
BeSEPPI: Semantic-Based Benchmarking
of Property Path Implementations

Adrian Skubella1(B), Daniel Janke1, and Steffen Staab1,2

1 Institute for Web Science and Technologies, Universität Koblenz-Landau,
Koblenz, Germany

{skubella,danijank,staab}@uni-koblenz.de
2 Web and Internet Science Group, University of Southampton, Southampton, UK

s.r.staab@soton.ac.uk

http://west.uni-koblenz.de/, http://wais.ecs.soton.ac.uk/

Abstract. In 2013 property paths were introduced with the release of
SPARQL 1.1. These property paths allow for describing complex queries
in a more concise and comprehensive way. The W3C introduced a formal
specification of the semantics of property paths, to which implementations
should adhere. Most commonly used RDF stores claim to support prop-
erty paths. In order to give insight into how well current implementations
of property paths work we have developed BeSEPPI, a benchmark for the
semantic-based evaluation of property path implementations. BeSEPPI
checks whether RDF stores follow the W3Cs semantics by testing the cor-
rectness and completeness of query result sets. The results of our bench-
mark show that only one out of 5 benchmarked RDF stores returns com-
plete and correct result sets for all benchmark queries.

1 Introduction

The SPARQL Protocol and RDF Query Language (SPARQL) is the standard
query language for RDF stores. In 2013 property paths were introduced with
SPARQL 1.1. Property paths allow for describing paths of arbitrary length
in graphs, which cannot be described with a single SPARQL 1.0 query. For
instance, all friends of a friend of a friend etc. from a social network cannot be
retrieved with a single SPARQL 1.0 query. With property paths the construct
foaf:knows* could be used to obtain all desired results with a single query.
Furthermore, property paths provide a more concise way to formulate queries.
A query that should return all friends of a friend in a social network could use
the construct foaf:knows/foaf:knows.

In [13] it is shown that more and more queries containing property paths
are run against the Wikipedia Knowledge Graph. For instance, of all queries
scheduled in January 2018, over 20% contained property paths. In order to ensure
that queries containing property paths return the same result sets independently
of the used RDF store, the W3C released the official semantics of property
paths in [9].

c© Springer Nature Switzerland AG 2019
P. Hitzler et al. (Eds.): ESWC 2019, LNCS 11503, pp. 475–490, 2019.
https://doi.org/10.1007/978-3-030-21348-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21348-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-21348-0_31

476 A. Skubella et al.

The comparison of query execution times is only meaningful, if the result
sets are complete and correct. Therefore, we have developed a benchmark
for semantic-based evaluation of property path implementations (BeSEPPI).
BeSEPPI does not only measure the execution times of property path queries,
but also provides unit tests to check if the result sets are complete and cor-
rect based on the W3Cs semantics (see Sect. 3). Our benchmark comes with 236
queries and respective reference result sets, testing various semantic aspects of
property paths. Thus, BeSEPPI may also be used by RDF store developers as
a unit test to analyze their own implementation of property paths.

We used BeSEPPI to evaluate Blazegraph, AllegroGraph, Virtuoso, RDF4J
and Apache Jena Fuseki (see Sect. 4). Due to space limitations we omit the
evaluation of the execution times in this paper. The interested reader may refer
to the technical report [17]. Our evaluation of correctness and completeness of
result sets indicates that most RDF stores do not adhere to the W3Cs semantics
completely. The original contributions of this paper1 are:

1. BeSEPPI: A benchmark testing the execution times as well as the result set
correctness and completeness of property path queries (see Sect. 3).

2. An extensive evaluation of 5 common RDF stores (see Sect. 4).

2 Preliminaries

In the following, common definitions for RDF, SPARQL and property paths
based on [1,6] and [12] are given in order to define the terminology used in this
work.

2.1 Graph

The Resource Description Framework (RDF) [16] is a general-purpose lan-
guage for representing information in the web. It uses triples to represent
the information as directed, labeled graphs. A graphical representation of
an RDF dataset is shown in Fig. 1. For better legibility prefixes can be
used to abbreviate IRIs. An example for such a prefix is given by PREFIX
ppb: <http://ppbenchmark.com/>. This prefix defines that for instance ppb:B1
means <http://www.ppbenchmark.com/B1>.

Definition 1 (RDF triple)
A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called RDF triple where I, L and
B are disjoint sets of IRIs, literals and blank nodes, respectively. Furthermore, s
is called the subject, p the predicate and o the object of the triple [1].

1 We have presented some preliminary results in a non-archival workshop contribution
in [11]. For this paper, we have improved the benchmark by creating a larger variety
of queries as well as their correct results sets. These queries are a unit test to check
whether property paths implementations adhere to the W3C’s semantics.

