, h3) = e(Ẑ, g2). IAs and
users obtain attributes from existing authorities at a higher level in the hier-
archy. Ownership of a valid key-pair (aski, apki) allows authorities to delegate
attributes further down the hierarchy and to the users, by manipulating the
opening of the initial commitment (c, d).

100 D. Gardham and M. Manulis

With the trapdoor key tk an authority can create an opening (ai, bi) for (c, d)
to the path that includes delegate’s public key e.g. apkj . Rather than opening
directly, the issuer first creates randomisation tokens T1, T2, T3, T4 ∈ G2 and
opens to these instead. It then uses T1 and T2 as one-time commitment keys to
open to apkj and the delegated attribute att, that is hashed into the message
space using gH1(att). The randomisation tokens T1 and T2 are used to prevent
forgeries (where the adversary combines multiple openings and in doing so, forges
an opening to a new public key) whereas T3 and T4 are used to verify the well-
formedness of T1 and T2, by evaluating e(g1, T1T2) = e(h1, T4)e(h3, T3). The
issuing authority updates the (possibly empty) warrant with opening (ai, bi),
his public key apki and the randomisation tokens (T1, T2, T3, T4). As tk is part
of public parameters, any IA in the hierarchy is able to perform the delegation
procedure, where it receives (ai−1, bi−1) from its issue and generates (ai, bi) for
the next delegation. When delegating to users, an issuing IA will open (c, d) to
a designated element � ∈ G, in addition to the user’s public key upk and the
attribute att. A warrant contains the trapdoor opening and a list of all public
keys of AAs that appear in the delegation path for any issued attribute.

Upon signing, the user first generates an OTS key-pair (otssk, otsvk) :=
{(k1, k2), (K1,K2, κ)} and an opening to H3(otsvk) by modifying the open-
ing (a0, b0) using his public key upk and the trapdoor key tk. The reduced
warr along with upk are encrypted in a TBE ciphertext under the TA’s pub-
lic key tpk and tag H3(otsvk). The signing policy Ψ is modelled as a mono-
tone span program, with labelling function ρ that maps rows from S to the

KGen(pp)

0 : Sample x, y ← Z
∗
p

1 : X := hx
1 , Y := hy

3 ,

2 : Z := hx
2hy

5 , Ẑ := hx
5hy

4

3 : pk := (X, Y, Z, Ẑ),

4 : sk := (pk, x, y)

5 : return (pk, sk)

TKGen(pp)

0 : Sample η1, η2 ← Z
∗
p

1 : Compute V1 := gη1
1 , V2 := gη2

1

2 : Sample V3, V4 ← G2

3 : tpk := (V1, V2, V3, V4)

4 : tsk := (tpk, η1, η2)

5 : return (tsk, tpk)

AttIssue(aski, {apkj |upk}, att, ai, bi,warr)

0 : Parse {apkj |upk} as (Xj , Yj , Zj , Ẑj)

1 : Verify e(XY, h1) = e(Z, g2)

and e(XY, h3) = e(Ẑ, g2)

2 : Sample t1, t2 ← Z
∗
p

3 : T1 := f t1
1 , T2 := f t2

2 , T3 := gt1
2 , T4 := gt2

2

4 : ã ← amr
i bms

i (ht1
2 ht2

5)−xi(Zjh
H1(att)
1)−t1

b̃ ← anr
i bns

i (ht1
5 ht2

4)−yi(Ẑjh
H1(att)
3)−t2

5 : (ai+1, bi+1) := (ãαb̃β , ãγ b̃δ)

6 : warr = warr ∪ {apki, T1, T2}
7 : return (ai+1, bi+1,warr)

Fig. 6. Key generation and issue of attributes in our HABS construction.

