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Abstract. In this work, we abstract some key ingredients in previous
key establishment and public-key encryption schemes from LWE and its
variants. Specifically, we explicitly formalize the building tool, referred
to as key consensus (KC) and its asymmetric variant AKC. KC and
AKC allow two communicating parties to reach consensus from close
values, which plays the fundamental role in lattice-based cryptography.
We then prove the upper bounds on parameters for any KC and AKC,
which reveal the inherent constraints on the parameters among security,
bandwidth, error probability, and consensus range. As a conceptual con-
tribution, this simplifies the design and analysis of these cryptosystems
in the future. Guided by the proved upper bounds, we design and ana-
lyze both generic and highly practical KC and AKC schemes, which are
referred to as OKCN and AKCN respectively for presentation simplic-
ity. We present a generic protocol structure for key establishment from
learning with rounding (LWR), which can be instantiated with either KC
or AKC. We then provide an analysis breaking the correlation between
the rounded deterministic noise and the secret, and design an algorithm
to calculate the error probability numerically. When applied to LWE-
based key establishment, OKCN and AKCN can result in more practical
or well-balanced schemes, compared to existing LWE-based protocols in
the literature.

1 Introduction

Most public-key cryptosystems currently in use, based on the hardness of solving
(elliptic curve) discrete logarithm or factoring large integers, will be broken, if
large-scale quantum computers are ever built. The arrival of such quantum com-
puters is now believed by many scientists to be merely a significant engineering
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challenge, and is estimated to be within the next two decades or so. Historically,
it has taken almost two decades to deploy the modern public key cryptography
infrastructure. Therefore, regardless of whether we can estimate the exact time
of the arrival of the quantum computing era, we should begin now to prepare our
information security systems to be able to resist quantum computing. In addi-
tion, for the content we want to protect over a period of 15 years or longer, it
becomes necessary to switch to post-quantum cryptography today. In the major-
ity of contexts, ephemeral key establishment (KE), which plays a central role
in modern cryptography, is among the most critical asymmetric primitives to
upgrade to post-quantum security.

Lattice-based cryptography is one of the promising mathematical approaches
to achieving security resistant to quantum attacks. For cryptographic usage,
compared with the classic hard lattice problems such as SVP and CVP, the
learning with errors (LWE) problem is proven to be much more versatile [Reg09].
One of the main technical contributions in recent years on achieving practical key
establishment based on LWE and its variants is the improvement and generaliza-
tion of the key reconciliation mechanisms [Reg09,DXL12,LPR10,LP10]. But the
key reconciliation mechanisms were only previously used and analyzed, for both
KE and PKE, in a non-black-box way. This means, for new key reconciliation
mechanisms developed in the future to be used for constructing lattice-based
cryptosystems, we need to analyze their security from scratch. Moreover, for the
various parameters involved in key reconciliation, the bounds on what could or
couldn’t be achieved are unclear. As a consequence, we lack basic criteria to
evaluate various reconciliation mechanisms and to indicate whether they can be
further improved.

Abstraction/generalization is fundamental to natural science (mathematics,
physics), and is particularly important to cryptography. For example, in the
area of signature, Schnorr signature is generalized via Fiat-Shamir transforma-
tion [FS86], with abstraction of Σ-protocol [CDS94]. The similar abstraction and
generalization also plays a fundamental role in CCA-secure PKE, and in many
more areas of modern cryptography. Abstraction and generalization is partic-
ularly helpful and expected for lattice-based cryptography, as they are usually
less easy to understand and evaluate, and are related to the ongoing NIST post-
quantum cryptography standardization [NIST].

1.1 Our Contributions

In this work, we abstract the key ingredients in previous key establishment and
PKE schemes based on LWE and its variants, by introducing and formalizing
the building tool, referred to as key consensus (KC) and its asymmetric variant
AKC. KC and AKC allow two communicating parties to reach consensus from
close values obtained by some secure information exchange, such as exchanging
their LWE samples. We then discover upper bounds on parameters for any KC
and AKC. As a conceptual contribution, this simplifies the design and analysis
of these cryptosystems in the future. We then design and analyze both generic
and highly practical KC and AKC schemes, which are referred to as symmetric
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key consensus with noise (OKCN) and asymmetric key consensus with noise
(AKCN) respectively for presentation simplicity.

We propose the first construction of key establishment merely based on the
LWR problem with concrete analysis and evaluation, to the best of our knowl-
edge. We use the randomness lifting technique to present a unified protocol struc-
ture that can be instantiated with either KC or AKC. We provide an analysis
breaking the correlation between the rounded deterministic noise and the secret,
and design an algorithm to calculate the error probability numerically. When
applied to LWE-based key establishment, OKCN and AKCN can result in more
practical or well-balanced schemes, compared to the related LWE-based proto-
cols in the literature. The protocols developed in this work are implemented. The
code and scripts, together with those for evaluating concrete security and failure
rates, are (anonymously) available from Github http://github.com/OKCN.

1.2 Related Work

AKC (resp., KC) was pioneered by the works on lattice-based PKE [LP10,
LPR10] (resp., the work on key establishment [DXL12]). LWR-based key estab-
lishment was pioneered by the Lizard protocol [CKLS16]. The Lizard proto-
col is AKC-based, and is based on (special variants of) both LWE and LWR.
To the best our knowledge, key establishment protocol merely from the LWR
problem was first achieved in an early version of our work [JZ16].1 The works
[BBG+17,DKRV17,BGL+18] considered AKC-based key transport protocols
from some variants of LWR (some of which use sparse-ternary secret keys),
and show that randomness lifting is not necessary for AKC-based protocol from
LWR. But these protocols do not support KC-based instantiations. We remark
that, for the recommended parameters in all the works, randomness lifting corre-
sponds to uniform sampling from [−2k, 2k −1] for some positive integer k, which
is fast and easy.

2 Preliminaries

A string or value α means a binary one, and |α| is its binary length. For any
real number x, �x� denotes the largest integer that less than or equal to x, and
�x� = �x + 1/2�. For any positive integers a and b, denote by lcm(a, b) the least
common multiple of them. For any i, j ∈ Z such that i < j, denote by [i, j] the
set of integers {i, i + 1, · · · , j − 1, j}. For any positive integer t, we let Zt denote
Z/tZ. The elements of Zt are represented, by default, as [0, t − 1]. Nevertheless,
sometimes, Zt is explicitly specified to be represented as [−�(t − 1)/2�, �t/2�].

