
Public Immunization Against Complete
Subversion Without Random Oracles

Giuseppe Ateniese1, Danilo Francati1(B), Bernardo Magri2,
and Daniele Venturi3

1 Stevens Institute of Technology, Hoboken, NJ, USA
dfrancat@stevens.edu

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
3 Department of Computer Science, Sapienza University of Rome, Rome, Italy

Abstract. We seek constructions of general-purpose immunizers that
take arbitrary cryptographic primitives, and transform them into ones
that withstand a powerful “malicious but proud” adversary, who
attempts to break security by possibly subverting the implementation
of all algorithms (including the immunizer itself!), while trying not to be
detected. This question is motivated by the recent evidence of crypto-
graphic schemes being intentionally weakened, or designed together with
hidden backdoors, e.g., with the scope of mass surveillance.

Our main result is a subversion-secure immunizer in the plain model
(assuming collision-resistant hashing), that works for a fairly large class
of deterministic primitives, i.e., cryptoschemes where a secret (but tam-
perable) random source is used to generate the keys and the public param-
eters, whereas all other algorithms are deterministic. The immunizer
relies on an additional independent source of public randomness, which
is used to sample a public seed. While the public source is untamperable,
the subversion of all other algorithms is allowed to depend on it.

Previous work in the area only obtained subversion-secure immuniza-
tion for very restricted classes of primitives, often in weaker models of
subversion and relying on random oracles, or by leveraging a higher num-
ber of independent random sources.

1 Introduction

A common trend in modern cryptography is to design cryptographic schemes
that come with a proof of security in a well-defined model. The proof is typically
by reduction, meaning that violating the security of the scheme implies the
existence of an efficient algorithm for solving some well-studied mathematical
problem which is believed to be hard (e.g., factoring certain integers, or inverting
a one-way function). While having such a security proof is a desirable feature,
it is at least as important to make sure that the security model fits reality, as
otherwise provably secure schemes are of little use in practice.

B. Magri—The author was supported by the Concordium Blockchain Research Center,
Aarhus University, Denmark.

c© Springer Nature Switzerland AG 2019
R. H. Deng et al. (Eds.): ACNS 2019, LNCS 11464, pp. 465–485, 2019.
https://doi.org/10.1007/978-3-030-21568-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21568-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-21568-2_23

466 G. Ateniese et al.

Unfortunately, security models often make idealized assumptions that are not
always fulfilled in the real world. In this paper, we focus on one of those gaps,
which is the discrepancy between the specification of a cryptographic scheme
and its implementation. In particular, we consider the extreme case where the
implementation is fully adversarial, i.e., the adversary is allowed to subvert or
substitute some (or possibly all) algorithms in the original specification, with
the purpose of weakening security.

The above scenario recently gained momentum due to the NSA leaks by
Edward Snowden [3,18,21], and because of the EC DUAL PRG1 incident [9].
These hazards challenge modern cryptographers to design protection mecha-
nisms withstanding subversion and tampering, as it was also highlighted by Phil
Rogaway in his 2015 IACR Distinguished Lecture [22].

1.1 Background

To guarantee some form of security in such an adversarial setting, we must put
some restrictions on the adversary, as otherwise, it is easy to subvert a crypto-
graphic scheme in a way that becomes insecure (e.g., the subverted scheme could
always output the secret key). A natural restriction, which is also inspired by
real-world attacks, is to demand that subversion should be undetectable by hon-
est users. In other words, the adversary’s goal is to tamper with the specification
of a cryptographic scheme in such a way that the produced outputs appear indis-
tinguishable from that of a faithful implementation, yet they allow an adversary
to break security given some additional pieces of information altogether.

As it turns out, the possibility of such attacks was already uncovered more
than twenty years ago by Young and Yung [29,30], who dubbed the field kleptog-
raphy (a.k.a. “cryptography against cryptography”). At Crypto 2014, Bellare,
Paterson, and Rogaway [7] revisited this setting for the concrete case of symmet-
ric encryption. In particular, on the one hand, they showed that it is possible to
hide a backdoor in the encryption algorithm of any sufficiently randomized sym-
metric encryption scheme in such a way that the produced ciphertexts appear
indistinguishable from honestly computed ones, yet knowledge of the backdoor
allows the adversary to extract the secret key in full; on the other hand, they
suggested that deterministic symmetric encryption schemes are secure against
all subversion attacks that meet some form of undetectability. Their results were
later extended in several ways [6,10], while follow-up work studied similar ques-
tions for the case of digital signatures [1], pseudorandom generators [11,12], non-
interactive zero knowledge [5], key encapsulation [2], and hash functions [16,25].

Complete Subversion. A common feature of the works above is that only some of
the algorithms underlying a given cryptographic scheme are subject to subver-
sion, while the others are assumed to follow the original specification faithfully.

1 The PRG was standardized by NIST in 2006, and later withdrawn in 2014 as it
was including a potential backdoor allowing to predict future outputs of the PRG
algorithm.

Public Immunization Against Complete Subversion 467

Motivated by this limitation, Russell et al. [23] put forward a new framework
where the adversary is allowed to subvert all algorithms; furthermore, in order
to cast undetectability, they introduced a trusted third party, a so-called watch-
dog, whose goal is to test whether the (possibly subverted) implementation is
compliant with the original specification of a cryptographic scheme. In a nut-
shell, a primitive is subversion secure if there exists a universal watchdog such
that either no adversary subverting all algorithms can break the security of the
scheme, or, if instead, a subversion attack is successful, the watchdog can detect
it with non-negligible probability.

The testing procedure executed by the watchdog is typically performed only
once before the (possibly subverted) scheme is used “in the wild”. This is known
as the offline watchdog model. Unfortunately, there are subversion attacks that
cannot be detected in an offline fashion. Think, e.g., of a signature scheme where
the signature algorithm is identical to the original specification, except that upon
input of a special message (that is also hard-wired in the implementation) it
compromises security (e.g., it returns the secret key). Now, assuming that the
message space is large enough, an offline watchdog has a negligible chance of
hitting this hidden trigger, so that the subverted implementation will pass the
test phase; yet, the subverted scheme is clearly insecure (in the standard sense
of unforgeability against chosen-message attacks).

