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Abstract. We define a new UC functionality (DL-extractable commit-
ment scheme) that allows committer to open a commitment to a group
element gx; however, the simulator will be able to extract its discrete
logarithm x. Such functionality is useful in situations where the secrecy
of x is important since the knowledge of x enables to break privacy
while the simulator needs to know x to be able to simulate the corrupted
committer. Based on Fujisaki’s UC-secure commitment scheme and the
Damgård-Fujisaki integer commitment scheme, we propose an efficient
commitment scheme that realizes the new functionality. As another nov-
elty, we construct the new scheme in the weaker RPK (registered public
key) model instead of the CRS model used by Fujisaki.
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1 Introduction

A commitment scheme is one of the most basic primitives in cryptography. Essen-
tially, it implements a digital safe: in the commitment phase, the committer puts
her message to the safe, locks it, and hands it to the receiver. In the open phase,
the committer uses her key to open the safe. Thus, a commitment scheme sat-
isfies at least the following two properties: it is binding (the committer cannot
change the committed message) and hiding (before the opening, the receiver
does not know which message was committed to).

In many applications, commitment schemes must satisfy stronger properties.
In the case of UC-security [8], one first defines an ideal functionality (e.g., the
functionality of the commitment scheme) and then constructs a protocol that
UC-realizes this functionality. Such protocol is said to be UC-secure. Due to
Canetti’s composition theorem [8], a UC-secure protocol enjoys secure compos-
ability with arbitrary protocols, without the need to reprove its security. Impor-
tantly, UC-secure protocols do not have to be modified to be secure in a specific
software environment and thus can be used as a black-box by practitioners. As
such, UC is the recommended best practice in cryptographic engineering.
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The first UC-commitment scheme was proposed by Canetti and Fischlin [9].
A UC-commitment scheme was shown to be complete for the construction of UC-
secure zero knowledge protocols [9,14] and two-party and multi-party computa-
tions [10]. UC-commitment schemes have to satisfy the properties of extractabil-
ity (the simulator can unambiguously extract the committed message) and equiv-
ocability (the simulator can open a commitment to an arbitrary value) at the
same time, and thus they cannot be constructed without an additional setup
assumption [9]. The most widely known setup assumption is the common ref-
erence string (CRS, [6]) model that allows for a universally trusted entity that
generates the CRS from the correct distribution without revealing its trapdoor.

Many different CRS-model UC-commitment schemes are known, starting
with [7,9,10,14]. Lindell [21] proposed the first efficient scheme based on an
ordinary prime-order group. Blazy et al. [5] corrected a bug in Lindell’s scheme
and proposed a new scheme with additional optimizations. Fujisaki [16] further
optimized the scheme of Blazy et al., obtaining the most efficient currently known
UC-commitment scheme Fuj in an ordinary prime-order group.

The main idea of the UC-commitment schemes of [5,16,21] is that the com-
mitter C encrypts a message m. During the open phase, C outputs m together
with an interactive proof (a Σ-protocol) that she encrypted m. She also erases
the used randomizer (hence, these commitments schemes assume secure erasure).
The UC simulator simulates the Σ-protocol using the CRS trapdoor; to achieve
UC-security, the Σ-protocol has to be straight-line extractable. Due to the use
of a Σ-protocol, [5,16,21] have either an interactive commit phase (resulting
in adaptive security) or an interactive open phase (resulting in static security).
Within this paper, we will concentrate on adaptively secure variants. Fischlin,
Libert, and Manulis [15] used a Groth-Sahai proof [19] instead of a Σ-protocol
to construct a non-interactive adaptive UC-commitment scheme; however, their
scheme is computationally less efficient and uses bilinear pairings.

An important question, often asked by practitioners, is how to implement
the CRS model. More precisely, how can one guarantee the existence of a single
party R that can be trusted by everybody to choose the CRS from the correct
distribution without leaking its trapdoors? Fortunately, weaker setup models are
known. Barak, Canetti, Nielsen, and Pass [2] introduced the weaker registered
public key (RPK) model where it is essentially required that each party Gi must
trust some key registration authority Ri who registers his key. The authorities
Ri can coincide or be different, depending on the application. They do not need
to trust each other. In particular, the CRS model is a very strong case of the
RPK model where there is only one authority R whom all parties have to trust.
Barak et al. [2] proposed a UC-commitment scheme that is secure in the RPK
model: in fact, they used the property of a known UC-commitment scheme in the
CRS model that its CRS can be divided into two parts: a binding part (trusted
by the receiver R) and a hiding part (trusted by the committer C). Thus, the
binding part can be registered by the authority of R and the hiding part can be
registered by the authority of C. Unfortunately, their scheme is quite inefficient.
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Moreover, the functionality of UC-commitments is not always sufficient.
E.g., consider the following generic class of (UC-secure) pairing-based mul-
tiplicative public key generation protocols. (This protocol is motivated by a
non-UC-secure CRS-generation protocol for SNARKs [17,18,22] from [4] that
can be used also to generate the CRS of UC-secure SNARKs like [20].) Let
p = (p, G1, G2, GT , ê, g1, g2, gT ) be an (asymmetric) prime-order bilinear group
where gi is a generator of Gi. Different parties Gi, i ∈ [1 .. ν], sample their
one-time public keys (gσi

1 , gσi
2 ), for secret key σi, and UC-commit to them.

After all parties have committed, everybody opens commitments to their pub-
lic keys. Next, they enact a sequential protocol where the ith party computes
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σi should not be leaked while opening to gσi

2 is needed for public verification
of the correctness of the operation of Gi. Namely, for this, one needs to check
that ê(gσ∗
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1 , g2) = ê(g

σ∗
i−1

1 , gσi
2 ); thus, avoiding the use of costly zero-knowledge

protocols.
On the other hand, in the security proof, the UC simulator Sim needs to

recover σi (and not only (gσi
1 , gσi

2 )) to be able to simulate the operation of a cor-
rupted party. Hence, we have arrived to the requirement that after the committer
commits to a message m, it should be opened to (gm

1 , gm
2 ) while the simulator

must be able to extract m from the functionality.
Similar functionality is needed to achieve security in other UC protocols,

especially in the setting where one uses a DL-based cryptosystem (or a com-
mitment scheme) to encrypt the witness yet needs to extract the witness for
simulation purposes. It can be implemented by encrypting the witness (that has
to be extractable) bitwise, and then giving a NIZK argument that each cipher-
text encrypts a Boolean value m ∈ {0, 1}. Protocols using such a technique have
obviously huge communication.

Finally, non-falsifiable assumptions (e.g., knowledge assumptions [12,23]) are
usually used to (i) extract a unique long message from a succinct commitment,
one can avoid such use of non-falsifiable assumptions by having a linearly-long
commitment (as done, say, in [20]), and (ii) extract the exponent from a group
element, for example, in the case one uses the Groth-Sahai commitment scheme
for scalars [19]. To avoid using non-falsifiable assumptions in this case, one can
use a DL-extractable commitment scheme that we define in the current paper.