If S is a finite set then |S| is its cardinality, and x ← S is the operation of
picking an element uniformly at random from S. For two sets A,B ⊆ Zq, define

1 Our work appeared in the literature since November 2016 [JZ16], and the construc-
tion and analysis of LWR-based protocol are presented in the update of February
2017.

http://github.com/OKCN
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A + B � {a + b|a ∈ A, b ∈ B}. For an addictive group (G,+), an element x ∈ G
and a subset S ⊆ G, denote by x+S the set containing x+ s for all s ∈ S. For a
set S, denote by U(S) the uniform distribution over S. For any discrete random
variable X over R, denote Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below for writing probabilistic
algorithms, experiments and interactive protocols. If D denotes a probability
distribution, x ← D is the operation of picking an element according to D. If α
is neither an algorithm nor a set then x ← α is a simple assignment statement. If
A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment
of picking r at random and letting y be A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random
processes R1, · · · , Rn.

2.1 The LWE and LWR Problems

Given positive continuous α > 0, define the real Gaussian function ρα(x) �
exp(−x2/2α2)/

√
2πα2 for x ∈ R. Let DZ,α denote the one-dimensional discrete

Gaussian distribution over Z, which is determined by its probability density func-
tion DZ,α(x) � ρα(x)/ρα(Z), x ∈ Z. Finally, let DZn,α denote the n-dimensional
spherical discrete Gaussian distribution over Zn, where each coordinate is drawn
independently from DZ,α.

Given positive integers n and q that are both polynomials in the security
parameter λ, an integer vector s ∈ Z

n
q , and a probability distribution χ on

Zq, let Aq,s,χ be the distribution over Z
n
q × Zq obtained by choosing a ∈ Z

n
q

uniformly at random, and an error term e ← χ, and outputting the pair
(a, b = aT s + e) ∈ Z

n
q ×Zq. The error distribution χ is typically taken to be the

discrete Gaussian probability distribution DZ,α defined previously; However, as
suggested in [BCD+16], other alternative distributions of χ can be taken. Briefly
speaking, the (decisional) learning with errors (LWE) assumption [Reg09] says
that, for sufficiently large security parameter λ, no probabilistic polynomial-time
(PT) algorithm can distinguish, with non-negligible probability, Aq,s,χ from the
uniform distribution over Zn

q ×Zq. This holds even if A sees polynomially many
samples, and even if the secret vector s is drawn randomly from χn [ACPS09].

The LWR problem [BPR12] is a “decarbonized” variant of the LWE problem.
Let D be some distribution over Zn

q , and s ← D. For integers q ≥ p ≥ 2 and any
x ∈ Zq, denote

�x�p = �p

q
x�. (1)

Then, for positive integers n and q ≥ p ≥ 2, the LWR distribution An,q,p(s)
over Zn

q ×Zp is obtained by sampling a from Z
n
q uniformly at random, and out-

putting
(
a,

⌊
aT s

⌉
p

)
∈ Z

n
q ×Zp. Briefly speaking, the (decisional) LWR assump-

tion says that, for sufficiently large security parameter, no PT algorithm A can
distinguish, with non-negligible probability, the distribution An,q,p(s) from the
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distribution (a ← Z
n
q , �u�p) where u ← Zq. This holds even if A sees poly-

nomially many samples. An efficient reduction from the LWE problem to the
LWR problem, for super-polynomial large q, is provided in [BPR12]. Let B
denote the bound for any component in the secret s. It is recently shown that,
when q ≥ 2mBp (equivalently, m ≤ q/2Bp), the LWE problem can be reduced
to the (decisional) LWR assumption with m independently random samples
[BGM+16]. Moreover, the reduction from LWE to LWR is actually independent
of the distribution of the secret s.

3 Key Consensus with Noise

Before presenting the definition of key consensus (KC) scheme, we first introduce
a new function | · |t relative to arbitrary positive integer t ≥ 1: |x|t = min{x mod
t, t − x mod t}, ∀x ∈ Z, where the result of modular operation is represented
in {0, ..., (t − 1)}. For instance, | − 1|t = min{−1 mod t, (t + 1) mod t} =
min{t − 1, 1} = 1. In the following description, we use |σ1 − σ2|q to measure the
distance between two elements σ1, σ2 ∈ Zq.

Definition 1. A KC scheme KC = (params,Con,Rec) is specified as follows.

– params = (q,m, g, d, aux) denotes the system parameters, where q,m, g, d are
positive integers satisfying 2 ≤ m, g ≤ q, 0 ≤ d ≤ � q

2�, and aux denotes some
auxiliary values that are usually determined by (q,m, g, d) and could be set to
be a special symbol ∅ indicating “empty”.

– (k1, v) ← Con(σ1, params): On input of (σ1 ∈ Zq, params), the probabilistic
polynomial-time conciliation algorithm Con outputs (k1, v), where k1 ∈ Zm is
the shared-key, and v ∈ Zg is a hint signal that will be publicly delivered to
the communicating peer to help the two parties reach consensus.

– k2 ← Rec(σ2, v, params): On input of (σ2 ∈ Zq, v, params), the deterministic
polynomial-time reconciliation algorithm Rec outputs k2 ∈ Zm.

Correctness: A KC scheme is correct, if for any σ1, σ2 ∈ Zq such that |σ1 −
σ2|q ≤ d, (k1, v) ← Con(σ1, params) and k2 ← Rec(σ2, v, params), it holds
k1 = k2.

Security: A KC scheme is secure, if k1 and v are independent, and k1 is uni-
formly distributed over Zm, whenever σ1 ← Zq and k1 is the output of
Con(σ1, params). The probability is taken over the sampling of σ1 and the
random coins used by Con.

3.1 Efficiency Upper Bound of KC

The following theorem reveals an upper bound on the parameters q (dominating
security and efficiency), m (parameterizing range of consensus key), g (parame-
terizing bandwidth), and d (parameterizing error rate), which allows us to take
balance on these parameters according to different priorities. Due to space limi-
tation, the proof is given in the full version [JZ16].
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Algorithm 1. OKCN: Symmetric KC with Noise
1: params = (q, m, g, d, aux), aux = {q′ = lcm(q, m), α = q′/q, β = q′/m}
2: procedure Con((σ1, params)) � σ1 ∈ [0, q − 1]
3: e ← [−�(α − 1)/2�, �α/2�]
4: σA = (ασ1 + e) mod q′

5: k1 = �σA/β� ∈ Zm

6: v′ = σA mod β
7: v = �v′g/β� � v ∈ Zg

8: return (k1, v)
9: end procedure

10: procedure Rec(σ2, v, params) � σ2 ∈ [0, q − 1]
11: k2 = �ασ2/β − (v + 1/2)/g� mod m
12: return k2

13: end procedure

Theorem 1. If KC = (params,Con,Rec) is a correct and secure key consensus
scheme, and params = (q,m, g, d, aux), then 2md ≤ q

(
1 − 1

g

)
.