To cast such attacks, [23] introduces the online watchdog model, where the
watchdog is essentially allowed to additionally monitor the public interaction
between users while the scheme is being used “in the wild” (on top of performing
the same offline testing, as before).2

Cliptography. The main contribution of Russell et al. [23], apart from introduc-
ing the model of complete subversion, is to propose a methodology to clip the
power of subversion attacks against one-way (trapdoor) permutations. More-
over, they show how to rely on such subversion-secure one-way permutations
to derive subversion-secure pseudorandom generators and digital signatures. All
their results are in the random oracle model (ROM) of Bellare and Rogaway [8].

In a follow-up paper [24], the same authors show how to obtain public-key
chosen-plaintext attack secure encryption resisting complete subversion, again in
the ROM. This result (inherently) requires the assumption of two independent
secret, but tamperable, sources of randomness. They further show that their
construction can be instantiated in the standard model (i.e., without random
oracles) assuming a super-constant number of independent sources.

Open Questions. The works of [23,24] only cover a limited set of cryptographic
primitives. Furthermore, the assumption of having a large number of independent
sources is quite a strong one in practice [28]. Hence, the natural question:

2 One can imagine even more powerful watchdogs monitoring public transcripts while
being given the user’s secret keys; these are known as omniscent watchdogs, but will
not be considered in this paper.

468 G. Ateniese et al.

Is it possible to protect other primitives against complete subversion, by
relying on a single source of secret, but tamperable, randomness, and with-
out assuming random oracles?

1.2 Our Contributions

In this paper, we make significant progress towards answering the above question.
Our starting point is a notion of subversion-resistant immunizer Ψ , whose goal is
to take an arbitrary primitive Π that is secure w.r.t. some game G, and transform
it into an immunized primitive Π∗ = Ψ(Π) (for the same cryptographic task)
that is secure w.r.t. G under complete subversion (in the sense of [23]). The
immunizer leverages two independent random sources, which we denote by R
and S: The source R is an m-bit source which is assumed to be secret, but
tamperable; the source S is an �-bit source which is assumed to be public but
untamperable. The subversion ˜Π is allowed to depend on the seed s sampled
from S and used by the immunized cryptosystem (i.e., first s is sampled and
made public, and then the adversary subverts Π∗).

Next, we show how to construct a subversion-secure immunizer tailored to
protect deterministic primitives Π (secure w.r.t. some game G), where the latter
means that the original specification of Π consists of a secret random m-bit
source R that is sampled in order to generate the public/secret keys of the
scheme (via an algorithm K), and the public parameters (via an algorithm P),
whereas every other algorithm Fi underlying Π is deterministic. Our immunizer
can be instantiated using any collision-resistant hash function, but for certain
primitives Π two additional properties are required (more on this later).

Interestingly, our results allow us to protect new cryptographic primitives
against complete subversion; examples include: (weak) pseudorandom func-
tions and permutations, message authentication codes, collision/second pre-
image/pre-image resistant hash functions, deterministic symmetric encryption,
and more. Previously to our work, for the primitives mentioned above, it was
only known how to obtain security in weaker models of subversion, or with ran-
dom oracles. We refer the reader to Table 1 for a comparison of our results with
state-of-the-art research in the area.

1.3 Techniques

We turn to a high-level description of the techniques behind our results. Let
Π = (P,K,R,F1, . . . ,FN) be a deterministic cryptographic scheme. As explained
above, algorithms P and K are responsible to generate, respectively, global public
parameters ρ and a public/secret key pair (pk, sk) that are taken as input by all
other algorithms Fi.3 Importantly, all algorithms are deterministic, except for
P and K which further take as input independent random coins r ∈ {0, 1}m

generated by sampling a secret, uniformly random, source R.

3 The string pk might be empty for secret-key primitives.

Public Immunization Against Complete Subversion 469

Table 1. Comparing our constructions with other results for security under subver-
sion. We use the following abbreviations: “Pub” for public, “Sec” for secret, “CPA-
SKE/CPA-PKE” for public/secret-key encryption under chosen-plaintext attacks,
“PRG” for pseudorandom generator, “OWF/TDF” for one-way (trapdoor) func-
tion, “CRH” for collision-resistant hash function, “ROM” for random oracle model,
“∀ det-unp” for all deterministic primitives with security w.r.t. an unpredictability
game, “∀ det-ind2” for all deterministic primitives with square security w.r.t. an indis-
tinguishability game. The value δ is a small constant. The green color means the source
is assumed to be untamperable.

Our immunization strategy follows the design principle of “decomposition
and trusted amalgamation” introduced in [24], by means of hash functions
hs1 , hs2 : {0, 1}n → {0, 1}m with seeds s1, s2 sampled independently from a pub-
lic source S. More in details, we take 2k def= 2n/m samples r11, . . . , r

1
k and r21, . . . , r

2
k

from the (possibly subverted) source R, and then we hash the amalgamated
strings r1

def= r11|| · · · ||r1k and r2
def= r21|| · · · ||r2k, respectively, using seeds s1 and s2.

Finally, the immunized parameter generation algorithm P∗ runs P(1λ;hs1(r1)),
whereas the immunized key generation algorithm K∗ runs K(1λ;hs2(r2)); the
algorithms (Fi)i∈N are not modified.

Intuitively, the above immunizer tries to sanitize the randomness used for
parameters/keys generation in such a way that it is harder for an adversary to
generate such values together with a backdoor. We stress that the trick of hashing
the random coins for key generation was introduced by [23], although there it
was applied only to immunize trapdoor permutations in the ROM, whereas we
generalize their approach in such a way that it can be applied to a large class of
deterministic primitives (as defined above) in the plain model.

Input Constrained/Unconstrained Games. Recall that for some primitives it is
inherently impossible to obtain subversion security in the offline watchdog model.
Hence, in our analysis of the above immunizer, we identify a natural property of
cryptographic games which allows us to prove security in the offline watchdog
model; for games not satisfying this property we instead obtain security in the
online watchdog model.

More in details, a game G for some primitive Π consists of an interaction
between an adversary A and a challenger C, where C is given oracle access to

470 G. Ateniese et al.

the algorithms underlying Π in order to answer queries from A, and determine
whether A wins the game or not. We call G input constrained, if the inputs
xi upon which each (deterministic) algorithm Fi is queried during the game
are sampled by C via some public distribution Di that is independent of the
adversary. On the other hand, a game that is not input constrained is called
input unconstrained. Examples of input-constrained games G include, e.g., the
standard security games for weak pseudorandom functions and one-way permu-
tations. See Sect. 2.2 for more examples.