Hierarchical Attribute-Based Signatures 101

attribute set A. The signer proves that this set satisfies Ψ by computing a vector
z such that zS = [1, 0, ..., 0], where any non-zero entry zi implies ρ(i) ∈ warr.
A NIZK proof π is then computed using Groth-Sahai framework with witness
(upk,warr, z, r̃, s̃) for the following relation:

(
(a, b),warr, upk, z

)
,
(
Ψ, otsvk, apk0, C, tpk

)
: zS = [1, 0, ..., 0]

∧ (∀i. zi �= 0 =⇒ atti = ρ(i) ∧ (apki1 , ..., apkin , apkin+1 := upk) ∈ C

∧ c|warr|+1 = e(a, gr)e(b, gs)e(X, g
H3(otsvk)
2)

ΠiΠ
k
n=0e(Xin , T1,inT2,in)e(Xin+1Yin+1g

H1(att)
1 , T1,in)

∧ d|warr|+1 = e(a, hr)e(b, hs)e(Y, g
H3(otsvk)
2)

ΠiΠ
k
n=0e(Yin , T1,inT2,in)e(Xin+1Yin+1g

H1(att)
1 , T2,in)

∧ e(g1, ΠiΠ
k
n=0T1,inT2,in) = e(h1, ΠiΠ

n
n=0T4,in)e(h3, ΠiΠ

k
n=0T3,in).

Sign(usk, m, Ψ, {attj , aj , bj ,warrj}j∈J)

0 : (k1, k2, k3) ← Z
∗
p

1 : otsvk := (g̃k1
2 , g̃k2

2 , k3)

2 : Compute z s.t. zS = [1, 0, ..., 0]

3 : T1 := f t1
1 , T2 := f t2

2 ,

T3 := gt1
2 , T4 := gt2

2

4 : a′ ← amr
i bms

i (ht1
2 ht2

5)−xh
−t1H3(otsvk)
1

b′ ← anr
i bns

i (ht1
5 ht2

4)−yh
−t2H3(otsvk)
3

5 : (a′, b′) := (ãαb̃β , ãγ b̃δ)

6 : (a, b) = (a′ · Πaj , b
′ · Πbj)

7 : C ← TBE.Enc(tpk,warr, upk,

a, b, {H1(otsvk)})
8 : π ← NIZK1.Prove((upk, z,warr, a, b) :

(C, otsvk, tpk, apk0, Ψ) ∈ R)

9 : H ← H2(π||C||Ψ ||m||otsvk)

10 : σo ← g̃
1/(k1+H+k2k3)
1

11 : return (σo, C, π, otsvk)

Verify(pk, σ, m, Ψ)

0 : Parse σ as (ots, π, otsvk)

1 : H ← H2(π||C||Ψ ||m||otsvk)

2 : return NIZK.Verify(π)

∧ e(σo, g̃
k1
2 · g̃H

2 · g̃k2k3
2) = ζ

Trace(tsk, σ, m, Ψ)

0 : if Verify(σ,m, Ψ) = 1 then

1 : warr ← TBE.Dec(tsk, C, t)

for t = H1(otsvk)

2 : π̂ ← NIZK2.Prove(tsk :

(otsvk, C, tpk, (apk0,warr)))

3 : return (warr, π̂)

Judge(tpk,warr, σ)

0 : Verify(ask0, (σ,m, Ψ))

∧ NIZK2.Verify(π2)

Fig. 7. Sign, Verify, Trace and Judge algorithms of our HABS construction.

The message m and policy Ψ are then bound to this proof and ciphertext
by hashing H2(π,C, Ψ,m), before an OTS signature σo is produced with otssk.
The resulting signature is verified with respect to the public parameters of the
scheme, and the RA’s public key apk0 by verifying the OTS signature and the
NIZK proof.

As part of the tracing procedure, executed by TA with knowledge of tsk, the
ciphertext C is decrypted to obtain the warrant warr, signer’s public key upk,

102 D. Gardham and M. Manulis

and the opening (a, b). A publicly verifiable NIZK proof π̂ is created with witness
tsk for the statement (otsvk, C, tpk, (apk0, warr)) and relation:

TBE.Dec(tsk, C,H3(otsvk)) = (upk,warr, a, b).