3.2 Construction and Analysis of OKCN

The key consensus scheme, named symmetric key consensus with noise
(OKCN)”, is presented in Algorithm 1. The following fact is direct from the
definition of | · |t.
Fact 1. For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x − y|q ≤ l, then there
exists θ ∈ Z and δ ∈ [−l, l] such that x = y + θt + δ.

Theorem 2. Suppose that the system parameters satisfy (2d+1)m < q
(
1 − 1

g

)

where m ≥ 2 and g ≥ 2. Then, the OKCN scheme is correct.

Proof. Suppose |σ1 − σ2|q ≤ d. By Fact 1, there exist θ ∈ Z and δ ∈ [−d, d] such
that σ2 = σ1 + θq + δ. From line 4 and 6 in Algorithm 1, we know that there is
a θ′ ∈ Z, such that ασ1 + e + θ′q′ = σA = k1β + v′. And from the definition of
α, β, we have α/β = m/q. Taking these into the formula of k2 in Rec (line 11 in
Algorithm 1), we have

k2 = �ασ2/β − (v + 1/2)/g� mod m (2)
= �α(θq + σ1 + δ)/β − (v + 1/2)/g� mod m (3)

=
⌊
m(θ − θ′) +

1
β

(k1β + v′ − e) +
αδ

β
− 1

g
(v + 1/2)

⌉
mod m (4)

=
⌊
k1 +

(
v′

β
− v + 1/2

g

)
− e

β
+

αδ

β

⌉
mod m (5)
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Algorithm 2. OKCN simple
1: params : q = 2q̄, g = 2ḡ, m = 2m̄, d, where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊

σ1
g

⌋

4: v = σ1 mod g
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)

8: k2 =
⌊

σ2−v
g

⌉
mod m

9: return k2

10: end procedure

Notice that |v′/β − (v + 1/2)/g| = |v′g − β(v + 1/2)|/βg ≤ 1/2g. So
∣∣∣∣
(

v′

β
− v + 1/2

g

)
− e

β
+

αδ

β

∣∣∣∣ ≤ 1
2g

+
α

β
(d + 1/2).

From the assumed condition (2d + 1)m < q(1 − 1
g ), we get that the right-hand

side is strictly smaller than 1/2; Consequently, after the rounding, k2 = k1. 
�
Theorem 3. OKCN is secure. Specifically, when σ1 ← Zq, k1 and v are inde-
pendent, and k1 is uniform over Zm, where the probability is taken over the
sampling of σ1 and the random coins used by Con.

Proof. Recall that q′ = lcm(q,m), α = q′/q, β = q′/m. We first demonstrate that
σA is subject to uniform distribution over Zq′ . Consider the map f : Zq ×Zα →
Zq′ ; f(σ, e) = (ασ + e) mod q′, where the elements in Zq and Zα are represented
in the same way as specified in Algorithm 1. It is easy to check that f is an one-
to-one map. Since σ1 ← Zq and e ← Zα are subject to uniform distributions,
and they are independent, σA = (ασ1 + e) mod q′ = f(σ1, e) is also subject to
uniform distribution over Zq′ .

In the similar way, defining f ′ : Zm×Zβ → Zq′ such that f ′(k1, v′) = βk1+v′,
then f ′ is obviously a one-to-one map. From line 6 of Algorithm 1, f ′(k1, v′) =
σA. As σA is distributed uniformly over Zq′ , (k1, v′) is uniformly distributed over
Zm × Zβ , and so k1 and v′ are independent. As v only depends on v′, k1 and v
are independent. 
�

Special Parameters, and Performance Speeding-Up. The first and the
second line of Con (line 3 and 4 in Algorithm 1) play the role in transforming a
uniform distribution over Zq to a uniform distribution over Zq′ . If one chooses
q, g,m to be power of 2, i.e., q = 2q̄, g = 2ḡ,m = 2m̄ where q̄, ḡ, m̄ ∈ Z, then
such transformation is not necessary, and the random noise e used in calculating
σA in Algorithm 1 is avoided. If we take ḡ + m̄ = q̄, it can be further simplified
into the variant depicted in Algorithm 2, with the constraint on parameters is
further relaxed.
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Corollary 1. If m, g are power of 2, q = m · g, and 2md < q, then the KC
scheme described in Algorithm 2 is correct and secure. Notice that the constraint
on parameters is further simplified to 2md < q in this case.

To the best of our knowledge, OKCN is the first multi-bit reconciliation mech-
anism, and the first that can be instantiated to tightly match the upper-bound
proved in Theorem 1.

4 Asymmetric Key Consensus with Noise

Definition 2. An asymmetric key consensus scheme AKC = (params,Con,
Rec) is specified as follows:

– params = (q,m, g, d, aux) denotes the system parameters, where q, 2 ≤ m, g ≤
q, 1 ≤ d ≤ � q

2� are positive integers, and aux denotes some auxiliary values
that are usually determined by (q,m, g, d) and could be set to be empty.

– v ← Con(σ1, k1, params): On input of (σ1 ∈ Zq, k1 ∈ Zm, params), the prob-
abilistic polynomial-time conciliation algorithm Con outputs the public hint
signal v ∈ Zg.

– k2 ← Rec(σ2, v, params): On input of (σ2, v, params), the deterministic
polynomial-time algorithm Rec outputs k2 ∈ Zm.

Correctness: An AKC scheme is correct, if for any σ1, σ2 ∈ Zq such that
|σ1 − σ2|q ≤ d, and v ← Con(σ1, k1, params), k2 ← Rec(σ2, v, params), it
holds k1 = k2.

Security: An AKC scheme is secure, if v is independent of k1 whenever σ1

is uniformly distributed over Zq, and v is the output of Con(σ1, k1, params).
Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that

Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′
1], where the probability is taken over

σ1 ← Zq and the random coins used by Con.

Theorem 4. Let AKC be an asymmetric key consensus scheme with params =
(q,m, d, g, aux). If AKC is correct and secure, then 2md ≤ q

(
1 − m

g

)
.