Security Proof. We prove security of the above immunizer assuming the hash
functions hs1 , hs2 are min-entropy condensers for seed-dependent sources. Intu-
itively, this means that given a uniform �-bit seed s and an n-bit input x com-
ing from a possibly adversarial (but efficiently sampleable) source which might
depend on s, and with min-entropy at least k, the output hs(x) is an m-bit string
whose distribution is computationally close to that of an efficiently sampleable
source Y with min-entropy at least m − d. Such condensers were constructed by
Dodis et al. [14] using sufficiently strong collision-resistant hash functions.

Fix some primitive Π with input-constrained game G. Let us start with
the original subversion game, where first the seeds s1, s2 are sampled (from the
untamperable public source S) and given to the adversary. Then, the attacker
specifies a subversion ˜Π for the immunized cryptosystem; hence, the adversary
interacts with the challenger, which first samples random strings r1 = r11|| · · · ||r1k
and r2 = r21|| · · · ||r2k, using the subverted source ˜R as explained above, and
then plays the game G for Π, given oracle access to the subverted algorithms
˜P, ˜K, (˜Fi)i∈[N]. By contradiction, assume that there is an adversary A that wins
the subversion game, but for which no watchdog W can detect the subversion.
We then proceed with a sequence of hybrids, as outlined below:

1. In the 1st hybrid, we replace algorithms ˜K, ˜P, and ˜Fi, with their gen-
uine immunized implementation K∗(1λ; ·) = K(1λ;hs1(·)), P∗(1λ; ·) =
P(1λ;hs2(·)), and (F∗

i)i∈[N] = (Fi)i∈[N]. One can show that any distinguisher
between the original game and this hybrid can be turned into an efficient
offline watchdog W detecting the subversion of A. Thus, the two experiments
are computationally close.

2. In the 2nd hybrid, we now generate the public parameters and the keys by
running P(1λ; y1) and K(1λ; y2), where y1, y2 come from the source Y guar-
anteed by the condenser. To argue indistinguishability, assume for simplicity
that the subverted source ˜R is stateless.4 First, we show that ˜R has a non-
trivial amount of min-entropy, as otherwise, it is again possible to construct a
watchdog W that detects subversion. Second, we argue that since ˜R is stateless
and efficiently sampleable, the strings r1 = r11|| · · · ||r1k and r2 = r21|| · · · ||r2k
have min-entropy at least k, so that indistinguishability of the two experi-
ments follows by security of the min-entropy condenser. Note that the last

4 The case of stateful subversion can be reduced to that of stateless subversion if we
assume that watchdogs are allowed to reset the state of a tested implementation, a
trick due to [23].

Public Immunization Against Complete Subversion 471

step is possible because the public random source S is untamperable, and
moreover, the subverted random source ˜R has non-trivial min-entropy even
conditioned on s1, s2 sampled from S.

3. Finally, in order to conclude the proof, we exploit the framework of “overcom-
ing weak expectations” by Dodis and Yu [15], who established that for a large
class of primitives5 there is a natural trade-off between concrete security and
the capacity to withstand a certain entropy deficiency d on the distribution
of the key A technical challenge here comes from the fact that this framework
only applies to cryptosystems Π where the secret key is uniformly random
(and moreover there are no public parameters, or those are generated using
uniform randomness). However, we show a similar tradeoff still holds for our
specific setting, at least for single-instance games where the original random
source R is sampled only twice (one for generating the public parameters, and
one for sampling the keys).6

1.4 Comparison with Russell et al. [23,24]

The trick of splitting a cryptographic algorithm into several sub-components (as
we do for P,K,R) was originally introduced in [23], and later refined in [24],
under the name of “split-program” methodology. Remarkably, [24] shows that
for semantically-secure public-key encryption (an inherently randomized primi-
tive) de-coupling the encryption algorithm in a randomized component R (for
generating the random coins) and a deterministic component Enc (for computing
the ciphertext) is not sufficient to defeat kleptographic attacks. For this reason,
they propose a “double-splitting” technique where R is further split into two
(tamperable) components R1,R2. In this perspective, our immunization strategy
can be thought of as a form of “double splitting”, where one of the two sources
is assumed to be untamperable but made public.

The fact that subversion-secure immunization in the offline watchdog model
only works for input-constrained games is reminiscent of a general observation
made in [23] stating that an offline watchdog can always detect the subversion of
deterministic algorithms with public input distributions (see [23, Lemma 2.3]).

Finally, we would like to stress that our work only covers immunization
against complete subversion in the form of algorithm-substitution attacks. In
particular, the adversary always specifies an algorithm ˜P that is used for sam-
pling the public parameters during the security game. Hence, our immunizers
do not provide any guarantee in the “adversarially chosen parameters model”
considered in [11,12,16,23] (where the adversaries specify the malicious public
parameters directly).

5 In particular, the result of [15] applies to all unpredictability primitives, and all
indistinguishability primitives meeting so-called square security.

6 Hence, our results do not cover, e.g., multi-instance games where several public
parameters and keys might be generated.

472 G. Ateniese et al.

1.5 Further Related Work

The original attacks in the kleptographic setting extended previous work on sub-
liminal channels by Simmons [26,27]. This research is also intimately connected
to the problem of steganography, whose goal in the context of secret communi-
cation is to hide the mere fact that messages are being exchanged [19].

Dodis et al. [12], study different immunization strategies for backdoored pseu-
dorandom generators. While they do not consider complete subversion, as the
immunizer and the PRG algorithm are assumed to be trusted, they deal with
the case where a cryptographic scheme might be subverted “by design” (e.g.,
because it is standardized with maliciously generated public parameters).

Another line of work suggests defeating subversion attacks employing a cryp-
tographic reverse firewall [1,13,20]. Such a firewall is used to re-randomize the
incoming/outgoing messages of a potentially subverted primitive. The firewall
itself is assumed to be trusted, and moreover, it relies on a secret, and untamper-
able, random source. Yet another approach consists of designing self-guarding
schemes [17], which allow us to defeat subversion without relying on external par-
ties (such as watchdogs or reverse firewalls), at the price of assuming a secure
initialization phase where the primitive to protect was not under subversion.