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 477

Definition 2 (RDF graph)
An RDF graph G is a finite set of RDF triples. Furthermore, the subjects and
objects occurring in G are vertices and occurring predicates are edges in G. VG

is the set of all vertex labels in G and EG is the set of all edge labels in G.

Definition 3 (RDF term)
An RDF term t is an element of I ∪L∪B. The set of all RDF terms in a graph
G is denoted by TG.

ppb:A1

ppb:CenterA

ppb:A4ppb:A3ppb:A2

ppb:CenterB

ppb:B3ppb:B2ppb:B1

ppb:C1

ppb:C2

ppb:C3

ppb:C4

ppb:C5

ppb:C6

ppb:e1 ppb:e2 ppb:e3 ppb:e5

ppb:self

ppb:e4 ppb:e2 ppb:e2 ppb:e3 ppb:e4

ppb:e6 ppb:e7 ppb:e8

ppb:e+

ppb:e+2

ppb:e+2

ppb:e+2

ppb:e+

ppb:e+3

ppb:e+3

ppb:e+1ppb:e+ ppb:e+2 ppb:e+3

ppb:e+1 ppb:e+2 ppb:e+3

ppb:e+3 ppb:e+2

Fig. 1. RDF graphs that are part of BeSEPPI.

Definition 4 (Path and Cycle)
A path P = �v0, e1, v1, e2, v2, ..., en, vn� in an RDF graph G connects two
vertices v0 and vn with each other. In a path vi are vertices, ei are edges, ∀i, j ∈
[0, n − 1] : i �= j ⇒ vi �= vj and ∀i ∈ [1, n − 1] : vi �= vn. A path is called cycle if
v0 = vn. Furthermore, the path length is defined by the number of edges between
v0 and vn.2

Example 1. An example for a path between the vertices ppb:A1 and ppb:A3 in
Fig. 1 is: P = �ppb:A1, ppb:e1, ppb:CenterA, ppb:e3, ppb:A3�. The length
of this path is 2. Moreover, a self loop is a cycle of length one. In case of Fig. 1
the path P = �ppb:A1, ppb:eSelf, ppb:A1� is a self loop.

2 With our definition of paths, we do not allow cycles to appear within a path. We
use this definition since the auxiliary function ALP which is used by the transitive
and transitive reflexive property path expression in the W3Cs semantics of property
paths [9] uses the same definition of paths.

478 A. Skubella et al.

2.2 SPARQL 1.1 Property Paths

The SPARQL Protocol and RDF Query Language (SPARQL) 1.1 is used to
query RDF graphs. In the following section the syntax and semantics of the
subset of SPARQL 1.1 that is needed for this paper is introduced. The syntax
and semantics of property paths are defined following the semantic specification
of the W3C in [9].3

Syntax

Definition 5 (Property path expression)
A property path expression can be an atomic or a combined property path
expression.

Atomic property path expressions:

(1) iri ∈ I is a simple property path expression.
(2) !(iri1|...|irin|ˆirin+1|...|ˆirim) with iri1, ...irim ∈ I is the negated and

inverse negated property set.

Combined property path expressions:

(3) ˆE with property path expression E, is the inverse property path expression.
(4) E1/E2, with property path expressions E1 and E2, is the sequence property

path expression.
(5) E1|E2, with property path expressions E1 and E2, is the alternative property

path expression.
(6) E? with property path expression E is the existential property path

expression.
(7) E*, with property path expression E, is the transitive reflexive closure prop-

erty path expression.
(8) E+, with property path expression E, is the transitive closure property path

expression.
(9) (E), groups the expression E.

Example 2 An example for an existential property path expression with the IRI
ppb:e1 is ppb:e1?.

Definition 6 (Property path)
A property path P is defined as sEo where s ∈ V ∪ I ∪ L ∪ B, o ∈ V ∪ I ∪ L ∪ B
and E is a property path expression.

Example 3. An example for a property path with an existential property path
expression and the variable ?o is ppb:notExisting ppb:e1? ?o.

3 The notation of property path semantics presented in this section, is based on the
definitions of property paths in [12].

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 479

Definition 7 (Property path Query)
If P is a property path and V’ is a set of variables, then SELECT V’ WHERE {P}
and SELECT * WHERE {P} are SELECT queries.
If P is a property path, then ASK WHERE {P} is an ASK query [15].

Example 4. An example of a SELECT property path query with one variable is
shown in Listing 1.1.

PREFIX ppb : <http ://www. ppbenchmark . com/>
SELECT ?o WHERE {ppb : no tEx i s t i n g ppb : e1? ?o . }

Listing 1.1. Example of a SELECT property path query.