The proof of Theorem 4 is given in the full version [JZ16]. Comparing the
formula 2md ≤ q(1 − m/g) in Theorem 4 with the formula 2md ≤ q(1 − 1/g) in
Theorem 1, we see that the only difference is a factor m in g. This indicates that,
on the same values of (q,m, d), an AKC scheme has to use a bigger bandwidth
parameter g compared to KC.

4.1 Construction and Analysis of AKCN

The AKCN scheme, referred to as asymmetric key consensus with noise, is
depicted in Algorithm 3. For AKCN, we can offline compute and store k1 and
g�k1q/m� in order to accelerate online performance.
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Algorithm 3. AKCN: Asymmetric KC with Noise
1: params = (q, m, g, d, aux), where aux = ∅.
2: procedure Con(σ1, k1, params) � σ1 ∈ [0, q − 1]
3: v = �g (σ1 + �k1q/m�) /q� mod g
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) � σ2 ∈ [0, q − 1]
7: k2 = �m(v/g − σ2/q)� mod m
8: return k2

9: end procedure

The design of AKCN was guided by, and motivated for, the upper-bound
for AKC proved in this work. In designing AKCN, we combine all the existing
optimizations in the literature in order to almost meet the upperbound proved
in Theorem 4. AKCN is a generalization of the basic reconciliation mechanisms
proposed in [LPR10,LP10], and its design was also inspired by the design of
our OKCN and the works [BPR12,PG13]. But AKCN and the underlying rec-
onciliation mechanism of [PG13] could be viewed as incomparable in general. In
particular, the reconciliation mechanisms proposed in [LPR10,LP10] correspond
to the special case of AKCN when g = q and m = 2. Note that, with AKCN,
we use Eq. 1 described in the definition of LWR [BPR12], which may also be
derived implicitly from [Pei09].

Theorem 5. Suppose the parameters of AKCN satisfy (2d+1)m < q
(
1 − m

g

)
.

Then, the AKCN scheme described in Algorithm 3 is correct.

Proof. From the formula generating v, we know that there exist ε1, ε2 ∈ R and
θ ∈ Z, where |ε1| ≤ 1/2 and |ε2| ≤ 1/2, such that

v =
g

q

(
σ1 +

(
k1q

m
+ ε1

))
+ ε2 + θg

Taking this into the formula computing k2 in Rec, we have

k2 = �m(v/g − σ2/q)� mod m

=
⌊
m

(
1
q
(σ1 + k1q/m + ε1) +

ε2
g

+ θ − σ2

q

)⌉
mod m

=
⌊
k1 +

m

q
(σ1 − σ2) +

m

q
ε1 +

m

g
ε2

⌉
mod m

By Fact 1 (page 6), there exist θ′ ∈ Z and δ ∈ [−d, d] such that σ1 = σ2+θ′q+δ.
Hence,

k2 =
⌊
k1 +

m

q
δ +

m

q
ε1 +

m

g
ε2

⌉
mod m

Since |mδ/q + mε1/q + mε2/g| ≤ md/q + m/2q + m/2g < 1/2, k1 = k2. 
�
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Theorem 6. The AKCN scheme is secure. Specifically, v is independent of k1
when σ1 ← Zq.

Proof. For arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃
′
1 ∈ Zm, we prove that Pr[v =

ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′
1] when σ1 ← Zq.

For any (k̃, ṽ) in Zm × Zg, the event (v = ṽ | k1 = k̃) is equivalent to the
event that there exists σ1 ∈ Zq such that ṽ = �g(σ1 + �k̃q/m�)/q� mod g. Note
that σ1 ∈ Zq satisfies ṽ = �g(σ1 + �k̃q/m�)/q� mod g, if and only if there exist
ε ∈ (−1/2, 1/2] and θ ∈ Z such that ṽ = g(σ1 + �k̃q/m�)/q + ε − θg. That is,
σ1 = (q(ṽ − ε)/g − �k̃q/m�) mod q, for some ε ∈ (−1/2, 1/2]. Let Σ(ṽ, k̃) =
{σ1 ∈ Zq | ∃ε ∈ (−1/2, 1/2] s.t. σ1 = (q(ṽ − ε)/g − �k̃q/m�) mod q}. Defining

the map φ : Σ(ṽ, 0) → Σ(ṽ, k̃), by setting φ(x) =
(
x − �k̃q/m�

)
mod q. Then

φ is obviously a one-to-one map. Hence, the cardinality of Σ(ṽ, k̃) is irrelevant
to k̃. Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that∣∣∣Σ(ṽ, k̃1)

∣∣∣ =
∣∣∣Σ(ṽ, k̃′

1)
∣∣∣ = |Σ(ṽ, 0)|.

Now, for arbitrary ṽ ∈ Zg and arbitrary k̃ ∈ Zm, when σ1 ← Zq we have

that Pr[v = ṽ | k1 = k̃] = Pr
[
σ1 ∈ Σ(ṽ, k̃) | k1 = k̃

]
= |Σ(ṽ, k̃)|/q = |Σ(ṽ, 0)|/q.

The right-hand side only depends on ṽ, and so v is independent of k1. 
�

4.2 Discussions on KC vs. AKC

Key establishment (KE) schemes based upon KC and AKC have different per-
formances and features.

– KC-based KE corresponds to Diffie-Hellman key establishment in the lattice
world, while AKC-based to El Gamal key transport.

– When deploying AKC-based KE in practice, if the randomness used by the
responder (e.g., a low-power device like smart card) is poor, it will signifi-
cantly ruin the session-key security. Or, if the responder is just lazy (or for
economic reasons), who may re-use session-keys across multiple sessions, as
demonstrated with some deployed TLS implementations in reality. In compar-
ison, with KC-based KE, the two players play a symmetric role in generating
the session-key, and thus the damage caused by poor randomness can be alle-
viated. In addition, symmetry is usually a desirable feature for cryptographic
schemes in practice.

– On the same parameters (q,m, g) (which imply the same bandwidth), OKCN-
based KE has lower error probability than AKCN-based. Or, on the same
parameters (q,m, d) (which imply the same error probability), OKCN-based
KE has smaller bandwidth than AKCN-based. This comparison is enabled
by the upper-bounds on these parameters proved in Theorems 1 and 4.

– KC-based KE is more versatile, in the sense that it can also be straightfor-
wardly adapted into a key transport protocol or a CPA-secure PKE scheme.
Moreover, in another work [CGZ18], we show that the deterministic version
of OKCN is also a fundamental building tool for lattice-based signature.
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Fig. 1. LWR-based key establishment from KC, where K1,K2 ∈ Z
lA×lB
m and |K1| =

|K2| = lA lB |m|.