Our Contributions. Let G be a prime-order group with generator g. We
will define the new ideal functionality Fmcomdl of a DL-extractable commitment
scheme. Intuitively, the main difference between Fmcomdl and the standard func-
tionality Fmcom of UC-commitment schemes [9] is that in Fmcomdl, the committer
sends m to the functionality who stores m. When opening the commitment, the
functionality Fmcomdl only sends gm ∈ G (while Fmcom sends m itself) to the
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receiver. Since the functionality stores m, it means that after the committer is
corrupted, the UC simulator will get to know m.

We seem to be the first to formalize Fmcomdl as a separate functionality (see
Remark 1 in Sect. 3 for a comparison to the notion of P -extractability of Belenkiy
et al. [3]); such a formalization creates a common language and enables other
researchers to use our implementation of Fmcomdl as a black-box. At this moment
it is even difficult to search for papers that implicitly use this functionality
due to lack of agreed-upon language and notation. We expect there to be more
applications after the current work establishes the common language.

After that, we construct a commitment scheme Γdl that UC-realizes Fmcomdl in
the Frpk-hybrid model, i.e., assuming availability of a UC-secure realization of the
RPK model. Essentially, Γdl is based on Fujisaki’s CRS-model UC-commitment
scheme Fuj [16] with the following important modifications. First, [5,16,21] all
work in the CRS model. We crucially observe that the commitment key of Fuj
consists of two independent parts, one guaranteeing hiding and another one
guaranteeing binding. Relying on this separation, we will lift Fuj (and also its
DL-extractable version) to the weaker RPK model. Since the RPK model seems
to be relatively unknown in the community, reintroducing it and constructing
an efficient commitment scheme in this model can be seen as another major
contribution of the current work.

Second, to guarantee DL-extractability, we proceed as follows. One of the
optimizations of Fujisaki compared to [5,21] is the use of the efficient IND-PCA
secure Short Cramer-Shoup (SCS, [1]) public-key cryptosystem. We couple an
SCS encryption of gm with an additively homomorphic Paillier encryption [24] of
m, an integer commitment [13] to m, and a straight-line extractable Σ-protocol
showing that these three encryptions/commitments of m are mutually consistent.
The UC simulator uses the Paillier encryption (importantly, the simulator does
not rewind the Σ-protocol) to extract m from a corrupted committer. Thus,
the Paillier encryption is needed for extraction while the integer commitment is
needed to prove that the SCS plaintext gm1 and the Paillier plaintext m2 satisfy
m1 ≡ m2 (mod p) where p is the order of G.

The construction of Γdl and its security proof are somewhat subtle due to
the use of three different algebraic/number-theoretic settings (prime-order bilin-
ear groups, Paillier encryption modulo N = PQ, and an integer commitment
scheme). However, most of this subtlety is needed to construct the Σ-protocol
and to prove its security.

Finally, the functionality of a DL-extractable commitment scheme can be
straightforwardly generalized to that of a preimage-extractable commitment
scheme where the map m �→ gm is replaced by m �→ F (m) for any one-way
permutation F . We leave study of such a generalization to the future work.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the information-
theoretic security parameter, in practice, e.g., λ = 128. All adversaries will be
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stateful. For an algorithm A, let RND(A) denote the random tape of A, and
let r ←$ RND(A) denote sampling of a randomizer r of sufficient length for A’s
needs. By y ← A(x; r) we denote that A, given an input x and a randomizer r,
outputs y. We denote by negl(λ) an arbitrary negligible function, and by poly(λ)
an arbitrary polynomial function. D1 ≈c D2 means that the distributions D1 and
D2 are computationally indistinguishable.

Fig. 1. Functionalities Ff
rpk and FD

crs

UC Security. We work in the standard universal composability framework of
Canetti [8] with static corruptions of parties. For consistency, we use the defini-
tion of computational indistinguishability, denoted by ≈c, from that work. The
UC framework defines a PPT environment machine Z that oversees the execution
of a protocol in one of two worlds. The “ideal world” execution involves “dummy
parties” (some of whom may be corrupted by an ideal adversary/simulator Sim)
interacting with a functionality F . The “real world” execution involves PPT par-
ties (some of whom may be corrupted by a PPT real world adversary A) interact-
ing only with each other in some protocol π. We refer to [8] for a detailed descrip-
tion of the executions, and a definition of the real world ensemble EXECπ,A,Z
and the ideal world ensemble IDEALF,SimA,Z .

A protocol π UC-securely computes F if there exists a PPT Sim such that
for every non-uniform PPT Z and PPT A, {IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c

{EXECπ,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .
The importance of this definition is a composition theorem that states that

any protocol that is universally composable is secure when run concurrently with
many other arbitrary protocols; see [8,10] for discussions and definitions.
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In the registered public key (RPK, [2]) model, it is assumed that each party
Gi trusts some key-registration authority Ri and has registered her key with Ri.
(The same Ri can be used by several parties, or each party can choose to trust
a separate authority.) If Gi is honest, then the secret key exists and the public
key comes from correct distribution (in this case, the public key is said to be
“safe”). If Gi is dishonest, the secret key still exists (and the public key has been
computed from it honestly) but there is no guarantee about its distribution (in
this case, the public key is said to be “well-formed”). See Fig. 1 for the description
of the functionality of the key registration from [2].

Several different variants (most importantly, the “traditional proof-of-
knowledge” version where the secret key and the public key are generated by
Gi who then sends the public key to Ri and proves the knowledge of the secret
key to Ri by using a stand-alone zero-knowledge proof) of the RPK model are
known. The new commitment can be implemented in any of such variants of
the RPK model; in particular the definition of the Frpk-hybrid model does not
depend on the variant. We assume that each party knows the identities of all
other parties and their key-registration authorities, see [2] for discussion.

In the CRS model [6], there is a single, universally trusted, third party (TTP)
that picks a common reference string crs from a well-defined probability distri-
bution and makes it available to all parties. An ideal functionality realizing the
CRS model is presented on Fig. 1. In a usual implementation, crs comes with a
secret trapdoor td, such that td is sampled from a well-defined distribution Dtd,
and for some public function f , we have crs ← f(td). In the case of a NIZK
argument system, the knowledge of td allows the simulator to prove statements
outside of the language. Here, it is assumed that TTP only provides td to the
simulator but not to the adversary. The CRS model can be seen as a very strong
version of the RPK model where all parties Gi trust the same TTP R.

We denote an execution of π in the RPK-hybrid (the CRS-hybrid case

is similar) model by HYBRID
Ff

rpk

π,A,Z(λ, x). A protocol π UC-securely com-
putes F in the Ff

rpk-hybrid model if there exists a PPT Sim such that
every non-uniform PPT Z and PPT A, {IDEALF,SimA,Z(λ, x)}λ∈N,x∈{0,1}∗ ≈c

{HYBRID
Ff

rpk

π,A,Z(λ, x)}λ∈N,x∈{0,1}∗ .