Semantics

Definition 8 (Evaluation of property path expressions)4

Γ denotes a set of vertex labels with Γ ⊇ VG and p, iri1..irim ∈ I. The evaluation
[[E]]G of a property path expression E over an RDF graph G is a subset of
(I ∪ L ∪ B)2 defined as follows:

(1)[[p]]ΓG := {(s, o)|(s, p, o) ∈ G}
(2a)[[!(iri1|...|irin)]]

Γ
G := {(s, o)|(s, p, o) ∈ G ∧ p �∈ {iri1, ..., irin}}

(2b)[[!(ˆiri1|...|ˆirin)]]
Γ
G := [[ˆ !(iri1|...|irin)]]

Γ
G

(2c)[[!(iri1|...|irin|ˆirin+1|...|ˆirim)]]ΓG := [[!(iri1|...|irin)]]
Γ
G ∪ [[(ˆirin+1|...|ˆirim)]]ΓG

(3)[[ˆE]]ΓG := {(s, o)|(o, s) ∈ [[E]]ΓG}
(4)[[E1/E2]]

Γ
G := {(s, o)|∃r : (s, r) ∈ [[E1]]

Γ
G ∧ (r, o) ∈ [[E2]]

Γ
G}

(5)[[E1|E2]]
Γ
G := [[E1]]

Γ
G ∪ [[E2]]

Γ
G

(6)[[E?]]ΓG := [[E]]ΓG ∪ {(a, a)|a ∈ Γ}

(7)[[E+]]ΓG :=

∞⋃

i=1

[[E/E/.../E
︸ ︷︷ ︸

i times

]]ΓG

(8)[[E∗]]ΓG := [[E+]]ΓG ∪ [[E?]]ΓG

(9)[[(E)]]ΓG := [[E]]ΓG

Example 5. Assume the existential property path expression ppb:e1?, the RDF
graph G depicted in Fig. 1 and Γ = {ppb:notExisting} ∪ VG. The evaluation R
of the property path expression is: R = [[ppb:e1?]]ΓG = [[ppb:e1]]ΓG ∪ {(a, a)|a ∈
Γ} = {(ppb:A1, ppb:centerA)} ∪ {(ppb :A1, ppb : A1), (ppb :A2, ppb : A2), ...} ∪
{(ppb:notExisting, ppb:notExisting)}. The first set of the union is the evaluation
of [[ppb:e1]]ΓG. The second set denotes all tuples of vertex labels in G and the third
part denotes the tuple of the element that was included in Γ additionally to VG.
4 In [12] the evaluation of the existential property path expression and the transitive

reflexive closure property path expression are defined slightly differently from the
definition of the W3C in [9]. We have contacted members of the SPARQL working
group in order to resolve these differences [4,5].

480 A. Skubella et al.

In order to obtain information from an RDF store, elements of Γ are bound to
variables. These bindings are called variable bindings.

Definition 9 (Variable bindings)
The partial function μ : V → T with variables V and RDF terms T, is called
a variable binding. The domain dom(μ) of a variable binding μ is the set of
variables on which μ is defined.

Definition 10 (Evaluation of property paths)
For constants s ∈ I ∪ B ∪ L, o ∈ I ∪ B ∪ L and variables v, v1, v2 ∈ V the
evaluation of property paths is defined as:

(1) [[sEo]]G :=

{
{{}}, if(s, o) ∈ [[E]]ΓG where Γ = VG ∪ {s, o}
{}, else

(2) [[sEv]]G := {μ|(s, μ(v)) ∈ [[E]]ΓG ∧ dom(μ) = {v} where Γ = VG ∪ {s}}
(3) [[vEo]]G := {μ|(μ(v), o) ∈ [[E]]ΓG ∧ dom(μ) = {v} where Γ = VG ∪ {o}}
(4) [[v1Ev2]]G := {μ|(μ(v1), μ(v2)) ∈ [[E]]ΓG ∧ dom(μ) = {v1, v2} where Γ = VG}

Example 6. Assume the property path ppb:notExisting ppb:e1? ?o where
ppb:notExisting �∈ VG. Furthermore, assume R from Example 5 as the result of
the evaluation of the property path expression ppb:e1?. According to Defini-
tion 10 the evaluation of the property path is: [[ppb:notExisting ppb:e1? ?o]]G =
{μ1} with μ1 = {(?o, ppb:notExisting)}.