– KC-based KE is more appropriate for incorporating into the existing stan-
dards like IKE and TLS that are based on Diffie-Hellman via the SIGMA
mechanism [Kra03]. We note that key transport is explicitly abandoned with
TLS1.3.

– For the parameters proposed in this work, OKCN is actually (slightly) more
efficient than AKCN.

For the above reasons, we focus more on KC-based key establishment (specif-
ically, key exchange) than AKC-based in this work. Still, we aim for a unified
protocol structure that can be instantiated with either KC or AKC, in order to
simplify system complexity.

5 LWR-Based Key Establishment

The KC-based key establishment (KE) from the LWR problem is depicted
in Fig. 1. Denote by (n, lA, lB , q, p,KC, χ) the system parameters, where
p|q, and p and q are chosen to be power of 2. Let KC = (params =
(p,m, g, d, aux),Con,Rec) be a correct and secure key consensus scheme, χ be a
small noise distribution over Zq, and Gen be a pseudo-random generator (PRG)
generating the matrix A from a small seed. In the actual implementation, we use
OKCN-simple as the underlying KC mechanism. For presentation simplicity, we
assume A ∈ Z

n×n
q to be square matrix. The length of the random seed, i.e., κ,

is typically set to be 256. The actual session-key is derived from K1 and K2 via
some key derivation function KDF . For presentation simplicity, the functions
Con and Rec are applied to matrices, meaning that they are applied to each of the
coordinates respectively. For presentation simplicity, we describe the LWR-based
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key establishment protocol from any KC scheme. But it can be trivially adapted
to work on any correct and secure AKC scheme. In this case, the responder user
Bob simply chooses K2 ← Z

lA×lB
m , and the output of Con(Σ2,K2, params) is

simply defined to be V. The security proof of the LWR-based KE protocol is
analogous to that in [Pei14,BCD+16], and is given in the full version.

5.1 Analysis of Correctness and Failure Rate

For any integer x, let {x}p denote x − q
p�x�p, where �x�p = �p

q x�. Then, for
any integer x, {x}p ∈ [−q/2p, q/2p − 1], hence {x}p can be naturally regarded
as an element in Zq/p. In fact, {x}p is equal to x mod q/p, where the result is
represented in [−q/2p, q/2p − 1]. When the notation {·}p is applied to a matrix,
it means {·}p applies to every element of the matrix respectively.

We have Σ2 = YT
1 X2 + �εT X2�p = �AX1�T

p X2 + �εT X2�p = p
q (AX1 −

{AX1}p)T X2 + �εT X2�p. And Σ1 = XT
1 Y2 = XT

1 �AT X2�p = p
q (XT

1 AT X2 −
XT

1 {AT X2}p). Hence,

Σ2 − Σ1 =
p

q
(XT

1 {AT X2}p − {AX1}T
p X2) + �εT X2�p mod p

=
⌊

p

q
(XT

1 {AT X2}p − {AX1}T
p X2 + εT X2)

⌉
mod p

The general idea is that X1,X2, ε, {AT X2}p and {AX1}p are small enough,
so that Σ1 and Σ2 are close. If |Σ1−Σ2|p ≤ d, the correctness of the underlying
KC guarantees K1 = K2. For given concrete parameters, we numerically derive
the probability of |Σ2 − Σ1|p > d by numerically calculating the distribution of
XT

1 {AT X2}p − ({AX1}T
p X2 − εT X2) for the case of lA = lB = 1, then applying

the union bound. The independency between variables indicated by the following
Theorem 7 can greatly simplify the calculation.

Let Inv(X1,X2) denote the event that there exist invertible elements of
ring Zq/p in both vectors X1 and X2. We claim that Inv(X1,X2) happens
with overwhelming probability. This claim follows from Pr[Inv(X1,X2)] =
1 − Pr[all entries of X1,X2 are non-invertible in Zq/p] = 1 − Pr[x ← χ :
x is non-invertible]n·(lA+lB). In our application, Pr[x ← χ : x is non-invertible]
is far from one, hence, Inv(X1,X2) holds with overwhelming probability.

Lemma 1. Consider the case of lA = lB = 1. For any a ∈ Zq/p,x ∈ Z
n
q/p,

denote Sx,a = {y ∈ Z
n
q/p | xT y mod (q/p) = a}. For any fixed a ∈ Zq/p,

conditioned on Inv(X1,X2) and XT
1 AT X2 mod (q/p) = a, the random vectors

{AT X2}p and {AX1}p are independent, and are subjected to uniform distribu-
tion over SX1,a, SX2,a respectively.

Proof. Under the condition of Inv(X1,X2), for any fixed X1 and X2, define the
map φX1,X2 : Z

n×n
q → Z

n
q/p × Z

n
q/p, such that A �→ ({AX1}p, {AT X2}p).

We shall prove that the image of φX1,X2 is S = {(y1,y2) ∈ Z
n
q/p × Z

n
q/p |

XT
2 y1 = XT

1 y2 mod (q/p)}. Denote X1 = (x1,X′T
1 )T and y2 = (y2,y′T

2 )T .
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Without loss of generality, we assume x1 is invertible in the ring Zq/p. For any
(y1,y2) ∈ S, we need to find an A such that φX1,X2(A) = (y1,y2).

From the condition Inv(X1,X2), we know that there exists an A′ ∈ Z
(n−1)×n

such that {A′X2}p = y′
2. Then, we let a1 = x−1

1 (y1 − A′T X′
1) mod (q/p), and

A = (a1,A′T ). Now we check that φX1,X2(A) = (y1,y2).

{AX1}p =
{(

a1 A′T ) (
x1

x′
1

)}

p

= {x1a1 + A′T X′
1}p = y1

{AT X2}p =
{(

aT
1

A′

)
X2

}

p

=
{(

aT
1 X2

A′X2

)}

p

=
{(

x−1
1 (yT

1 − X′T
1 A)X2

A′X2

)}

p

=
{(

x−1
1 (XT

1 y2 − X′T
1 y′

2)
y′
2

)}

p

=
{(

y2
y′
2

)}

p

= y2

Hence, if we treat Z
n×n
q and S as Z-modules, then φX1,X2 : Zn×n

q → S is a
surjective homomorphism. Then, for any fixed (X1,X2), ({AX1}p, {AT X2}p)
is uniformly distributed over S. This completes the proof. 
�
Theorem 7. Under the condition Inv(X1,X2), the following two distributions
are identical:

– (a,X1,X2, {AX1}p, {AT X2}p), where A ← Z
n×n
q , X1 ← χn, X2 ← χn, and

a = XT
1 AT X2 mod (q/p).