We give a detailed construction for the Groth-Sahai proofs NIZK1 and NIZK2 in
Appendix D.

3.4 Security Analysis

In this section we prove that our construction meets HABS security properties
of path anonymity, non-frameability and path traceability.

Lemma 1. The HABS construction from Figs. 5, 6 and 7 offers path anonymity,
if SXDH, SDLIN and q-SDH hold in G.

Proof. We follow a game-based approach and show that the advantage of the
PPT adversary A in the path-anonymity experiment for the HABS construction
from Figs. 5, 6 and 7, is bounded by the advantages of the constructed adver-
saries for the underlying primitives. We assume that adversary A asks n user
registration queries and the probability for sampling one of these users is 1/n.

Game G0: This game is defined to the be the experiment Exppa-b
HABS,A(λ) in Fig. 2,

where the 2-stage adversary A = (A1,A2) is required to distinguish between the
HABS signatures σ0 = (σ0

o ,C0, π0, otsvk0) and σ1 = (σ1
o ,C1, π1, otsvk1).

Game G1: We define the game G1 as G0 where the check “A2 did not query
OTr(m,Ψ, σb)” is enforced by the OTr oracle available to A2, which aborts the
game if this is the case. The probability from G0 to G1 is preserved.
Game G2: The game G2 is obtained from G1 where, on the output of OTr,
we replace the NIZK2 proof π̂ with π̂′ from the simulator NIZK2.SimProve. We
also replace Setup by SimSetup for NIZK2. This prevents the case where A may
“extract” tsk from NIZK2 proofs. Thus, for all future OTr oracle calls we use the
simulated NIZK2 proof. The probability that A can distinguish between these
two games is bounded by the advantage of the zero-knowledge adversary Bnizk2

for NIZK2. For our instantiation of GS proofs, this is reduced to the SXDH
assumption [22].
Game G3: Let G3 be the game obtained from G2 where we replace the proof πb

from the challenge signature σb = (σo,b, Cb, πb, otsvkb) with the simulated proof
π′

b by calling NIZK1.Sim on (Cb, otsvkb, tpk, apk0, Ψ). Additionally, we replace
NIZK1.Setup by NIZK1.SimSetup. The probability that A can distinguish between
games G2 and G3 is bounded by the advantage of the zero-knowledge adversary
Bnizk1 for NIZK1 proof. Similarly, this property is implied by SXDH.
Game G4: Game G4 only differs from game G3 in that we abort if A2

queries OTr(m,Ψ, (σo,Cb, π, otsvkb)). The adversary A is only able to distin-
guish between these games if it can produce a valid OTS signature σo for the
message (Cb, π,m, Ψ) and public key otsvkb, without knowledge of the secret key
otsskb. Thus, the capabilities of the adversary A to distinguish between these

Hierarchical Attribute-Based Signatures 103

two games is bounded by the advantage of the adversary Bots against the strong
unforgeability of the OTS scheme, which is reduced to the q-SDH assumption [7].
Game G5: Game G5 is defined to be G4, except we additionally do a check for
any queries A2 makes do not contain the challenge ciphertext, that is OTr(m,Ψ,
(σo,Cb, π, otsvk)). If so the game is aborted. The output of OTr is for G4 and
G5 is the same, as the oracle returns ⊥ if the tag otsvkb for C is different from
otsvk received as input. Hence, the probability is preserved.
Game G6: The game G6 is the same as G5, except that we move the OTS key
generation from the signature generation phase into the setup of the experiment.
Note that only one key pair needs to be created in this game since the adversary
only sees the challenge signature. This step is necessary to utilise the st-IND-
CCA property of the TBE scheme. The probability is unchanged from game G5