Root Assumption. An integer is C(λ)-smooth if all its prime factors are at most
C(λ), and C(λ)-rough [13] if all its prime factors are larger than C(λ).

Let G̃ = U × H be a multiplicative abelian group such that H has order
divisible only by large primes. That is, let C(λ) and l(λ) be two functions from
Z
+ to Z

+, such that C(λ) is superpolynomial and l(λ) is polynomial. Let 2B

be an efficiently computable upperbound on |G̃|, 2B ≥ ord(G̃). Denote l
G̃

:=
ord(U). We assume l

G̃
≤ l(λ), the description descr(G̃) of G̃ includes l

G̃
, and

that it is easy to verify whether some bitstring represents an element of G̃. Let
G(1λ) generate descr(G̃) that has the mentioned properties. In the following
instantiation, the root assumption is the same as the well-known Strong RSA
assumption. (Another known instantiation [13] is based on class groups.)
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Note that if G̃ = U × H is the multiplicative group modulo N = PQ where
P = 2P ′ + 1 and Q = 2Q′ + 1 are safe primes, then ord(G̃) = ϕ(N) = 4P ′Q′.
(This setting is often recommended if one uses the RSA or the Paillier cryp-
tosystem [24].) In this case, U ∼= Z2 × Z2 is a group of order l

G̃
= 4 and H is a

group of order P ′Q′. Here, descr(G̃) = {N, l
G̃
}.

Consider the following experiment:

ExptrootΠ,A(λ)

descr(G̃) ← G(1λ);Y ←$ G̃; (e,X, μ) ← A(descr(G̃), Y );
if e ∈ Z ∧ e > 1 ∧ X ∈ G̃ ∧ μ ∈ U ∧ Y = μXe

then return 1; else return 0;fi
The root assumption [13] holds relative to G, if for all λ and PPT A,

Pr[ExptrootΠ,A(λ) = 1] = negl(λ).

Commitment Schemes. A commitment scheme Γ = (Γ.Gen, Γ.Com, Γ.Vf) is
defined by three PPT algorithms: (i) Γ.Gen(1λ) generates a public key (CRS)
Γ.ck and a secret key (trapdoor) Γ.td; (ii) Γ.Com(Γ.ck;m; r) commits to m under
the CRS ck, using the random coins r. It outputs commitment c and opening
information op; (iii) Γ.Vf(Γ.ck; c,m, op) verifies that c is a commitment to m.

It is required that for any (Γ.ck, Γ.td) ← Γ.Gen(1λ) (where Γ.td is unused
unless Γ has a trapdoor property), message m, randomizer r, and (c, op) ←
Γ.Com(Γ.ck;m; r), it holds that Γ.Vf(Γ.ck; c,m, op) = 1. Γ is statistically hiding,
if the distributions of commitment c, corresponding to any two values of m, are
statistically indistinguishable. Γ is computationally binding, if given ck and c,
no PPT adversary A can create two different messages mi with corresponding
openings opi, such that Γ.Vf(Γ.ck; c,m1, op1) = Γ.Vf(Γ.ck; c,m2, op2) = 1 with a
non-negligible probability.

A commitment scheme Γ is trapdoor if there exists a PPT algorithm
Γ.tdOpen, such that given the trapdoor Γ.td (corresponding to commitment
key Γ.ck), two messages m1 (with opening op1) and m2, and any commit-
ment c: if Γ.Vf(Γ.ck;m1, c, op1) = 1 then Γ.tdOpen(Γ.td;m1, op1,m2) = op2,
such that Γ.Vf(Γ.ck;m2, c, op2) = 1. The Pedersen trapdoor commitment scheme
Ped = (Ped.Gen,Ped.Com,Ped.Vf,Ped.tdOpen) [25] in cyclic group G, with gen-
erator g, is defined as follows:

Ped.Gen(1λ): sample td ←$ Zp, set h ← gtd, and output (Ped.ck = (g, h),
Ped.td ← td).
Ped.Com(Ped.ck;m; r) for m ∈ Zp, r ←$ Zp: output (c, op) = (gmhr, r).
Ped.Vf(Ped.ck;m, c, op = r): output 1 if c = gmhr and 0 otherwise.
Ped.tdOpen(Ped.td;m1, op1 = r1,m2): output op2 = r2 ← (m1 −m2)/td+ r1.

It is well-known that Ped is perfectly hiding, computationally binding under the
discrete logarithm assumption, and trapdoor.

A commitment scheme is an ICS if the messages come from domain Z.
Thus, statistical hiding means that it is intractable to compute two differ-
ent integers m1,m2 ∈ Z and corresponding openings op1 and op2, such that
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Vf(ck; c,m1, op1) = Vf(ck; c,m2, op2) = 1. In the case of Pedersen, m and m+ p
have the same commitments and thus Ped is not an ICS. Let G̃ be a group
where the root assumption holds. The Damgård-Fujisaki ICS [13] over G̃ works
as follows:

DF.Gen(1λ): V chooses an h̃ ∈ G̃ s.t. ord(h̃) is C(λ)-rough, and sets g̃ ← h̃α

where α ←$ Z22B+λ . V sends DF.ck = (g̃, h̃) to P and proves that g̃ ∈ 〈h̃〉.
DF.Com(DF.ck;m; r) for m ∈ Z, r ←$ Z2B+λ : output c ← g̃mh̃r, op = (1, r).
DF.Vf(DF.ck;m, c, op = (μ, r)): check that c = μg̃mh̃r and μl

G̃ = 1.

See [13] for a discussion on μ and other details. As proven in [13], DF is
statistically hiding and computationally binding under the root assumption.

A (multi-use) UC-commitment scheme [9] implements the functionality
Fmcom (see Fig. 2). The Fmcom functionality takes as an additional input another
unique “commitment identifier” cid, which is used if a sender commits to the
same receiver multiple times within a session. We assume that the combination
of (sid, cid) is globally unique, [9]. UC-commitment schemes have to satisfy the
properties of extractability (the simulator can unambiguously extract the com-
mitted message) and equivocability (the simulator can open a commitment to an
arbitrary value) at the same time, and thus they cannot be constructed without
an additional setup assumption [9].

Fig. 2. Functionality Fmcom for committing multiple messages

Cryptosystems. A labelled public-key cryptosystem Π is defined by three PPT
algorithms: (i) Π.KGen(1λ) generates a public key Π.pk and a secret key
Π.sk; (ii) Π.EnclblΠ.pk(m; r) encrypts the message m under the key Π.pk with
label lbl, using the random coins r; (iii) Π.DeclblΠ.sk(c) decrypts the cipher-
text c, using the secret key Π.sk with label lbl. It is required that for all
(Π.pk,Π.sk) ∈ Π.KGen(1λ), all labels lbl, all random coins r and all messages
m, Π.DeclblΠ.sk(Π.EnclblΠ.pk(m; r)) = m.