– (a,X1,X2,y1,y2), where a ← Zq/p,X1 ← χn, X2 ← χn, y1 ← SX2,a, and
y2 ← SX1,a.

Proof. For any ã ∈ Zq/p, X̃1, X̃2 ∈ Supp(χn), ỹ1, ỹ2 ∈ Z
n
q/p, we have

Pr[a = ã,X1 = X̃1,X2 = X̃2, {AX1}p = ỹ1, {AT X2}p = ỹ2 | Inv(X1,X2)]

= Pr[{AX1}p = ỹ1, {AT X2}p = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)]

Pr[a = ã,X1 = X̃1,X2 = X̃2 | Inv(X1,X2)]

From Lemma 1, the first term equals to Pr[y1 ← SX̃2,ã;y2 ← SX̃1,ã : y1 =
ỹ1,y2 = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)].

For the second term, we shall prove that a is independent of (X1,X2),
and is uniformly distributed over Zq/p. Under the condition of Inv(X1,X2),
the map Z

n×n
q → Zq/p, such that A �→ XT

1 AT X2 mod (q/p), is a surjective
homomorphism between the two Z-modules. Then, Pr[a = ã | X1 = X̃1,X2 =
X̃2, Inv(X1,X2)] = p/q. Hence, under the condition of Inv(X1,X2), a is inde-
pendent of (X1,X2), and is distributed uniformly at random. So the two ways
of sampling result in the same distribution. 
�

We design and implement the following algorithm to numerically calculate the
distribution of Σ2 −Σ1 efficiently. For any c1, c2 ∈ Zq, a ∈ Zq/p, we numerically
calculate Pr[XT

1 {AT X2}p = c1] and Pr[{AX1}T
p X2−εT X2 = c2,XT

1 AT X2 mod
(q/p) = a], then derive the distribution of Σ2 − Σ1.
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As Inv(X1,X2) occurs with overwhelming probability, for any event E, we
have |Pr[E] − Pr[E|Inv(X1,X2)]| < negl. For simplicity, we ignore the effect
of Inv(X1,X2) in the following calculations. By Theorem 7, Pr[XT

1 {AT X2}p =
c1] = Pr[X1 ← χn,y2 ← Z

n
q/p;X

T
1 y2 = c1]. This probability can be numerically

calculated by computer programs. The probability Pr[{AX1}T
p X2 − εT X2 =

c2,XT
1 AT X2 mod (q/p) = a] can also be calculated by the similar way. Then,

for arbitrary c ∈ Zq,

Pr[Σ1 − Σ2 = c] = Pr[X
T
1 {AT

X2}p − {AX1}T
p X2 + ε

T
X2 = c]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {AT X2}p=c1,{AX1}T

p X2−εT X2=c2|XT
1 AT X2 mod (q/p)=a]·

Pr[XT
1 AT X2 mod (q/p)=a]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {AT X2}p=c1|XT

1 AT X2 mod (q/p)=a]·
Pr[{AX1}T

p X2−εT X2=c2|XT
1 AT X2 mod (q/p)=a] Pr[XT

1 AT X2 mod (q/p)=a]

=
∑

a∈Zq/p
c1−c2=c

Pr[XT
1 {AT X2}p=c1, c1 mod (q/p)=a] Pr[{AX1}T

p X2 − εT X2 = c2, XT
1 AT X2 mod (q/p) = a]

Pr[XT
1 AT X2 mod (q/p) = a]

=
∑

a∈Zq/p
c1−c2=c

c1 mod (q/p)=a

Pr[XT
1 {AT X2}p = c1] Pr[{AX1}T

p X2 − εT X2 = c2, XT
1 AT X2 mod (q/p) = a]

Pr[XT
1 AT X2 mod (q/p) = a]

By Theorem 7, conditioned on Inv(X1,X2) and XT
1 AT X2 mod (q/p) = a,

XT
1 {AT X2}p is independent of {AX1}T

p X2 − εT X2, which implies the second
equality. The scripts are available from http://github.com/OKCN.

5.2 Parameter Selection and Evaluation

It is suggested in [ADPS16,BCD+16] that rounded Gaussian distribution can
be replaced by discrete distribution that is very close to rounded Gaussian in
the sense of Rényi divergence [BLL+15] (Table 1).

Table 1. Discrete distributions of every component in the LWR secret. We choose the
standard variances “var.” large enough to prevent potential combinational attacks.

dist. Bits var. Probability of Order Divergence

0 ±1 ±2 ±3 ±4 ±5 ±6

DR 16 2.00 18110 14249 6938 2090 389 44 3 500.0 1.0000270

DP 16 1.40 21456 15326 5580 1033 97 4 0 500.0 1.0000277

Security Estimation. The dual attack tries to distinguish the distribution
of LWE samples and the uniform distribution. Suppose (A,b = As + e) ∈
Z

m×n
q ×Z

m
q is an LWE sample, where s and e are drawn from discrete Gaussian of

variance σ2
s and σ2

e respectively. Then we choose a positive real c ∈ R, 0 < c ≤ q,
and construct Lc(A) = {(x,y/c) ∈ Z

m×(Z/c)n | xT A = yT mod q}, which is a

http://github.com/OKCN
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Table 2. Parameters for LWR-Based key establishment with OKCN-simple. “bw.”
refers to the bandwidth in kilo-bytes.“err.” refers to the overall error rate that is cal-
culated by the algorithm developed in Sect. 5.1. “|K|” refers to the length of consensus
bits.

n q p l m g distr. bw. err. |K|
Recommended 672 215 212 8 24 28 DR 16.19 2−30 256

Paranoid 832 215 212 8 24 28 DP 20.03 2−34 256

lattice with dimension m+n and determinant (q/c)n. For a short vector (x,y) ∈
Lc(A) found by the BKZ algorithm, we have xT b = xT (As+e) = c ·yT s+xT e
mod q. If (A,b) is an LWE sample, the distribution of the right-hand side will be
very close to a Gaussian of standard deviation

√
c2‖y‖2σ2

s + ‖x‖2σ2
e , otherwise

the distribution will be uniform. ‖(x,y)‖ is about δm+n
0 (q/c)

n
m+n , where δ0 is

the root Hermite factor. We heuristically assume that ‖x‖ =
√

m
m+n ‖(x,y)‖,

and ‖y‖ =
√

n
m+n ‖(x,y)‖. Then we can choose c = σe/σs that minimizes the

standard deviation of xT b. The advantage of distinguishing xT b from uniform
distribution is ε = 4 exp(−2π2τ2), where τ =

√
c2‖y‖2σ2

s + ‖x‖2σ2
e/q. This

attack must be repeated R = max{1, 1/(20.2075bε2)} times to be successful.
The primal attack reduces the LWE problem to the unique-SVP problem.