to G6.
Game G7: Let G7 be the game obtained from G6 where the TBE ciphertext
Cb from the challenge signature σb = (σb

o, Cb, π
′
b, otsvkb) is replaced with the

C0. The adversary A is unable to query a ciphertext C ′ �= Cb for the same tag
H3(otsvk) as a result of game G4. Further, any query to the oracle for a tag
t′ �= H3(otsvk) will also fail as decryption of Cb is dependent on the correct tag.
Thus, the ability of the adversary A2 to distinguish between the ciphertexts C0

and Cb is bounded by the advantage of the st-IND-CCA adversary Bind. For out
instantiation, this property of TBE is implied by SDLIN [26].

The experiment G7 provides A with the same challenge signature indepen-
dent of b that A is asked to guess. Additionally, due to the zero-knowledge
property of NIZK2 used in G1, A does not have access to tsk. Therefore, the
probability that the adversary wins game G7 is 1/2 and hence the advantage of
A to win this experiment is 0. �

Lemma 2. The HABS construction from Figs. 5, 6 and 7 is non-frameable, if
H1,H2 and H3 are second-preimage resistant hash functions, and q-SDH, SXDH
and Assumption 1 hold in G.

Proof. We begin by first splitting the non-frameability experiment from Fig. 3
into two experiments based on the winning condition of the adversary A. The
first Exp1, defined in Fig. 8, captures the probability of the adversary A to create
a forged HABS signature. The second experiment Exp2 is the same as Exp1

except that the event “j ∈ HU ∧ A did not query OSig((uskj ,warr), Ψ,m)” is
replaced with

“∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , �) = warr[a] ∧
((∃0 ≤ i ≤ n − 1. A did not call OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
(A did not call OAtt(n, · , a, upku) ∧ n ∈ HU))”

We capture the probability of winning the non-frameability experiment by
the probability that A wins either Exp1 or Exp2.

We first bound the advantage of the adversary for the experiment Exp1.
Intuitively, we consider the output of the adversary and argue that each compo-
nent must coincide with a call to the signing oracle. The forgery is denoted by

104 D. Gardham and M. Manulis

Exp1 - The Expnf
HABS,A(λ) where A did not query OSig((usk,warr), Ψ,m)

1 : (pp,ask0, tsk) ← Setup(1λ)

2 : ((m, Ψ, σ), (upkj ,warr, (ˆπ, σs))) ← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : (σo,C, π, otsvk) = σ

4 : if NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧
5 : OTS.Verify(otsvk, (m, Ψ,C, π), σo) ∧
6 : NIZK2.Verify(tpk, (otsvk,C, upkj ,warr, σs), π̂)∧
7 : j ∈ HU ∧
8 : A did not query OSig((uskj ,warr), Ψ,m) then

9 : return 1

10 : return 0

Fig. 8. Experiment Exp1

(upk′,warr′, m′, Ψ ′), (σ′
o,C

′, π′, otsvk′). We take each element of the tuple (upkj ,
warr, m, Ψ) and try to reason about its relation with their prime counterpart.

Given n calls to the registration oracle, we model the probability the adver-
sary can guess which oracle constructs the keys for a particular user uniformly,
i.e. is equal to 1/n.
Game G0. This game is defined as Exp1 where the query restriction “A did
not query OSig((uskj , warr),m, Ψ)” in instead enforced by a membership check
(upku,warr,m, Ψ) /∈ SigL for the list SigL. We also introduce the list SigLO
that stores the input and output of the OSig oracle. Both lists are initialised
empty at the beginning of the experiment, and are updated with the inputs,
and additionally, the outputs of the OSig oracle, respectively. The probability is
preserved between Exp1 and G0.
Game G1. This game is defined exactly as G0 with the exception of an addi-
tional check that the opening (a, b) for (c, d) contains the path e(Xi, g