IND-CPA (indistinguishability under the chosen plaintext attack) and IND-
PCA (indistinguishability under the plaintext checking attacks, [1]) are defined
by using the following experiments:
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ExptpcaΠ,A(λ) / ExptcpaΠ,A(λ)

Q ← ∅; (Π.pk,Π.sk) ← Π.KGen(1λ); (lbl∗,m0,m1) ← AO(·,·,·)(Π.pk);
b ←$ {0, 1}; r ←$ RND(Π); c∗ ← Π.Enclbl

∗
Π.pk(mb; r); b′ ← AO(·,·,·)(c∗);

if (lbl∗, c∗) �∈ Q then return b = b′;fi ;
The experiment-dependent oracle is defined as follows: (i) in ExptcpaΠ,A(λ),

O(·, ·, ·) returns always 0. (ii) in ExptpcaΠ,A(λ), O(lbl, c,m) adds (lbl, c) to Q. It
returns 1 if the decryption of c under the label lbl is m. Otherwise, it returns 0.

Π is IND-CPA secure if for any PPT adversary A, AdvcpaΠ,A(λ) :=
|Pr[ExptcpaΠ,A(λ) = 1] − 1/2| = negl(λ). Π is IND-PCA secure if for any PPT
adversary A, AdvpcaΠ,A(λ) := |Pr[ExptpcaΠ,A(λ) = 1] − 1/2| = negl(λ).

The IND-PCA-secure Short Cramer-Shoup (SCS) labelled cryptosystem
SCS = (SCS.KGen,SCS.Enc,SCS.Dec) [1] works as follows:

SCS.KGen(1λ): g ←$ G
∗; x1, x2, y1, y2, z ←$ Zp; h ← gz, c ← gx1hx2 , d ← gy1hy2 .

Choose H from a collision-resistant hash function family H. Return SCS.pk =
(g, h, c, d,H) and SCS.sk = (x1, x2, y1, y2, z).

SCS.EnclblSCS.pk(g
m ∈ G; ·): sample r ←$ Zp; set (u, e, v) ← (gr, gmhr, (cdτ )r),

where τ ← H(lbl, u, e). Return the ciphertext (u, e, v)�.
SCS.DeclblSCS.sk((u, e, v)� ∈ G

3): set τ ← H(lbl, u, e), gm ← e/uz; if
ux1+y1τ (e/gm)x2+y2τ �= v then abort. Otherwise, output gm.

Abdalla et al. [1] proved that SCS is IND-PCA secure given H is a collision-
resistant hash function family and DDH is hard in G.

An additively homomorphic public-key cryptosystem has plaintext space
equal to ZN for integer N , s.t. the product of two ciphertexts decrypts to the
sum of the two corresponding plaintexts. We will use the Paillier cryptosys-
tem Pai [24]. It encrypts plaintexts from ZN , where N is a well-chosen RSA
modulus, and outputs ciphertexts from ZN2 : Pai.EncPai.pk(m ∈ ZN ; r ∈ Z

∗
N ) =

(1 + N)mrN ≡ (1 + mN)rN (mod N2). See [24] for more details, including the
decryption algorithm. Pai is IND-CPA secure under the DCRA assumption [24].

Σ-Protocols [11] in the RPK Model. Let R = {x,w} be an NP-relation. A Σ-
protocol Σ = (Σ.P1, Σ.P2, Σ.Vf, Σ.Sim) is a three-round protocol between the
prover P and the verifier V, such that the first and the third messages are by
the prover, and the second message is by the verifier. Let rpkV be the public
key of the verifier. P has input (rpkV; x,w) and V has input (rpkV; x). The first
message is denoted as a ← Σ.P1(rpkV; x,w; s), where s ←$ RND(Σ) is sampled
from the randomizer space of the protocol. The second message e is chosen
uniformly at random from {0, 1}λ, e ←$ {0, 1}λ. The third message is denoted as
z ← Σ.P2(rpkV; x,w; e; s). The verifier accepts iff Σ.Vf(rpkV; x; a, e, z) = 1.

A Σ-protocol is complete for R if an honest verifier always accepts an honest
prover. A Σ-protocol is specially sound for R if given an input x and two accept-
able views (a, e1, z1) and (a, e2, z2), e1 �= e2, one can efficiently extract a witness
w, such that (x,w) ∈ R. A Σ-protocol is statistically special honest-verifier zero-
knowledge (SSHVZK) for R if for any rpkV, x and e, Σ.Sim(rpkV; x, e) can first
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choose a z and then a, such that the simulated view (a, e, z) and the real view,
given the same e, have negligible statistical distance.

3 New Functionality Fmcomdl and Instantiation

In a DL-extractable UC-commitment scheme, one commits to an integer m from
Zp but the opening is to a group element gm ∈ G. (In particular, m should stay
secret from other participants even after the opening.) Nevertheless, we require
that there exists an efficient extraction algorithm that can retrieve the discrete
logarithm (i.e., the committed integer) m ∈ Zp of gm. That is, while opening
returns gm, the extraction returns m. See Fig. 3 for the corresponding function-
ality Fmcomdl that is parametrized by Zp and G (this means that Zp and G are
“hard-coded” into the functionality). We formalize our goal by letting parties
to commit to an integer m (which will be stored by the functionality and thus
can be extracted) but opening the commitment to gm. Hence, any commitment
scheme that implements Fmcomdl must necessarily be DL-extractable.

Fig. 3. DL-extractable functionality Fmcomdl for committing multiple messages

Remark 1. Belenkiy et al. [3] defined P -extractable commitment scheme, for an
efficient function P , as a commitment scheme where one commits to m and opens
to m but where the extractor is able to extract P (m). DL-extractable commit-
ment is a variant of P -extractable commitment for P = DL being an intractable
function. If P (m) = gm =: expg(m) then one obtains a functionality, dual to
Fmcomdl. (However, [3] did not consider UC-security and thus did not use the lan-
guage of functionalities.) Compared to DL-extractability, expg-extractability is
trivial to implement: indeed, the notion of expg-extractability was motivated by
the fact that well-known commitment schemes like the Groth-Sahai commitment
scheme for scalars [19] had this property. (The extractor of this commitment
scheme obtains gm by Elgamal-decrypting the commitment. Since computing
DL is intractable, one arrives to the notion of a expg-extractable commitment.)
Obtaining DL-extractability is non-trivial since DL is a hard function and thus
one has to take special care about making the DL of a message extractable. ��

The functionality Fmcomdl can be straightforwardly generalized to the func-
tionality Fmcom-F −1 for an arbitrary one-way permutation F , where the opening
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message includes y ← F (m) instead of y ← gm. Since we are interested in the
applications of Fmcomdl, we will omit further discussion.