Let Λw(A) = {(x,y, z) ∈ Z
n × (Zm/w) × Z | Ax + wy = zb mod q}, and a

vector v = (s, e/w, 1) ∈ Λw(A). Λw(A) is a lattice of d = m + n + 1 dimen-
sions, and its determinant is (q/w)m. From geometry series assumption, we can
derive ‖b∗

i ‖ ≈ δd−2i−1
0 det(Λw(A))1/d. We heuristically assume that the length

of projection of v onto the vector space spanned by the last b Gram-Schmidt

vectors is about
√

b
d ‖(s, e/w, 1)‖ ≈

√
b
d (nσ2

s + mσ2
e/w2 + 1). If this length is

shorter than ‖b∗
d−b‖, this attack can be successful. Hence, the successful condi-

tion is
√

b
d (nσ2

s + mσ2
e/w2 + 1) ≤ δ2b−d−1

0

(
q
w

)m/d. We know that the optimal
w balancing the secret s and the noise e is about σe/σs.

We aim at providing parameter sets for long term security, and estimate the
concrete security in a more conservative way than [APS15] from the defender’s
point of view. We first consider the attacks of LWE whose secret and noise have
different variances. Then, we treat the LWR problem as a special LWE problem
whose noise is uniformly distributed over [−q/2p, q/2p − 1]. In our security esti-
mation, we simply ignore the difference between the discrete distribution and
the rounded Gaussian, on the following grounds: the dual attack and the pri-
mal attack only concern about the standard deviation, and the Rényi divergence
between the two distributions is very small (Table 3).
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Table 3. Security estimation of the parameters described in Table 2. “C, Q, P” stand
for “Classical, Quantum, Plausible” respectively.

Scheme Attack m′ b C Q P

Recommended Primal 665 459 143 131 104

Dual 633 456 142 130 103

Paranoid Primal 768 584 180 164 130

Dual 746 580 179 163 129

Fig. 2. LWE-based key establishment from KC and AKC, where K1,K2 ∈ Z
lA×lB
m and

|K1| = |K2| = lA lB |m|. 1 refers to the matrix which every elements are 1.

6 LWE-Based Key Establishment

In this section, following the protocol structure in [Pei14,ADPS16,BCD+16],
we present the applications of OKCN and AKCN to key establishment protocols
based on LWE. Denote by (λ, n, q, χ,KC, lA, lB , t) the underlying parameters,
where λ is the security parameter, q ≥ 2, n, lA and lB are positive integers
that are polynomial in λ (for protocol symmetry, lA and lB are usually set to
be equal and are actually small constant). To save bandwidth, we cut off t least
significant bits of Y2 before sending it to Alice.

Let KC = (params,Con,Rec) be a correct and secure KC scheme, where
params is set to be (q, g,m, d). The KC-based key establishment protocol from
LWE is depicted in Fig. 2, and the actual session-key is derived from K1 and
K2 via some key derivation function KDF . There, for presentation simplicity,
the Con and Rec functions are applied to matrices, meaning they are applied to
each of the coordinates separately. Note that 2tY′

2 + 2t−11 is an approximation
of Y2, so we have Σ1 ≈ XT

1 Y2 = XT
1 AT X2 + XT

1 E2, Σ2 = YT
1 X2 + Eσ =
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XT
1 AT X2 + ET

1 X2 + Eσ. As we choose X1,X2,E1,E2,Eσ according to a small
noise distribution χ, the main part of Σ1 and that of Σ2 are the same XT

1 AT X2.
Hence, the corresponding coordinates of Σ1 and Σ2 are close in the sense of | · |q,
from which some key consensus can be reached. The failure probability depends
upon the number of bits we cut t, the underlying distribution χ and the distance
parameter d, which will be analyzed in detail in subsequent sections. In the
following security definition and analysis, we simply assume that the output of
the PRG Gen is truly random. For presentation simplicity, we have described
the LWE-based key establishment protocol from a KC scheme. But it can be
straightforwardly adapted to work on any correct and secure AKC scheme, as
clarified in Sect. 5.

6.1 Noise Distributions and Correctness

For a correct KC with parameter d, if the distance of corresponding elements of
Σ1 and Σ2 is less than d in the sense of | · |q, then the scheme depicted in Fig. 2
is correct. Denote ε(Y2) = 2t�Y2/2t� + 2t−11 − Y2. Then

Σ1 − Σ2 = XT
1 (2tY′

2 + 2t−11) − YT
1 X2 − Eσ

= XT
1 (Y2 + ε(Y2)) − YT

1 X2 − Eσ

= XT
1 (AT X2 + E2 + ε(Y2)) − (AX1 + E1)T X2 − Eσ

= XT
1 (E2 + ε(Y2)) − ET

1 X2 − Eσ

We consider each pair of elements in matrix Σ1,Σ2 separately, then derive
the overall error rate by union bound. Now, we only need to consider the case
lA = lB = 1. In this case, Xi,Ei,Yi, (i = 1, 2) are column vectors in Z

n
q , and

Eσ ∈ Zq.
If Y2 is independent of (X2,E2), then we can directly calculate the distribu-

tion of σ1−σ2. But now Y2 depends on (X2,E2). To overcome this difficulty, we
show that Y2 is independent of (X2,E2) under a condition of X2 that happens
with very high probability.

Proposition 1. For any positive integer q, n, and a column vector s ∈ Z
n
q , let

φs denote the map Z
n
q → Zq : φs(x) = xT s. If there exits a coordinate of s which

is not zero divisor in ring Zq, then map φs is surjective.

For a column vector s composed by random variables, denote by F (s) the
event that φs is surjective. The following proposition gives a lower bound of
probability of F (s), where s ← χn. In our application, this lower bound is very
close to 1.