Definition 11 (Semantics of SELECT query)
The evaluation [[Q]]G of a query Q of the form SELECT W WHERE {P} is the set of
all projections μ|W of bindings μ from [[P]]G to W , where the projection of μ|W is
the binding that coincides with μ on W and is undefined elsewhere.
The evaluation of SELECT * WHERE {P} is equal to the evaluation of SELECT W WHERE
{P} where W = var(P) and var(P) denotes the set of all variables in P .

Definition 12 (Semantics of ASK query) [3]
The evaluation [[Q]]G of a query Q of the form ASK WHERE {P} over an RDF
graph G is defined as:

[[Q]]G =

{
false if [[P]]ΓG = {}
true otherwise

3 Property Path Benchmark BeSEPPI

In order to benchmark the performance of RDF stores with regard to property
path queries we introduce our novel benchmark for semantic-based evaluation
of property path implementations (BeSEPPI)5. BeSEPPI measures the execu-
tion times of 236 property path queries. These queries are executed on a small
dataset that was created for evaluating various aspects of property paths. Fur-
thermore, BeSEPPI comes with reference result sets for each query, which allow
for evaluating correctness and completeness of result sets.
5 Available as open source under https://github.com/Institute-Web-Science-and-

Technologies/BeSEPPI.

https://github.com/Institute-Web-Science-and-Technologies/BeSEPPI
https://github.com/Institute-Web-Science-and-Technologies/BeSEPPI

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 481

3.1 Dataset

The benchmark dataset is a graph consisting of 28 triples. It allows for testing
various semantic aspects of each property path expression. The dataset is kept
small so that humans can easily create reference result sets for property path
queries and evaluate the correctness and completeness of query result sets. The
graph is depicted in Fig. 1.

3.2 Queries

The query set of BeSEPPI consists of 236 queries of which 73 are ASK queries
and 163 are SELECT queries. In our benchmark we want to evaluate the per-
formance of each property path expression individually with regard to various
semantic aspects. Therefore, we test each expression separately and omit com-
binations of property path expressions. The queries are organized according to
the following 3 dimensions.

Dimension 1: The property path expression
The first dimension is the property path expression that is tested.

Dimension 2: The number and positions of variables and terms
According to Definition 10 there are 4 possibilities for the number and positions
of variables and terms in a query containing a single property path: sEo, sEv,
vEo and v1Ev2 where s and o are terms v, v1 and v2 are variables and E is
a property path expression. Queries of the form sEo test for the existence of
the path in the dataset and do not return any variable bindings. During our
evaluation we have observed that some stores do not support queries with *
after the SELECT statement, which do not contain any variables, even though
these queries are syntactically correct. Due to the fact that such a query simply
returns an empty set if the path in the query does not exist and otherwise an
empty variable binding, we have transformed such queries to ASK queries which
return false or true. We expect ASK queries to be supported in all cases
whereas SELECT queries with * and without variables have shown to be not
supported in some cases.

Dimension 3: Semantic aspects
Semantic aspects are certain characteristics a query fulfills. Semantic aspects
are for instance, that a query returns an empty result set or that the traversed
path in the graph has a length of at least 4. Each property path expression has
different semantics and therefore, not all semantic aspects can be considered for
all property path expressions. Due to the high number of queries in BeSEPPI,
describing all queries and the respective semantic aspects is beyond the scope
of this paper. In order to still give insight into the query structure we give
an overview of queries for each expression and variable-constant combination
in Table 1. Additionally, we explain two benchmark queries for the existential
property path expression in the following section.

482 A. Skubella et al.

Table 1. Overview of number of queries for each property path expression.

Expression
-

sEo sEv vEo v1Ev2 Total

Inverse 6 5 5 4 20
Sequence 7 6 6 5 24
Alternative 6 6 6 5 23
Existential 9 6 6 3 24
Transitive Closure 12 9 9 8 38
Transitive Reflexive Clo-
sure

11 8 8 7 34

Negated Property Set 6 5 5 5 21
Inverse Negated Prop-
erty Set

6 5 5 5 21

Negated and Inverse
Negated Property Set

10 7 7 7 31

Total 73 57 57 49 236

Existential Property Path Expression Queries

In order to evaluate the performance of RDF stores for property path queries
with the existential property path expression, we use 24 queries. Two exemplary
queries and their semantic aspects are presented below. For all queries reference
result sets were created to evaluate the correctness and completeness of the result
sets returned by the RDF stores.

PREFIX ppb : <http ://www. ppbenchmark . com/>
ASK WHERE {

ppb : no tEx i s t i ng1 ppb : no tEx i s t i ng2 ? ppb : no tEx i s t i ng1 . }
Listing 1.2. Existential property path query where vertices and edge are not existing
in the dataset.