We implement Fmcomdl as follows: for m ∈ Zp, we encrypt the group element
gm by using the Short Cramer-Shoup encryption [1], encrypt the integer m
by using the Paillier [24] additively homomorphic public-key cryptosystem, and
finally commit to the integer m by using the Damgård-Fujisaki [13] ICS. We
add a Σ-protocol Σeq proving the knowledge of m that was used in all cases;
importantly, only gm can be extracted from Σeq and in particular, m will remain
secret. Since UC-security does not permit to use rewinding to retrieve m, we use
straight-line extraction techniques from [16]. The Σ-protocol is started during
the commit phase, and after that the committer C erases the used random coins.
In the open phase, C opens the commitment to gm by finishing Σeq. When
simulating an honest committer, the UC simulator Sim first commits to 0; Sim
uses the properties of a trapdoor commitment scheme and the SSHVZK property
to simulate Σeq. (This guarantees equivocability.) If C is corrupted then Sim uses
the knowledge of the Paillier secret key to decrypt the Paillier encryption of m
and thus obtains m. (This guarantees extractability.) Thus, we obtain a DL-
extractable commitment scheme.

3.1 Σ-Protocol Σeq

Let SCS be the SCS cryptosystem and Pai be the Paillier cryptosystem. Recall
that the plaintext space of SCS is G (of order p) and the plaintext space of Pai
is ZN for an N > p. (The case N = p is straightforward to handle.) Let

Req =

⎧
⎪⎨
⎪⎩

(x = (p,SCS.pkP,Pai.pkP, gm, c1, c2, lbl),w = (m′, r1, r2)) :

c1 = SCS.EnclblSCS.pkP
(gm; r1) ∧ c2 = Pai.EncPai.pkP(m

′; r2)∧
m ≡ m′ (mod p) ∧ m′ < N

⎫
⎪⎬
⎪⎭

,

where p ← Pgen(1λ). Let Leq = {x : ∃w, (x,w) ∈ Req} be the corresponding lan-
guage. Thus, x ∈ Leq iff the two ciphertexts encrypt gm and m′ respectively, such
that m ≡ m′ (mod p). Note that gm is public while m is not; this corresponds
to the use of gm in the new DL-extractable UC-commitment scheme.

The proof of the following theorem uses ideas from the proof given in Sect. 5.1
of [13]. Note that in the next theorem, we actually do not need the public key to
be registered. We will assume it here for the sake of convenience since registration
is needed in the new DL-extractable UC-commitment scheme.

Theorem 1 (Security of Σeq). Let H be sampled from a collision-resistant
hash function family, SCS be the SCS cryptosystem, Pai be the Paillier cryp-
tosystem, and DF be the Damgård-Fujisaki ICS. Assume V has registered her
public key rpkV = DF.ckV. Let T be a public constant such that m < T , e.g.
T = p; let C(λ) = 2λ and let 2B be a close upperbound on ord(G̃). Assume
22λ+1p < N . The Σ-protocol Σeq in Fig. 4 (where Σeq.Sim will be defined in the
SSHVZK proof) is complete and SSHVZK for Req. The protocol Σeq is compu-
tationally specially sound under the root assumption in G̃.
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Fig. 4. Σ-protocol Σeq for Req, where in the honest case, c1 = (c11, c12, c13)
� ←

SCS.EnclblSCS.pkP
(gm; r1) = (gr1 , gmhr1 , (cdτ )r1)� and c2 ← Pai.EncPai.pkP(m; r2) = (1 +

N)mrN
2 ≡ (1 + mN)rN

2 mod N2. Here, r1 ←$ Zp, τ = H(lbl, c11, c12), and r2 ←$ Z
∗
N .

Proof. Special soundness: consider two accepting views (a, e,z) and (a, e′,z′)
with e �= e′. Let m∗ ← (z′

2 − z2)/(e′ − e) mod p and r∗ ← (z′
1 − z1)/(e′ − e)

mod p. We get from the first four verification equations respectively that

c1 =(gr∗
, gmhr∗

, (cdτ )r
∗
)
�
= SCS.EncSCS.pkP(g

m; r∗),
m ≡ m∗ (mod p),

ce′−e
2 ≡ (1 + N)z

′
2−z2(z′

3/z3)N (mod N2), (1)

ãe′−e
1 = g̃z′

2−z2 h̃z′
4−z4 . (2)

For example, from (b) we get gem · a3 = gz2 and gem′ · a3 = gz′
2 . It follows that

g(e
′−e)m = gz2−z′

2 and thus gm = g(z2−z′
2)/(e

′−e) = gm∗
.

First, consider Eq. (2). Since g̃ = h̃α, ãe′−e
1 = h̃δ for δ := α(z′

2 − z2) + (z′
4 − z4).

We will next consider three possible cases. Let bad be the event that we either
have the case (i) or the case (ii).

(i) (e′ − e) � δ as an integer.
Write γ = gcd(δ, e′ − e). By the Extended Euclidean algorithm, there exist
i and j (where j < |e′ − e| < C(λ)), such that jδ + i(e′ − e) = γ. Thus,
h̃γ = h̃jδ+i(e′−e) = ã

j(e′−e)
1 h̃i(e′−e) = (ãj

1h̃
i)e

′−e. Set now μ ← (ãj
1h̃

i)(e
′−e)/γ/h̃.

Thus, μγ = 1. Since γ < C(λ), ord(μ) is C(λ)-smooth and thus μl
G̃ = 1. Since

h̃ = μ−1(ãj
1h̃

i)(e
′−e)/γ , ((e′ − e)/γ, ãj

1h̃
i, μ−1) is a solution to the root problem.

(ii) (e′ − e) | δ as an integer, but either (e′ − e) � (z′
2 − z2) or (e′ − e) � (z′

4 − z4).
Let q be a prime factor of e′ − e, such that qj is the highest power of q dividing
e′−e and at least one of z′

2−z2 or z′
4−z4 is non-zero modulo qj (such q exists due
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to the assumption of non-divisibility). If qj | (z′
2 −z2) then (due to the definition

of δ and qj) also qj | (z′
4 − z4), a contradiction. Thus, z′

2 − z2 �≡ 0 (mod qj).
Write α = a + b · ord(h̃) for some a < ord(h̃) and b. The adversary only has

information about α via the value g̃; moreover, g̃ completely determines a while
it contains no information about b. Since qj | δ,

δ = b(z′
2 − z2) · ord(h̃) + a(z′

2 − z2) + (z′
4 − z4) ≡ 0 (mod qj). (3)

Because q is a prime factor of e′ − e and e′ − e < C(λ), q < C(λ) and thus
ord(h̃) �≡ 0 (mod q). From the adversary’s viewpoint, b is chosen uniformly at
random from a set of at least 2B+λ values, and it must satisfy Eq. (3) for bad to
be true. Equation (3) has at most η := gcd((z′

2−z2)·ord(h̃), qj) solutions. Clearly,
η is a power of q but it is at most qj−1. Since 2B+λ > 2λqj , the distribution
of b mod qj is statistically close to uniform in Zqj , with the probability that b
satisfies Eq. (3) being at most 1/q−2−λ ≤ 1/2−2−λ. Thus, given the event bad,
the case (i), where we can solve the root problem, happens with high probability.