Proposition 2. Let p0 be the probability that e is a zero divisor in ring Zq,
where e is subject to χ. Then Pr[s ← χn : F (s)] ≥ 1 − pn

0

Theorem 8. If s, e ← χn,A ← Z
n×n
q ,y = As + e ∈ Z

n
q , then under the condi-

tion F (s), y is independent of (s, e), and is uniformly distributed over Z
n
q .
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Proof. For all ỹ, s̃, ẽ, Pr[y = ỹ | s = s̃, e = ẽ, F (s)] = Pr[As̃ = ỹ − ẽ | s = s̃, e =
ẽ, F (s)]. Let A = (a1,a2, . . . ,an)T , ỹ − ẽ = (c1, c2, . . . , cn)T , where ai ∈ Z

n
q ,

and ci ∈ Zq, for every 1 ≤ i ≤ n. Since φs is surjective, the number of possible
choices of ai, satisfying aT

i · s̃ = ci, is |Kerφs| = qn−1. Hence, Pr[As̃ = ỹ− ẽ | s =
s̃, e = ẽ, F (s)] = (qn−1)n/qn2

= 1/qn. Since the right-hand side is the constant
1/qn, the distribution of y is uniform over Z

n
q , and is irrelevant of (s, e). 
�

We now begin to analyze the error rate of the scheme presented in Fig. 2.
Denote by E the event |XT

1 (E2 + ε(Y2)) − ET
1 X2 − Eσ|q > d. Then Pr[E] =

Pr[E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]. From Theorem 8, we replace
Y2 = AT X2 + E2 in the event E|F (S) with uniformly distributed Y2. Then,

Pr[E] = Pr[Y2 ← Z
n
q : E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Z
n
q : E|F (S)] Pr[F (S)] + Pr[Y2 ← Z

n
q : E|¬F (S)] Pr[¬F (S)]

+ Pr[E|¬F (S)] Pr[¬F (S)] − Pr[Y2 ← Z
n
q : E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Z
n
q : E] + ε

where |ε| ≤ Pr[¬F (S)]. In our application, p0 is far from 1, and n is very large, by
Theorem 2, ε is very small, so we simply ignore ε. If Y2 is uniformly distributed,
then ε(Y2) is a centered uniform distribution. Then, the distribution of XT

1 (E2+
ε(Y2)) − ET

1 X2 − Eσ can be directly computed by programs.

Discrete Distributions. In this work, for LWE-based key establishment, we
use the following discrete distributions, which are specified in Table 4, where
“bits” refers to the number of bits required to sample the distribution and “var.”
means the standard variation of the Gaussian distribution approximated.

Table 4. Discrete distributions proposed in this work, and their Rényi divergences.

dist. Bits var. Probability of Order Divergence

0 ±1 ±2 ±3 ±4 ±5

D1 8 1.10 94 62 17 2 15.0 1.0015832

D2 12 0.90 1646 992 216 17 75.0 1.0003146

D3 12 1.66 1238 929 393 94 12 1 30.0 1.0002034

D4 16 1.66 19794 14865 6292 1499 200 15 500.0 1.0000274

D5 16 1.30 22218 15490 5242 858 67 2 500.0 1.0000337

Instantiations, and Comparisons with Frodo. For “OKCN simple” pro-
posed in Algorithm 2, it achieves a tight parameter constraint, specifically,
2md < q. In comparison, the parameter constraint achieved by Frodo is 4md < q.
As we shall see, such a difference is one source that allows us to achieve bet-
ter trade-offs among error probability, security, (computational and bandwidth)
efficiency, and consensus range. In particular, it allows us to use q that is
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one bit shorter than that used in Frodo. Beyond saving bandwidth, employ-
ing a one-bit shorter q also much improves the computational efficiency (as the
matrix A becomes shorter, and consequently the cost of generating A and the
related matrix operations are more efficient), and can render stronger security
levels simultaneously. Here, we briefly highlight one performance comparison:
OKCN-T2 (resp., Frodo-recommended) has 18.58kB (resp., 22.57kB) bandwidth,
887.15kB (resp., 1060.32kB) matrix A, at least 134-bit (resp., 130-bit) quantum
security, and error rate 2−39 (resp., 2−38.9) (Table 5).

Table 5. Parameters proposed for OKCN-LWE with t least significant bits cut off.

q n l m g t d dist. err. bw. (kB) |A| (kB) |K| pq-sec

OKCN-T2 214 712 8 24 28 2 509 D5 2−39.0 18.58 887.15 256 134

OKCN-T1 214 712 8 24 28 1 509 D5 2−52.3 19.29 887.15 256 134

6.2 CCA-Secure AKCN-LWE, and Comparison with FrodoKEM

FrodoKEM [FrodoKEM] in submission to NIST PQC standardization is AKC-
based and is a CCA-secure key encapsulation mechanism (KEM). The underlying
AKC mechanism of FrodoKEM corresponds to the special case of AKCN for the
parameters params = (q,m, g, d) where g = q and m = 4 or m = 8. In addition,
FrodoKEM chooses t2 = 0, i.e., without compression of Y2. This means that, on
the same parameters, AKCN-LWE outperforms FrodoKEM in bandwidth. We
also note that the discrete distributions proposed by FrodoKEM, referred to as
χFrodo-640 and χFrodo-976, are different from those of KC-based Frodo [BCD+16].
By replacing the underlying AKC mechanism of FrodoKEM with our AKCN,
we get an AKCN-based CCA-secure KEM scheme. Two set of parameters for
our AKCN-based CCA-secure KEM, referred to as AKCN-640 and AKCN-976
respectively, are briefly summaried in Table 6.

Table 6. Brief comparison between CCA-secure AKCN-LWE and FrodoKEM. The
ciphertext size is the total length of bytes sent by Bob. For AKCN-640, its ciphertext
is 7% smaller than Frodo-640. While its error probability is larger than Frodo-640, it’s
still under 2−130 that is sufficiently smaller for 103-bit pq-security. For AKCN-976,
its ciphertext is 12.8% smaller than Frodo-976, and its error probability is still under
2−160 that is sufficiently smaller for 150-bit pq-security.

n q m g t dist ciphertext err. |K| C Q

Frodo-640 640 215 22 215 0 χFrodo-640 9720 2−148.8 128 144 103

AKCN-640 640 215 22 210 1 χFrodo-640 9040 2−132.7 128 144 103

Frodo-976 976 216 23 216 0 χFrodo-976 15744 2−199.6 192 209 150

AKCN-976 976 216 23 28 2 χFrodo-976 13728 2−164.1 192 209 150
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[PG13] Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-
key encryption on reconfigurable hardware. In: Lange, T., Lauter, K.,
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