H3(otsvk))
and e(Yi, g

H3(otsvk)), respectively. The success probability of a soundness adver-
sary for NIZK1 bounds the distinguishability of G1 from G0. That is, A can only
distinguish between these two games if it is able to generate a valid NIZK1 proof
for a false statement, namely that (a, b) does not open to gH3(otsvk). Soundness
for our instantiation of NIZK1 is implied by the SXDH assumption [22].
Game G2. The game G2 is obtained from G1 by adding the condition (upkj , �, �,
�) /∈ SigL. The adversary in G2 managed to create a valid opening (a, b) for upku

to gH3(otsvk), without having access to the user’s secret key uskj (since j ∈ HU).
The capabilities of A in this experiment are upper-bounded by the advantage of
an adversary against Assumption 1 and the second-preimage property of H3.
Game G3. Game G3 is defined to be Game G1, but where A made at least
one signing query that contains user upkj . Therefore, there exists ((upkj ,warr′,
m′, Ψ ′), (σ′

o,C
′, π′, otsvk′)) ∈ SigL with (warr,m, Ψ) �= (warr′,m′, Ψ ′) as (upkj ,

Hierarchical Attribute-Based Signatures 105

warr,m, Ψ) /∈ SigL but (upkj ,warr′,m′, Ψ ′) ∈ SigL. The probability is pre-
served between G1 and G3.
Game G4. We define G4 as the game G3 where otsvk �= otsvk′. In this case, the
adversary A is able to provide a forged opening to gH(otsvk′) without knowledge
of uskj . This is similar to the method of computing the bound for G2, except
that now A asks signature queries for upk. It is also bounded by an adversary
against Assumption 1.
Game G5. We define game G5 as the game G3 where (m,Ψ) �= (m′, Ψ ′). At
this point, we have otsvk = otsvk′ and upk = upkj for some j. Thus, if A can
distinguish between G5 and G3 then it is able to provide a forgery for the OTS
scheme by signing a message that contains (m′, Ψ ′) without knowledge of otssk,
or break the second preimage property of H2.
Game G6. We define game G6 as the game G5 where (m,Ψ) = (m′, Ψ ′). Because
of the (warr,m, Ψ) �= (warr′,m′, Ψ ′) restriction, we have warr′ �= warr. The
correctness property of the encryption scheme TBE that builds C′ now implies
C �= C′ under the tag t = H3(otsvk). The probability that the adversary can
distinguish between G6 and G5 is upper-bounded by an adversary B′

cor against
the correctness of TBE, which is implied by the SDLIN assumption [26].
Game G7. Let G7 is the same as G6 but with C �= C′. Assuming second-
preimage resistance of H2, the adversary A managed to create a forged OTS
signature without knowledge of otssk. Therefore, the probability of success for
adversary A in this game is bounded by the advantage of an OTS-forger B′

ots.
The q-SDH assumption implies the BBS signature is strongly unforgeable [7].

From the sequence of games G0, . . . , G7, it follows that the probability of
Exp1 is bounded by the unforgeability of OTS, zero-knowledge of NIZK1, correct-
ness of TBE, and computational hardness of Assumption 1.

The experiment Exp2 captures the case where the adversary A is able to
provide a forged delegation for an honest authority apki and some attribute att.
In this case, A is bounded by the hardness of Assumption 1 and the second
preimage property of H1.

Lemma 3. The HABS construction from Figs. 5, 6 and 7 offers path traceability,
if SXDH, SDLIN and Assumption 1 hold in G.

Proof. See full version [19].

Theorem 2. The HABS scheme in Figs. 5, 6 and 7 offers path-anonymity, non-
frameability and path-traceability if H1, H2 and H3 are second-preimage resistant
hash functions and SXDH, SDLIN, q-SDH and Assumption 1 hold in G.