2 Preliminaries

2.1 Notation

We use the notation [n] def= {1, . . . , n}. Capital letters (such as X) are used to
denote random variables, caligraphic letters (such as X) to denote sets, and sans
serif letters (such as A) to denote algorithms. All algorithms in this paper are
modelled as (possibly interactive) Turing machines.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the number of elements in X . When x is chosen randomly in X , we write x ← X .
If A is an algorithm, we write y ← A(x) to denote a run of A on input x and
output y; if A is randomized, then y is a random variable and A(x; r) denotes a
run of A on input x and (uniform) randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the size
of the input). We denote the expected value of a random variable X as E[X].

Negligible Functions. Throughout the paper, we denote by λ ∈ N the secu-
rity parameter. A function ν : N → [0, 1] is called negligible in the security
parameter λ if it vanishes faster than the inverse of any polynomial in λ, i.e.
ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes write negl(λ)
(resp., poly(λ)) to denote all negligiblie functions (resp., polynomial functions)
in the security parameter.

Public Immunization Against Complete Subversion 473

Unpredictability and Indistinguishability. The min-entropy of a random variable
X ∈ X is H∞(X) def= − log maxx∈X P [X = x], and intuitively it measures the
best chance to predict X (by a computationally unbounded algorithm). For
conditional distributions, unpredictability is measured by the conditional average
min-entropy ˜H∞(X|Y) def= − logEy

[

2−H∞(X|Y =y)
]

.
The statistical distance between two random variables X ∈ X and Y ∈ Y, is

defined as SD(X ;Y) def= 1
2

∑

v∈X∪Y |P [X = v] − P [Y = v]|. Let X = {Xλ}λ∈N

and Y = {Yλ}λ∈N be two ensembles of random variables. We say that X
and Y are statistically indistinguishable, denoted X ≈s Y , as a shortening
for SD(Xλ;Yλ) ∈ negl(λ). Similarly, we say that X and Y are computationally
indistinguishable, denoted X ≈c Y , if for all PPT distinguishers D we have
ΔD(Xλ;Yλ) ∈ negl(λ), where

ΔD(Xλ;Yλ) def=
∣

∣P
[

D(1λ,Xλ) = 1
] − P

[

D(1λ,Yλ) = 1
]∣

∣ .

An ensemble X = {Xλ}λ∈N is efficiently sampleable if there exists a PPT
algorithm X such that, for each λ ∈ N, the output of X(1λ) is distributed iden-
tically to Xλ.

2.2 Abstract Games

In this work, we deal with abstract cryptographic schemes. Usually, a crypto-
graphic scheme is just a sequence of (possibly randomized) efficient algorithms.
However, for our purpose, it will be convenient to specify two special algorithms
which are common to any cryptographic scheme; those are the algorithms for
generating the public/secret keys and the public parameters (if any). Moreover,
our focus will be on deterministic schemes (see below).

In this vein, a deterministic cryptographic scheme is a sequence of efficient
algorithms Π

def= (P,K,R,F1, . . . ,FN), where:

– P is a deterministic algorithm that upon input the security parameter 1λ, and
random coins r ∈ R, outputs public parameters ρ ∈ P;

– K is a deterministic algorithm that upon input the security parameter 1λ,
and random coins r ∈ R,7 outputs a pair of keys (pk, sk) ∈ PK × SK;

– The random coins for (P,K) are obtained via independent calls to algorithm
R, which outputs a uniformly random string r ∈ R upon each invocation.

– For each i ∈ [N], algorithm Fi : Xi → Yi is deterministic.

We stress that the above syntax is meant to capture both secret-key and
public-key primitives; in the former case the public key is simply equal to the
empty string pk = ε, and PK = ∅. Further, without loss of generality, we assume
that all algorithms F1, . . . ,FN take as input both ρ and (pk, sk); the key gener-
ation algorithm also receives ρ as additional input.

7 We assume the amount of randomness to generate the public parameters and the
keys is the same; a generalization is straightforward.

474 G. Ateniese et al.

Typically, a cryptographic scheme must meet two properties. The first is a
correctness requirement, which essentially says that Π correctly implements the
desired functionality;8 although we will not define correctness in general, we will
later assume Π meets some well-defined correctness property. The second is a
security requirement, which we model as an interactive process (a.k.a. game)
between an adversary and a challenger.

Definition 1 (Cryptographic game). A cryptographic game G def= (C, γ) is
defined by a challenger C and a constant γ ∈ [0, 1); the game is (implicitly)
parametrized by a cryptographic scheme Π = (P,K,R,F1, . . . ,FN), an adversary
A, and the security parameter λ ∈ N. In an execution of the game the (efficient)
challenger C(1λ) interacts with the (efficient) adversary A(1λ), and at the end
the challenger outputs a decision bit d ∈ {0, 1}. We denote the output of the game
as d ← 〈A(1λ),CP,K,R,(Fi)i∈[N](1λ)〉; we sometimes also write (d, τ) ← (A(1λ) �
CP,K,R,(Fi)i∈[N](1λ)) for a transcript of the interaction between the adversary and
the challenger, CΠ as a shorthand for CP,K,R,(Fi)i∈[N] , and GΠ,A,C for the random
variable corresponding to an execution of game G with scheme Π, adversary A,
and challenger C.

We say that Π is (t, ε)-secure w.r.t. game G = (C, γ) if the following holds:
For all probabilistic attackers A running in time t we have

∣

∣

∣P

[

d = 1 : d ← 〈A(1λ),CP,K,R,(Fi)i∈[N](1λ)〉
]

− γ
∣

∣

∣ ≤ ε.

Moreover, whenever for all t ∈ poly(λ) there exists ε ∈ negl(λ) such that Π is
(t, ε)-secure w.r.t. game G, we simply say that Π is secure w.r.t. game G.

Input-Constrained Games. An important distinction will be whether the adver-
sary is allowed or not to choose the inputs for the oracle calls made by the chal-
lenger. We call games where the latter is not possible input-constrained games.