(iii) (e′ − e) | (z′
2 − z2) and (e′ − e) | (z′

4 − z4) as an integer.
Let m† ← (z′

2 − z2)/(e′ − e) ∈ Z and r† ← (z′
4 − z4)/(e′ − e) ∈ Z. Let μ ←

g̃m†
h̃r†

/ã1. W.l.o.g., assume e′ > e. By Eq. (2), μe′−e = (g̃m†
h̃r†

/ã1)e
′−e =

g̃z′
2−z2 h̃z′

4−z4/ãe′−e
1 = 1. Since e′ − e < C(λ) then ord(μ) is C(λ)-smooth and

hence μl
G̃ = 1. Thus, we can open ã1 to (m†, r†, μ).

Since z2 < T · C(λ)(2λ + 1) < 22λ+1p by the last verification equation (Item
4e), we get that |m†| < 22λ+1p < N .

Next, Assume that (iii) Holds and Consider Eq. (1). Since N and e′ − e ∈ [−2λ +
1 .. 2λ−1] are coprime, there exist integers α and β, such that αN+β(e′−e) = 1.
Let r2 ← cα

2 (z
′
3/z3)β mod N2. Thus, due to Eq. (1), c1−αN

2 = c
β(e′−e)
2 ≡ (1 +

N)β(z
′
2−z2)(z′

3/z3)βN (mod N2), and thus c2 ≡ (1 + N)β(z
′
2−z2)rN

2 (mod N2).
Clearly, β(z′

2 − z2) = β(e′ − e)m† as an integer. Thus, due to the definition
of β, β(z′

2 − z2) = β(e′ − e)m† = (1 − αN)m† ≡ m† (mod N) and thus c2 ≡
(1+N)m

†
rN
2 (mod N2). Since directly by the definition of m∗ and m†, m∗ ≡ m†

(mod p), we get that c1 and c2 encrypt the same element m∗ modulo p.
SSHVZK: Σeq.Sim(Σeq.rpkV; x, e) sets s1 ←$ Z2B+λ , s5 ←$ [0 .. C(λ)2B+2λ −

1], z1 ←$ Zp, z2 ←$ Z22λp (thus, Σeq is statistically but not perfectly zero knowl-
edge), z3 ←$ Z

∗
N2 , z4 ← s1e + s5, ã1 ← DF.Com(ckV; 0; s1) (this is indistin-

guishable from a commitment to m since DF is statistical hiding), a2 ←
((gz1 , gemhz1 , (cdτ )z1)/c1)�, a3 ← gz2−em, a4 ← (1 + z2N)zN

3 c−e
2 mod N2,

ã5 ← g̃z2 h̃z4 ã−e
1 . The simulator outputs (a,z). The claim follows. ��

3.2 New DL-Extractable UC-Commitment Scheme

The following DL-extractable UC-commitment scheme Γdl (see Fig. 5) is similar
to Fujisaki’s UC-commitment scheme Fuj [16], with the following two key dif-
ferences. (i) Based on our observation that the CRS of Fuj can be divided into
two parts, one guaranteeing binding and the second one guaranteeing hiding, we
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redefine it in the (weaker) RPK model instead of the CRS model. Importantly,
the RPK model can also be used after the modification in the next step. (ii) We
replace the Σ-protocol (a proof of the knowledge of the SCS-encrypted message
gm) from [16] with Σeq, interpreted as the proof of knowledge of the discrete loga-
rithm m of the SCS-encrypted message. As explained above, Σeq achieves this by
additionally encrypting m by using Pai; hence, the UC simulator, knowing the
secret key Pai.sk, decrypts c2 to get m, and returns m mod p. (See the beginning
of Sect. 3 for a longer intuition behind the construction of Γdl.)

Due to this, if one assumes the security of Σeq then the security proof of
Γdl is similar to that given in [16]. Hence, we refer the reader to [16] for any
additional intuition about Fujisaki’s commitment scheme. While the description
of Γdl in Fig. 5 looks long, it is mainly so because of the use of three differ-
ent encryptions/commitments which means that certain steps in the Fujisaki’s
commitment scheme are tripled.

We divide the public key rpki of Gi in Γdl into the binding part (used when Gi

acts as the receiver R) and the hiding part (used when Gi acts as the committer
C). C and R use rpkhC = (Pai.pkC = N,SCS.pkC = (g, h, c, d,Hh

C)) from C’s public
key rpkC and rpkbR = (Ped.ckR,DF.ckR,Hb

R) from R’s public key rpkR. Obviously,
C knows rpkC while she has to retrieve rpkR from RR.

See Fig. 5 for the full description of Γdl. Here, Γdl.Gen for party Gi ∈ {C,R}
is executed by the key registration authority Ri as usual in the RPK model,
Γdl.Com and Γdl.Open are executed by C, and Γdl.Vf is executed by R. The algo-
rithms Γdl.tdOpen and Γdl.Ext are only executed within the security proof. To get
straight-line simulation, we use the same method as [16]. Finally, note we have
included (lbl, c3, e) to op mainly to simplify the notation.

Theorem 2. Assume that SCS is an IND-PCA secure and Pai is an IND-CPA
secure additively homomorphic cryptosystem, Ped is a computationally binding
and perfectly hiding trapdoor commitment scheme and DF is a computationally
binding and statistically hiding ICS. Assume secure erasure. Then Γdl from Fig. 5
UC-realizes Fmcomdl in the Frpk-hybrid model against adaptive attackers, i.e., it
is a secure DL-extractable UC-commitment scheme in the RPK model.

The proof of Theorem 2 follows closely the security proof of Fujisaki’s UC-
commitment scheme [16], with a few notable differences (the use of the RPK
model instead of the CRS model, and the use of a different Σ-protocol, which
causes us to use one more game to handle Paillier encryption).

Proof. As usual, we consider a sequence of hybrid games in which we change the
rules of games step by step. We denote the changes by using gray background.