Proof. The result follows from Lemmas 1, 2 and 3. �

4 Efficiency Comparison

We first compare the warrant sizes for our scheme and [12]. For a single attribute,
an authority at level 1 (with respect to the root authority at level 0) has a warrant

106 D. Gardham and M. Manulis

size of 6 group elements (of the form G
2
1×G

4
2). Further delegation to level 2 adds

a further 6 elements in G
2
1 × G

4
2. A delegation from the root authority contains

the opening (a, b) (as part of the 6 elements) which is updated by subsequent
delegations, however the warrant must now also contain the issuers public key
(Xi, Yi) in G

2
1. This generalises, and for a user at level k, the size of the warrant

is 6k for a single attribute. Likewise, if we extend the number of attributes in
the warrant to |A|, each of which has a delegation path of length k, then the
warrant has 6k|A| group elements.

In contrast, for a single attribute issued to a level-1 entity, the warrant in
[12] contains 7	 12+2m

m−2
 group elements, where m is the size of the message space
used in the TBS instantiation. A level-2 delegation increases this to 7	 24+4m

m−2
 +
2m + 12 elements, and this generalises for a single attribute that is issued to a
level k entity to 7	k(12+2m)

m−2
 + (k − 1)(2m + 12) elements. Similarly, a warrant
that contains |A| attributes adds a linear factor of |A| to this term. To give a
concrete comparison, a user with 3 attributes at level 4 of the hierarchy would
have a warrant containing 72 group elements in our scheme, as opposed to 208
elements for an optimal choice of m (i.e., m = 10) in the scheme from [12].
Since m would be chosen in advance during the setup phase, the warrant would
unlikely reach its optimal bound and for any suboptimal choice of m, the warrant
grows linearly in this parameter.

Next, in Table 1 we compare the sizes of public keys (of users and authori-
ties) and the lengths of signatures generated by our scheme and [12]. By β we
denote the size of the span program representing the policy Ψ . As before k is the
maximum length of a delegation path, |Ψ | is the number of attributes needed to
satisfy the signing policy, and m is the size of the message space for the TBS
scheme used in [12].

Table 1. Comparison of key and signature sizes.

Dragan et al. [12] This Work
G Zp G1 G2 Zp

Public Keys upk 14 - 4 - -
apk 12+2m - 4 - -

Sig.
ots 3 1 2 1 1
C

5(6+m)k(k−1)|Ψ|
(m−2) + 110 - 6(2k − 1)|Ψ | + 12 4(2k − 1)|Ψ | + 8 -

π
28(6+m)k(k−1)|Ψ|

(m−2) + 18 2β 8 2k|Ψ | + 8 β

In addition to being more efficient and shorter than [12], our scheme, in
fact, produces HABS signatures of optimal length, from the asymptotic point
of view. The need to provide path traceability, where the TA must be able to
reveal the entire delegation path along with delegated attributes from a valid
HABS signature implies the O(k|Ψ |) growth of its length. This means that in
order to reduce this bound path-tracability property would need to be relaxed.

Finally, our scheme brings a few other efficiency improvements. The use of
Type-3 pairings results in fewer group elements and the possibility to achieve
the same level security for a smaller choice of the prime p [18], which would give

Hierarchical Attribute-Based Signatures 107

rise to smaller groups and faster operations than in the symmetric setting. In
addition, we can adopt batch verification techniques available for Groth-Sahai
proofs [6] to speed up the computations.

5 Conclusion

We proposed a direct construction of Hierarchical Attribute-based Signatures
(HABS) with a new delegation process based on length-reducing homomorphic
trapdoor commitments. Our HABS scheme significantly reduces the lengths of
warrants, public keys and signatures in comparison to the so-far only known
(generic) HABS construction. Moreover, due to the need to support the path-
traceability requirement, our HABS scheme achieves optimal signature length
growth of O(k|Ψ |) for delegations paths of size k and signing policies of size |Ψ |.
Our technique of step-wise embedding of new group elements into the homo-
morphic trapdoor commitment can be considered to be of independent interest,
e.g., it could add support for delegation to other privacy-preserving signature
schemes that rely on homomorphic trapdoor commitments, e.g. [2].