Definition 2 (Input-constrained games). Let Π = (P,K,R,F1, . . . ,FN) be
a cryptographic scheme, and G = (C, γ) be a security game for Π. We call G
input constrained if the following holds: For each i ∈ [N], there exists a public
and efficiently samplable distribution Di, such that the challenger chooses the
inputs to each oracle Fi by sampling a fresh and independent value from Di.

In contrast, games where the above property is not met are called input uncon-
strained. We provide a few clarifying examples below.

One-Way Functions: A one-way function (OWF) is a cryptographic scheme
Π = (P,R,OWF) where N = 1, and OWF : X → Y is a function. Security
of Π is characterized by a game Gowf = (Cowf , 0) defined as follows: (i)
Cowf picks ρ = P(1λ; r) (for uniform r ← R(1λ)), samples x ← X , computes

8 For instance, if Π is a signature scheme, correctness demands that honestly computed
signatures (w.r.t. a valid secret key) always verify correctly (w.r.t. the corresponding
public key).

Public Immunization Against Complete Subversion 475

y = OWF(1λ, ρ, x), and sends (ρ, y) to the adversary; (ii) A wins iff it returns
a values x′ ∈ X such that OWF(1λ, ρ, x′) = y. Notice that Cowf needs to
invoke oracle OWF upon input x′ in order to determine the decision bit d,
and thus the game is input unconstrained.

One-Way Permutations: A one-way permutation (OWP) is a cryptographic
scheme Π = (P,R,OWP) where N = 1, and OWP : X → X is a permuta-
tion. Security of Π is characterized by a game Gowp = (Cowp, 0) defined as
follows: (i) Cowp picks ρ = P(1λ; r) (for uniform r ← R(1λ)), samples x ← X ,
computes y = OWP(1λ, ρ, x), and sends (ρ, y) to the adversary; (ii) A wins iff
it returns a value x′ ∈ X such that x′ = x. Notice that Cowp does not need
to make any oracle call in order to determine the decision bit d, and thus the
game is input constrained with public distribution D equal to the uniform
distribution over the domain X .

(Weak) Pseudorandom Functions: A pseudorandom function (PRF) is a
cryptographic scheme Π = (P,R,R,PRF) where N = 1, and PRF : K × X →
Y is a keyed function. Security of Π is characterized by a game Gprf =
(Cprf , 1/2) defined as follows: (i) Cprf samples a bit b ← {0, 1}, picks ρ =
P(1λ; r1) and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ to the
adversary; (ii) A can ask queries of the form x ∈ X , upon which Cprf either
replies with y = PRF(κ, x) (in case b = 0) or y ← Y (in case b = 1); (iii) A
returns a bit b′ and wins iff b = b′. Notice that Cprf needs to invoke oracle
PRF upon inputs specified by the adversary, and thus the game is input
unconstrained.
For weak PRFs the game is changed as follows: In step (ii) the queries made
by the adversary are empty, and instead Cprf samples x ← X and returns
(x, y), where y is computed as before. Hence, the game is constrained with
public distribution equal to the uniform distribution over X .

Hash Functions: A cryptographic hash function is a cryptographic scheme
Π = (P,R,Hash) where N = 1, and Hash : X → Y is a (typically compressing)
function. Security of Π is characterized by a game Gcr = (Ccr, 0) defined as
follows: (i) Ccr picks ρ = P(1λ; r) (for uniform r ← R(1λ)), and sends ρ to
the adversary; (ii) A wins iff it returns a pair of values (x, x′) ∈ X 2 such that
Hash(1λ, ρ, x) = Hash(1λ, ρ, x′) and x
= x′. Notice that Ccr needs to invoke
oracle Hash upon input x, x′ in order to determine the decision bit d, and
thus the game is input unconstrained.

Secret-Key Encryption: A deterministic secret-key encryption scheme is a
cryptographic scheme Π = (P,K,R,Enc,Dec) where N = 2. The (deter-
ministic) encryption algorithm takes as input the secret key κ ∈ K and
a message m ∈ M, and outputs a ciphertext c ∈ C. The (deterministic)
decryption algorithm takes as input the secret key κ ∈ K and a cipher-
text c ∈ C, and outputs a message m ∈ M (or an error symbol). Secu-
rity of a deterministic encryption scheme is characterized, e.g., by a game
Gcca-ske = (Ccca-ske, 1/2) specified as follows: (i) Ccca-ske picks ρ = P(1λ; r1)
and κ = K(1λ, ρ; r2) (where r1, r2 ← R(1λ)), and sends ρ to the adversary;
(ii) A can specify encryption queries: Upon input a message m ∈ M, the

476 G. Ateniese et al.

challenger returns c = Enc(1λ, κ,m); (iii) A can specify decryption queries:
Upon input a ciphertext c ∈ C, the challenger returns m = Dec(1λ, κ, c);
(iv) A can specify a challenge query: Upon input (m∗

0,m
∗
1) ∈ M2, the chal-

lenger returns c∗ = Enc(1λ, κ,m∗
b) where b ← {0, 1} is a hidden bit; (v) A can

continue to specify encryption/decryption queries, with the restriction that
c∗ cannot be part of a decryption query; (vi) A returns a bit b′ and wins iff
b = b′. Notice that Ccca-ske needs to invoke oracles Enc,Dec in order to answer
encryption/decryption queries, and thus the game is input unconstrained.

Single-Instance Games. As mentioned in the introduction, our results only apply
to a sub-class of games where the random source R is sampled only twice, in order
to obtain the randomness needed for generating the public parameters and the
keys. We call such games single instance.

Definition 3 (Single-instance games). Let Π = (P,K,R,F1, . . . ,FN) be a
cryptographic scheme, and G = (C, γ) be a security game for Π. We call G
single instance if during a game execution the challenger invokes the oracle R
twice, in order to obtain coins r1, r2 that are later fed to oracles P,K.

3 Security Model

In this section, we consider a standard-model definition for subversion security,
via so-called immunizers. An immunizer is a transformation that takes as input a
cryptographic scheme (for some task) and transforms it into another scheme for
the same task that withstands complete subversion; the immunizer is allowed to
leverage a single source of public, but untamperable, randomness. Importantly,
we seek security in the standard model (i.e., without random oracles) and in a
setting where the immunizer itself is subject to subversion.