Game0 = HybridFrpk : This is the real world game in the RPK model
(HybridFrpk). In Game0, the real protocol is executed between the committer
C and the receiver R. The environment Z adaptively chooses the input for hon-
est committer C and receives the output of honest parties. Adversary A attacks
the real protocol in the real world, i.e., she can see the interactions between the
honest parties or interact with the honest parties as playing the role of some
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Fig. 5. The commitment scheme Γdl in the RPK model

parties after they are corrupted. When a party is corrupted, A can read her cur-
rent inner state and A also fully controls her. Z can control A and see the inside
of the execution of the protocol (the interactions between the honest parties or
between the honest parties and the adversary) via the view of A.
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Game1: In Game1, Sim simulates the authorities RC,RR generating the reg-
istered public keys rpkC and rpkR used by C and R. Sim stores tdCR = (tdhC, tdbR).
Sim simulates honest parties as in Game0, except for the case where R is
honest but C is corrupted. After obtaining (lbl, c3; e; c) from the view of the
protocol between C and R in the commit phase, where lbl = (sid, cid,C,R), Sim
stores m∗ ← Pai.DecPai.skC(c2) as a part of the state. In the open phase, when C

successfully opens to gm, Sim sends
(
open, lbl, gm∗

)
to Z.

In the case of adaptive corruption of R before the open phase, Sim simply
reveals stC = (c, gm∗

, op) to A. Honest R has no secret.

Lemma 1. If Σeq is specially sound, Ped is computationally binding, and Hb
R

is collision-resistant then Z distinguishes Game0 and Game1 with a negligible
probability.

Proof (Proof of Lemma 1). The only difference from Game0 is that in Game1,
Sim (playing as honest R) outputs gm∗

instead of gm at the open phase. Sim
opens gm∗

after C decommits to gm in a verifiable way. If not, Sim outputs
nothing. Denote by bad the event that m∗ �≡ m (mod p) where gm is the value
successfully opened by C. We claim that bad occurs only with a negligible proba-
bility; otherwise, either the soundness of Σeq, the binding of Ped, or the collision
resistance of Hb

R is broken.
Assume that m∗ �≡ m (mod p) at least in one of such executions. In the first

such execution, we rewind the adversary at the step (*) in the commit phase
and send a new random challenge e′. Assume, by contradiction, that C returns
c′ = (c′

1, c
′
2) such that c′ �= c but still successfully decommits to some value m′

with a′. Then it implies breaking of the binding of Ped or the collision-resistancy
of Hb

R, because we can simulate it without knowing the trapdoor key. For the
same reason, x′ = x (and thus m′ = m) holds except with a negligible proba-
bility. Thus, rewinding the commit phase, C outputs the same stC = (c, gm, op)
except with a negligible probability when it can successfully decommit. Note
that m∗ �≡ m (mod p) implies that x �∈ Leq. Since x (and thus m) is now fixed
with an overwhelming probability, C can convince R on false instance x only with
probability 2−λ (this follows from the special soundness of Σeq), which is neg-
ligible in λ. Hence, bad occurs only with a negligible probability and the views
of Z in the two games are computationally indistinguishable. We stress that we
rewind just in the proof of binding, but not in the simulation. ��

Game2: identical to Game1 except following cases.
Honest C: In the open phase, upon receiving (open, sid, cid) from Z, Sim sets

(a∗, e,z∗)← Σeq.Sim(Σeq.rpkR; x, e) and sends (gm, op = (lbl, c3, e; a∗ , z∗ , r3))
to R; Importantly, in the simulation of honest Cin the open phase, Sim does not
have to know w.

C was adaptively corrupted before receiving e: in the commit phase,
Sim sets r∗

3 ← Ped.tdOpen(Ped.tdR;hx, r3, h
∗
x ) and then reveals the current secret

state (w = (m, r1, r2), s, r∗
3 ) to Z.
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C was adaptively corrupted after receiving e but before the open
phase: Sim simulates C honestly. Note that (w, s) is supposed to be erased by
honest C before sending c, and thus, Sim does not need to reveal it. The proof
of the following lemma is straightforward.

Lemma 2. If Σeq is SHVZK and Ped is trapdoor, then Z distinguishes Game1
and Game2 with negligible probability.

Game3: In this game, we do the following changes.
Honest C: In the commit phase, after receiving (commit, lbl,m) from Z,

when it receives e, Sim computes c∗
1 ← SCS.EnclblSCS.pkC

(1; r1) and sends c∗ ←
(c∗

1 , c2) to R. In the open phase, upon receiving input (open, sid, cid) from Z,
Sim first sets x∗ ← (p,SCS.pkC,Pai.pkC, gm, c∗ , lbl) where x∗ �∈ Leq because
c∗
1 = SCS.EnclblSCS.pkC

(1; r1).
In the case of adaptive corruption of C: Sim simulates C as in Game2.
Security analysis. The only difference from the previous game is

that in Game3, the simulator Sim (playing as honest C) computes c∗
1 ←

SCS.EnclblSCS.pkC
(1; r1) encrypting 1 instead of gm. As in [16], we run the (multi-

message) IND-PCA game to show this game is indistinguishable from the
previous game. Denote by badi the event in Gamei that m∗ �≡ m (mod p)
where m is the value successfully opened by C. As analysed above, Pr[bad] =
Pr[bad1] = negl(λ). In addition, Game1 is statistically close to Game2 and so,
Pr[bad1] ≈ Pr[bad2] = negl(λ). We use this fact to prove the following lemma.

Lemma 3. If SCS is IND-PCA secure then Z distinguishes Game2 and Game3
with only a negligible probability.

Proof (Proof of Lemma 3). The proof is a variant of the proof in [16], App. A.
We define the multi-message IND-PCA security for a public-key cryptosystem
Π. Let Exptmpca

Π,B (λ) be the following experiment:

Exptmpca
Π,B (λ)

QEnc ← ∅;Qpca ← ∅; (Π.pk, sk) ← Π.KGen(1λ);

b ←$ {0, 1}; b′ ← BEncb
Π.pk(·,·,·),Opca

Π.sk
(·,·,·)

(Π.pk);
if b = b′ then return 1; else return 0;fi

Here, the oracles are defined as follows:

– Encb
Π.pk(lbl∗, gm0 , gm1) rejects it if lbl∗ ∈ Qpca. Otherwise, it adds lbl∗ to QEnc

and returns c ← Π.Enclbl
∗

Π.pk(g
mb).

– Opca
Π.sk(lbl, gm, c) rejects it if lbl ∈ QEnc. Otherwise, it adds lbl to Qpca, and

returns 1 iff c is a proper ciphertext of gm on label lbl.