Acknowledgements. Daniel Gardham was supported by the UK Government PhD
studentship scheme. Mark Manulis was supported by the EPSRC project TAPESTRY
(EP/N02799X). The authors thank the anonymous reviewers of ACNS 2019 for their
valuable comments.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptol. 29, 833–878 (2016)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR Cryptology ePrint Archive, p. 133 (2010)

3. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 357–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 14

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

5. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

6. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 14

7. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-540-24676-3_4

108 D. Gardham and M. Manulis

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

9. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

10. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

12. Drǎgan, C.-C., Gardham, D., Manulis, M.: Hierarchical attribute-based signatures.
In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp.
213–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7 11

13. El Kaafarani, A., Ghadafi, E.: Attribute-based signatures with user-controlled link-
ability without random oracles. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol.
10655, pp. 161–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71045-7 9

14. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 17

15. El Kaafarani, A., Katsumata, S.: Attribute-based signatures for unbounded circuits
in the ROM and efficient instantiations from lattices. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10770, pp. 89–119. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76581-5 4

16. Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with
adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 14

17. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 14

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

19. Gardham, D., Manulis, M.: Hierarchical attribute-based signatures: short keys and
optimal signature length. Cryptology ePrint Archive, Report 2019/382 (2019).
https://eprint.iacr.org/2019/382

20. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 391–409. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 21

21. Groth, J.: Homomorphic Trapdoor Commitments to Group Elements. Cryptology
ePrint Archive, Report 2009/007 (2009)

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

23. Herranz, J.: Attribute-based signatures from RSA. TCS 527, 73–82 (2014)
24. Jager, T., Rupp, A.: The semi-generic group model and applications to pairing-

based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
539–556. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 31

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-00434-7_11
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-71045-7_9
https://doi.org/10.1007/978-3-319-04852-9_17
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-319-76581-5_4
https://doi.org/10.1007/978-3-642-21969-6_14
https://doi.org/10.1007/978-3-540-85855-3_14
https://eprint.iacr.org/2019/382
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-319-16715-2_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31

Hierarchical Attribute-Based Signatures 109

25. Kaaniche, N., Laurent, M., Rocher, P.-O., Kiennert, C., Garcia-Alfaro, J.: PCS, a
privacy-preserving certification scheme. In: Data Privacy Management, Cryptocur-
rencies and Blockchain Technology, pp. 239–256 (2017)

26. Kakvi, S.A.: Efficient fully anonymous group signatures based on the Groth group
signature scheme. Master’s thesis, University College London (2010)

27. Khader, D., Chen, L., Davenport, J.H.: Certificate-free attribute authentication.
In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 301–325. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 18

28. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

29. Krzywiecki, �L., Sulkowska, M., Zagórski, F.: Hierarchical ring signatures revis-
ited – unconditionally and perfectly anonymous schnorr version. In: Chakraborty,
R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 329–346.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24126-5 19

30. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: ACM ASIACCS 2010, pp. 60–69. ACM (2010)

31. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

32. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 9

33. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 3

34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

35. Sakai, Y.: Practical attribute-based signature schemes for circuits from bilinear
map. IET Inf. Secur. 12, 184–193 (2018)

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

37. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 37

38. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 16

https://doi.org/10.1007/978-3-642-10868-6_18
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/978-3-319-24126-5_19
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-642-19379-8_3
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/11523468_37
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-319-70503-3_16

	Hierarchical Attribute-Based Signatures: Short Keys and Optimal Signature Length
	1 Introduction
	2 HABS Model: Entities and Definitions
	2.1 Security Properties

	3 Our Short HABS Construction
	3.1 Underlying Hardness Assumptions
	3.2 Cryptographic Building Blocks
	3.3 Specification of Our HABS Scheme
	3.4 Security Analysis

	4 Efficiency Comparison
	5 Conclusion
	References