We first define our model formally, in Sect. 3.1, for the case of offline watch-
dogs. Then, in Sect. 3.2, we discuss some definitional choices and compare our
definitions with previous work in the area. In the full version, we explain how to
extend our framework to the case of online watchdogs.

3.1 Subversion-Secure Immunizers

Let Π = (P,K,R,F1, . . . ,FN) be a cryptographic scheme (as defined in Sect. 2.2),
where we assumed that R def= {0, 1}m (i.e., the source R is a random m-bit
source). An immunizer for Π is a transformation Ψ [H,S] parameterized by a
family of hash functions H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}� and a public
random source S over {0, 1}�. We write Π∗ def= Ψ(Π) def= (P∗,K∗,R∗,F∗

1, . . . ,F
∗
N)

for the specification of the immunized cryptosystem, where:

– R∗ ≡ R (i.e., the immunized scheme uses the same secret random source as
the original scheme);

– P∗ and K∗ take as input a seed s ∈ {0, 1}�, and have n-bit random tapes;

Public Immunization Against Complete Subversion 477

Fig. 1. Games defining subversion security of an immunizer Ψ [H,S], in the standard

model. We use the notation C
˜P(s,·),˜K(s,·),˜F1(s,·),...,˜FN (s,·)(1λ, r1, r2) to denote a run of the

challenger C with random coins r1, r2 (that will be used as input of algorithms ˜P, ˜K
during the game).

– (F∗
i)i∈N take as input a seed s ∈ {0, 1}� plus the same inputs as the corre-

sponding algorithm in Π;
– The seed s is obtained by sampling the public random source S (i.e., s ←

S(1λ)).

We require an immunizer Ψ to satisfy two properties. The first property is the
usual correctness requirement, meaning that the immunized primitive Π∗ meets
the same correctness condition as that of Π (for every possible choice of the seed
for the hash function). The second property is some flavor of security to subver-
sion attacks. More in details, the public source S is assumed to be untamperable
and uniform. The adversary A knows a description of the immunizer Ψ and of the
original primitive Π, and is allowed to choose ˜Π = (˜P, ˜K, ˜R, (˜Fi)i∈N) depending
on the actual seed s ∈ {0, 1}� that is sampled from the public source S during
a trusted setup phase (which might be run by an external party). Finally, the
adversary plays the security game for Π, where the challenger picks 2n/m := 2k
samples (r1i , r2i)i∈[k] from ˜R, amalgamates them into strings r1 = r11|| · · · ||r1k
and r2 = r21|| · · · ||r2k, and finally interacts with A given black-box access to
˜P(s, ·), ˜K(s, ·), ˜Fi(s, ·) (i.e., to the subversion specified by the adversary using
seed s ∈ {0, 1}�), where r1 and r2 are used as inputs for ˜P and ˜K, respec-
tively. Note that ˜Π is completely arbitrary, and thus all algorithms (including
the immunizer) are subject to subversion.

We define the advantage of adversary A in the subversion game with primitive
Π, immunizer Ψ , and challenger C as:

Advpub
Π,Ψ,A,C(λ) def=

∣

∣

∣P

[

Gpub
Π,Ψ,A,C(λ) = 1

]

− γ
∣

∣

∣ , (1)

where the game Gpub
Π,Ψ,A,C(λ) is depicted in Fig. 1, and the probability is taken

over the randomness of ˜S, ˜R,S,R, and over the coin tosses of A.

478 G. Ateniese et al.

Fig. 2. Description of the detection game of an immunizer Ψ [H,S] with offline (left)
and online (right) watchdogs, in the standard model. The auxiliary information aux is
taken from the subversion game (cf. Fig. 1).

Clearly, since the subverted cryptosystem ˜Π specified by the adversary is
completely arbitrary, it might be trivial to break security in the above setting.
(E.g., consider Π to be a signature scheme and the corresponding subversion to
have the signing algorithm return the signing key.) Hence, we need to restrict
the adversary in some way. Following previous work, we will consider the adver-
sary to be “malicious-but-proud” in the sense that in order to be successful a
subversion attack should also be undetectable by the honest user. The latter
is formalized by a detection game featuring an efficient algorithm, called the
watchdog, whose goal is to detect whether a subversion took place. In particu-
lar, given a description of the immunizer and the original scheme, the watchdog
has to distinguish the immunized cryptosystem Π∗ from the subversion ˜Π used
by the adversary in the subversion game. The detect advantage of watchdog W
is defined as:9

Advdet
Π,Ψ,W(λ) def=

∣

∣P
[

Gdet
Π,Ψ,W(λ, aux, 0) = 1

] − P
[

Gdet
Π,Ψ,W(λ, aux, 1) = 1

]∣

∣ , (2)

where the game Gdet
Π,Ψ,W(λ, aux, b) is depicted in Fig. 2, and the probability is

taken over the randomness of ˜S, ˜R,S,R, and over the coin tosses of W; the values
in the auxiliary information aux are taken from Gpub

Π,Ψ,A,C(λ). Similarly to pre-
vious work, we assume that W has rewinding black-box access to its oracles, a
feature required in order to detect stateful subversion [23, Remark 2.5].
We are now ready to define subversion security of an immunizer for the offline
watchdog.

9 Of course, we could also treat the detection game as an indistinguishability game
G = (C, γ), and thus define the detection advantage as a function of γ = 1/2.
However, we prefer the above formulation in order to be consistent with previous
work [23,24].

Public Immunization Against Complete Subversion 479

Definition 4 (Subversion-resistant immunizer). Let Π = (P,K,R,F1,
. . . ,FN) be a cryptographic scheme, and G = (C, γ) be a security game for
Π. For a constant c∗ ≥ 1, and a family of hash functions H = {hs : {0, 1}n →
{0, 1}m}s∈{0,1}� , we say that an immunizer Ψ [H,S] is (tA, tW, c∗, ε∗)-subversion-
resistant with an offline watchdog if the following holds: There exists a watchdog
W with running time tW such that for all adversaries A with running time tA for
which Advpub

Π,Ψ,A,C(λ) > ε∗, we have

Advdet
Π,Ψ,W(λ) ≥ 1

c∗ · Advpub
Π,Ψ,A,C(λ).

Moreover, for all s ∈ {0, 1}�, we require that the immunized cryptosystem
with seed s meets the same correctness requirement as that of Π.