Π is multi-message indistinguishable against the plaintext checkable attacks
(mIND-PCA secure) if Advmpca

Π,B (λ) := |Pr[Exptmpca
Π,B (λ) = 1] − 1/2| = negl(λ)

for all non-uniform PPT B.
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By using the standard hybrid argument, for any mIND-PCA adversary B
against Π with at most q = q(λ) queries to the encryption oracle, there exists
an IND-PCA adversary B′ against Π, s.t. Advmpca

Π,B (λ) ≤ q(λ) · AdvpcaΠ,B′(λ),
where the running time of B′ is roughly bounded by the running time of B
plus q − 1 encryption operations. We construct mIND-PCA adversary B using
Z and the adversary A as follows. W.l.o.g., assume that Pr[Game2(A) = 1] ≤
Pr[Game3(A) = 1], where Gamei(A) is the random variable assigning the output
bit of the environment Z in Gamei. B is given SCS.pkC as an instance in the
mIND-CPA game. B sets up rpkC and rpkR by picking the remaining parameters.
Here, she knows Ped.tdR but does not know SCS.skC. B runs Z and A and plays
the role of simulator Sim as in Game2 (or Game3), except for the following two
cases:

(i) If C is honest and A receives (lbl, c3) from Z, B submits (lbl, gm, 1) to the
oracle Encb

SCS.pkC
and receives c. Then, B plays the role of the simulator in

Game2 (or equivalently, in Game3).
(ii) If R is honest but C is corrupted, after receiving all three messages in the

commit phase with C, B simply stores it. In the open phase, when C success-
fully decommits to gm, B submits (lbl, gm, c1) to the oracle Opca

skC
and receives

the answer bit. If the answer bit is 1, then B outputs (open, lbl, gm) to the
environment. Otherwise, she halts and outputs 1 (break point).

If such an event does not occur, B proceeds the game with Z and A as playing
the role of Sim. When Z outputs a bit b′, B outputs b′ in the mIND-PCA game.

Security Analysis. Above, B perfectly simulates Game2 when b = 0 just
before the break point. Recall that badi denotes the event in Gamei that
m∗ �≡ m (mod p) where gm is the value successfully decommitted to by cor-
rupted C. The probability that the break occurs is equal to the probability
that bad2 occurs, which is negligible. Similarly, B perfectly simulates Game3
when b = 1 just before the break point. We do not know Pr[bad3]. However,
since Pr[bad2] = negl(λ), we can conclude b = 1 if the break happens. If the
break never happens, B perfectly simulates either Game2 or Game3 according
to b. Thus, the difference of the output of Z is bounded by the advantage of
B: Advmcpa

SCS,B(λ) = |Pr[Game3(Z) = 1 ∧ ¬bad3] + Pr[bad3] − (Pr[Game2(Z) =
1 ∧ ¬bad2] + Pr[bad2])|. Thus, Pr[Game3(Z) = 1] − Pr[Game2(Z) = 1] ≤
Advmcpa

SCS,B(λ) + Pr[bad2] − Pr[Game2(Z) = 1 ∧ bad2] ≤ Advmcpa
SCS,B(λ) + negl(λ). ��

Game4: In this game, Sim enacts the following changes compared to Game3.
If C is honest: upon receiving input (commit, lbl,m) from Z, after receiving

e, Sim computes c∗
2 = Pai.EncPai.pkC(0; r2) and returns c∗ ← (c∗

1, c∗
2 ) to R.

In the open phase, upon receiving input (open, sid, cid) from Z, Sim
first sets x = (p,SCS.pkC,Pai.pkC, gm, c, lbl) where x �∈ Leq because c∗

1 =
SCS.EnclblSCS.pkC

(1; r1) and c∗
2 = Pai.EncPai.pkC(0; r2).

If C is adaptively corrupted: Sim simulates C identically as in Game3.

Security Analysis. The only difference from Game3 is that in Game4, the sim-
ulator Sim (playing as honest C) computes c∗

2 ← Pai.EncPai.pkC(0; r2) instead of
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c2 ← Pai.EncPai.pkC(m; r2). We run the (multi-message) IND-CPA game to show
Game4 is indistinguishable from Game3.

Lemma 4. If Pai is IND-CPA secure then Z distinguishes Game3 and Game4
with only a negligible probability.

Proof. The proof is a variation of the proof of Lemma 3. We now analyse Pai,
and define CPA-related security games (like mIND-CPA) instead of PCA-related
security games. ��

Game5: In the ideal world, there additionally exists an ideal functionality
Fmcomdl and the task of the honest parties in the ideal world is simply to convey
inputs from Z to the ideal functionalities and vice versa (the ideal honest parties
communicate only with Z and the ideal functionalities).

Initialization step: Sim generates rpkR and rpkC and saves the trapdoors.
Simulating communication with Z: Every input value that Sim receives
from Z is written on A’s input tape (as if coming from Z) and vice versa.

Simulating the commit phase when C is honest: Upon receiving
(rcpt, lbl = (sid, cid,C,R)) from Fmcomdl, Sim sets m∗ ← 0 and uses it
instead of m in what follows. Unless explicitly said otherwise, we will denote
any variable X that uses m∗ instead of m as X∗ without making all the
details explicit. For example, c∗

1 ← Π.EnclblSCS.pkR
(gm∗

; r1), c∗ ← (c∗
1, c2),

a∗ ← Σeq.P1(Σeq.rpkR; x∗,w∗; s), h∗
x ← Hb

R(lbl, x∗, a∗), and Sim reveals (lbl, c∗
3).

Simulating the commit phase when C is corrupted and R is hon-
est: After receiving (lbl, c3, e, c) from C in the commit phase, Sim sets
m∗ ← Pai.DecPai.skC(c2) and uses m∗ instead of m after that.

Simulating adaptive corruption of C before receiving e in the com-
mit phase: When C is corrupted, Sim immediately reads C’s inner state and
obtains m. Sim uses m to compute all variables as in the real protocol, except
setting r3 ← Ped.tdOpen(Ped.tdR;h∗

x , r
∗
3 , hx) and revealing (m,w, s, r3).

Simulating adaptive corruption of C after the commit phase but
before the open phase: When C is corrupted, Sim immediately reads
ideal committer C’s inner state and obtains m. Sim sets all variables
as in the real protocol, except (a,z) ← Σeq.Sim(Σeq.rpkR; x, e) . Sim sets
r3 ← Ped.tdOpen(Ped.tdR;h∗

x , r
∗
3 , hx) and reveals stC.

Simulating adaptive corruption of R after the commit phase but
before the open phase: Sim stores stR = (lbl, c3, e, c) as if it comes from R.

Simulating the open phase when C is honest: Upon receiving
input (open, lbl, gm) from Fmcomdl, Sim uses gm to compute all variables
as in the real protocol, except (a,z) ← Σeq.Sim(Σeq.rpkR; x, e) . Sim sets
r3 ← Ped.tdOpen(Ped.tdR; h∗

x , r
∗
3 , hx) . Sim reveals (gm, op).

Simulating the open phase when C is corrupted and the receiver R is
honest: Upon receiving (gm, op) from C, Sim sends (open, sid, cid) to Fmcomdl.
Fmcomdl follows its code: if a tuple (sid, cid,C,R, gm∗

) with the same (sid, cid)
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was previously stored by Fmcomdl, Fmcomdl sends (open, sid, cid,C,R, gm∗
) to

the ideal receiver R and Sim. Then, R conveys it to Z.

By construction, this game is identical to the previous game. ��
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