Remark 1 (On subverting the immunizer). We stress that the subversion ˜Π
should be thought of as the subversion of the immunized cryptosystem Π∗ =
Ψ(Π). In particular, since the subversion is completely arbitrary, the latter means
that the adversary can tamper with (and, in fact, completely bypass) the immu-
nizer itself.

Remark 2 (On including the seed in the auxiliary information). Note that the
seed s sampled during the subversion game is part of the auxiliary information
aux, and later given as additional input to the watchdog in the detection game.

It is easy to see that the latter is necessary. Consider, for instance, a signature
scheme Π = (P,K,R,Sign,Vrfy), and let Π∗ = (P∗,K∗,R∗,Sign∗,Vrfy∗) = Ψ(Π)
be the immunized version of Π. Since the subversion ˜Π is allowed to depend on
the seed s, the adversary could instruct ˜K to output a fixed verification/signature
key pair (vk, sk), known to the adversary, whenever ˜K is run upon input s. Now,
if the watchdog W would not be given as input the actual seed s, the above
attack would be undetectable, as W has only a negligible chance of hitting the
seed s while sampling the source S.

3.2 Discussion

On rough terms, Definition 4 says the following. There exists a universal (effi-
cient) watchdog algorithm such that for any adversary that has advantage at
least ε∗ in the subversion game (cf. Eq. (1)), the probability that the watch-
dog detects the subversion (cf. Eq. (2)) is at least equal to the advantage of the
adversary in the subversion game divided by some positive constant c∗ ≥ 1.

We observe that there could be a substantial gap between the value of ε∗ and
the actual advantage of an adversary in the subversion game. In practice, we
would like to obtain Definition 4 for small ε∗, c∗, such that either the advantage
in the subversion game is smaller than ε∗, or the advantage in the detection
game has a similar magnitude as that in the subversion game (which might be
much larger than ε∗).

480 G. Ateniese et al.

Looking ahead, the choice to state security of immunizers in the style of con-
crete security will allow us to lower bound the level of unpredictability in the
subverted random source ˜R with a concrete (rather than asymptotic) value, a
feature that will be exploited by our immunizer. One might wonder why Def-
inition 4 considers only a single parameter ε∗, instead of having two distinct
parameters (i.e., one parameter, say ε∗, for the advantage of A in breaking the
scheme, and another parameter, say δ∗, for the advantage of W in detecting
a subversion). While this might seem like a natural way of phrasing concrete
security, it is problematic since such a definition conveys information about a
single point over the range of values ε∗, δ∗ ∈ [0, 1]. A similar issue was already
observed in [10], who also suggested the approach of relating the advantage in
the two games.

4 The Immunizer

4.1 Ingredients: Seed-Dependent Randomness Condensers

We recall the notion of seed-dependent randomness condenser [14]. Intuitively,
this corresponds to a family of hash functions indexed by an �-bit seed, and
mapping n into m bits. The security guarantee is that when the seed s is uniform,
and the input x comes from an adversarial, efficiently sampleable, source which
might depend on s, and with min-entropy at least k, the output of the hash
function has at least m − d bits of min-entropy, for deficiency parameter d ≥ 1.

Definition 5 (Seed-dependent condenser). Let G def= {gs : {0, 1}n →
{0, 1}m}s∈{0,1}� be a family of efficiently computable functions. We say that G
is a family of (k

n → m−d
m , t, ε)-seed-dependent condensers if for all probabilistic

adversaries A running in time t who take a seed s ← {0, 1}� and output (using
more coins) a distribution X ← A(s) of entropy ˜H∞(X|S) ≥ k, the joint distri-
bution (S , gS (X)) is ε-close to some (S ,Y), where ˜H∞(Y |S) ≥ m − d and S is
uniform over {0, 1}�.

4.2 Immunizer Description

We refer the reader to Fig. 3 for a formal description of our immunizer, where we
assumed that R def= {0, 1}m. Roughly, the immunizer sanitizes the random coins
used to generate the public parameters ρ and the public/secret keys (pk, sk)
by first sampling (r1i , r2i)i∈[k] ← R(1λ) and amalgamating r1 = r11|| · · · ||r1k and
r2 = r21|| · · · ||r2k, and then using, respectively, hs1(r1) and hs2(r2) as random
coins for P and K, where the seeds s1, s2 ∈ {0, 1}� are sampled using the public
source S. All other algorithms are unchanged.

Public Immunization Against Complete Subversion 481

Fig. 3. Description of our subversion-resistant immunizer; the seeds s1, s2 are sampled
from the public source S, and correspond to hash functions hs1 , hs2 ∈ H mapping n-bit
strings into m-bit strings.

4.3 Security Analysis

Here, we analyze the security of the immunizer described in Fig. 3. For input-
constrained games, we obtain the following result whose proof appears in the
full version. An analogous statement holds for input-unconstrained games, in
the online watchdog model.

Theorem 1. Let Π = (P,K,R,F1, . . . ,FN) be a deterministic cryptographic
scheme, with R = {0, 1}m, and consider any input-constrained, single-instance
game G = (C, γ) for Π. Then, for any n, c∗ > 4, the immunizer Ψ [G,S] of
Fig. 3 is (tA, tW, c∗, ε∗)-subversion-resistant with an offline watchdog, as long as
G def= {gs : {0, 1}n → {0, 1}m}s∈{0,1}� is a family of (k

n → m−d
m , tcond, εcond)-seed-

dependent condensers and Π is either (t, ε)-secure w.r.t. game G (in case of
unpredictability games) or (t, ε)-square-secure w.r.t. game G (in case of indis-
tinguishability games), for parameters tcond, t, tW ≈ tA, and

ε ≤
⎧

⎨

⎩

c∗−1
c∗ · ε∗

22d − 2εcond
22d if G is anunpredictability game

(

c∗−1
c∗ · ε∗ − 2εcond

)2

· 1
22d if G is an indistinguishability game.

Remark 3. Looking ahead, the reason for which Theorem1 does not work for all
deterministic primitives is that its proof crucially relies on the “overcoming weak
expectations” framework. In particular, for single-instance indistinguishability
games, this theorem requires square security, and it is well known that some
primitives such as pseudorandom generators and pseudorandom functions do
not have good square security [4,15].

Remark 4. The fact that our immunizer samples 2k times from the source R
does not contradict the assumption that G is a single-instance game, as the
latter condition only concerns the game G for the original primitive Π.

482 G. Ateniese et al.

One can also show that the limitation of Remark 3 is inherent, in the sense
that our immunizer is might be insecure for primitives that are not square
friendly. Take, for instance, any PRG Π = (R,K,PRG), where K(1λ; r) = r out-
puts directly a seed sampled from the secret source R, and PRG(1λ, r) stretches
the seed to a pseudorandom output. Let Π∗ = (R∗,K∗,PRG∗) = Ψ(Π) be the
immunized version of Π. Now, consider the attacker A(s) that plays the subver-
sion game by specifying the subversion ˜Π where:

– ˜K and ˜PRG are unchanged (i.e., ˜K ≡ K∗, and ˜PRG ≡ PRG∗);
– ˜R embeds a key κ for a pseudorandom function PRF with one-bit output, and

performs the following rejection-sampling procedure:
• Sample a random r;
• If PRF(1λ, κ, y) = 1, where PRG(hs(r)) = y, return r;
• Else, sample a fresh r and start again.

Intuitively, the above subversion allows A to win the subversion game by simply
checking whether PRF(1λ, κ, y) = 1, where y is the challenge. Moreover, this
attack is undetectable as a watchdog not knowing the key κ has a negligible
advantage in distinguishing ˜R from R∗ (by the security of the pseudorandom
function). Note that the above attack requires the adversary to choose the sub-
version depending on the seed.

Instantiating the Immunizer. When instantiating seed-dependent randomness
condensers with state-of-the-art constructions [14,15], we obtain the following
parameters.

Corollary 1. For any cryptographic primitive Π that is either (poly (λ) , ,
negl (λ))-secure (in case of unpredictability games) or (poly (λ) , negl (λ))-
square-secure (in case of indistinguishability games) w.r.t. an input-
constrained, single-instance game G, there exists an immunizer for Π that
is (poly(λ) , poly(λ) , 5, negl(λ))-subversion-resistant for the pub-model with an
offline watchdog, with parameters n,m, � ∈ ω(log(λ)).

Proof. By choosing t, tA, tW ∈ poly (λ), ε, ε∗ ∈ negl(λ), c∗ = 5, and setting
n ∈ ω(log(λ)) in Theorem 1, we need a family of seed-dependent randomness
condensers that achieves tcond ∈ poly(λ), εcond ∈ negl(λ), k ∈ ω(log(λ)), and
entropy deficiency d ∈ O(log(λ)).

Dodis, Ristenpart, and Vadhan [14] (see also [15]) have shown that any
(poly(λ) , poly(λ) /2m)-collision-resistant family of hash functions directly yields
such a family of condensers. The statement follows.
�

5 Conclusions

We have shown how to immunize arbitrary deterministic cryptographic prim-
itives against complete subversion, meaning that the adversary is allowed to
tamper with all the underlying algorithms, and with the immunizer itself. In

Public Immunization Against Complete Subversion 483

the random oracle model, there is a simple immunizer that relies on a single
secret, but tamperable, source of randomness [23,24]. In the standard model,
instead, we need to assume an additional independent public, and in some case
untamperable, random source.

Open problems include, e.g., finding better immunizers, both in terms of com-
putational assumptions and/or the number of assumed trusted random sources.
Also, exploring alternative approaches to achieve subversion security in the plain
model for larger classes of cryptographic schemes (e.g., randomized ones), while
still relying on O(1) independent random sources, is an interesting direction for
future research.

References

1. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
CCS, pp. 364–375 (2015)

2. Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parame-
ter subversion and its realization from efficiently-embeddable groups. In: Abdalla,
M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 348–377. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 12

3. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. Guardian Weekly, September 2013

4. Barak, B., et al.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 1

5. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: CCS, pp. 1431–1440 (2015)

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

9. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: USENIX Security Symposium, pp. 319–335 (2014)

10. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

11. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in
pseudorandom number generators: possibility and impossibility results. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 403–
432. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 15

https://doi.org/10.1007/978-3-319-76578-5_12
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15

484 G. Ateniese et al.

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

13. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls - secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

14. Dodis, Y., Ristenpart, T., Vadhan, S.P.: Randomness condensers for efficiently
samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 618–635. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 35

15. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36594-2 1

16. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. In: IEEE Computer Security Foundations Symposium, pp.
105–118 (2018)

17. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: IEEE Computer Security Foundations Symposium, pp.
76–90 (2018)

18. Greenwald, G.: No place to hide: Edward Snowden, the NSA, and the U.S. surveil-
lance state. Metropolitan Books, May 2014

19. Hopper, N.J., von Ahn, L., Langford, J.: Provably secure steganography. IEEE
Trans. Comput. 58(5), 662–676 (2009)

20. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

21. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, September 2013

22. Rogaway, P.: The moral character of cryptographic work. IACR Cryptology ePrint
Archive 2015, 1162 (2015). http://eprint.iacr.org/2015/1162

23. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

24. Russell, A., Tang, Q., Yung, M., Zhou, H.: Generic semantic security against a
kleptographic adversary. In: ACM CCS, pp. 907–922 (2017)

25. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–
271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

26. Simmons, G.J.: The Prisoners’ problem and the subliminal channel. In: Chaum,
D. (ed.) Advances in Cryptology, pp. 51–67. Springer, Boston (1984). https://doi.
org/10.1007/978-1-4684-4730-9 5

27. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4 25

28. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.
In: FOCS, pp. 32–42 (2000)

https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-642-36594-2_1
https://doi.org/10.1007/978-3-662-46803-6_22
http://eprint.iacr.org/2015/1162
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/3-540-39757-4_25

Public Immunization Against Complete Subversion 485

29. Young, A.L., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

30. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6

	Public Immunization Against Complete Subversion Without Random Oracles
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Techniques
	1.4 Comparison with Russell et al. RussellTYZ16,RussellTYZ16b
	1.5 Further Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Abstract Games

	3 Security Model
	3.1 Subversion-Secure Immunizers
	3.2 Discussion

	4 The Immunizer
	4.1 Ingredients: Seed-Dependent Randomness Condensers
	4.2 Immunizer Description
	4.3 Security Analysis

	5 Conclusions
	References