In the query shown in Listing 1.2 none of the stated IRIs exist in
the graph. According to Definition 8 (ppb:notExisting1, ppb:notExisting1) ∈
[[ppb:notExisting2?]]ΓG. Due to Definition 10 the evaluation of the property path
in the query is [[ppb:notExisting1 ppb:notExisting2? ppb:notExisting1]]ΓG =
{{}}. Less formally speaking, this query returns true because ppb:notExisting1
is connected to itself by a path of length zero.

PREFIX ppb : <http ://www. ppbenchmark . com/>
SELECT ∗ WHERE{

ppb :A1 ppb : e1? ?o . }
Listing 1.3. Existential property path query with existing predicate and one variable.

The query shown in Listing 1.3 is of the form sEv. This means that there is
one variable in the property path. According to Definition 8 (6) the evaluation

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 483

of the property path expression is: [[ppb:e1?]]ΓG = {(ppb:A1, ppb:CenterA)} ∪
{(a, a)|a ∈ Γ}. Following Definition 10 the evaluation of the property path
is [[ppb:A1 ppb:e1? ?o]]ΓG = {{?o, ppb:centerA}, {?o, ppb:A1}}. Less for-
mally speaking ppb:centerA is returned because the triple (ppb:A1, ppb:e1,
ppb:centerA) exists in the dataset and ppb:A1 is returned because a path of
length 0 exists between ppb:A1.

3.3 Metrics

In order to allow for comparing benchmark results of different stores with each
other and to make the results comprehensible, meaningful metrics need to be
used. For BeSEPPI we focus on the following metrics.

1. Query correctness
The percentage of correct query results that are returned for each query. For
SELECT queries: If Rq is the set of all correct results for a query q and RS

q

is the set of returned results of query q executed on RDF store S, then the
query correctness is defined as:

corr(q) :=

⎧⎪⎨
⎪⎩

1, if |RS
q | = 0

|Rq ∩ RS
q |

|RS
q | , otherwise

For ASK queries: If rq is the correct boolean result for the ASK query and
rS
q is the returned boolean result for an RDF store S, then the correctness is

defined as: corr(q) =

{
1, if rq = rS

q

0 otherwise

2. Query completeness
The percentage of all possible query results of the query.
For SELECT queries: If Rq is the set of all correct results for a query q and
RS

q is the set of returned results of query q executed on RDF store S, then
the query completeness is defined as:

comp(q) :=

⎧⎪⎨
⎪⎩

1, if |Rq| = 0
|Rq ∩ RS

q |
|Rq| , otherwise

For ASK queries: If rq is the correct boolean result for the ASK query and
rS
q is the returned boolean result for an RDF store S, then the completeness

is defined as: comp(q) =

{
1 if rq = rS

q

0 otherwise

3. Average execution time per query
The arithmetic mean avexec(q) of the execution time t(q) of each query q is

defined as: avexec(q) =
∑n

i=1 ti(q)
n

where n is the number of times a query
was executed.

484 A. Skubella et al.

3.4 Execution Strategy

In the first step of the benchmark execution, the complete dataset is loaded into
the RDF store that should be benchmarked. Afterwards, all 236 queries are exe-
cuted once without measuring any metrics in order to warm up the store. After that
the 236 queries are executed 10 times and the metrics are measured. The queries
are executed one after another and not in parallel. To prevent outliers the highest
and lowest execution times are deleted. Finally, the average execution time, the
correctness and the completeness are stored in a human readable CSV file.

4 Benchmark Results

In order to evaluate the performance of RDF stores in regard to queries contain-
ing property paths we use the property path benchmark BeSEPPI described in
Sect. 3. Due to space limitations we omit the evaluation of the execution times
in this paper. The evaluation of execution times can be found in the technical
report [17].

4.1 Experimental Setting

We benchmarked the property path implementations of 5 common RDF stores,
namely Blazegraph 2.1.46, AllegroGraph 6.4.1 free edition7, Virtuoso 7.2 open
source edition8, RDF4J 2.2.49 and Apache Jena Fuseki 3.8.010. The RDF stores
were benchmarked on an Ubuntu 16.04 machine with 8 GB memory, 500 GB
disk space and 4 1.7 Ghz processor cores. The Java version on the machine was
1.8.0.171.

4.2 Completeness and Correctness

In this section the correctness corr(q) and completeness comp(q) of result sets
for each store are presented and it is discussed how the difference between the
returned results and the reference result sets might be caused.

In Table 2 an overview of the numbers of queries, which returned only incom-
plete, only incorrect or incomplete and incorrect result sets, or caused an error
during the execution of the query is given. Furthermore, the rightmost column
shows the total number of queries for the respective property path expression.

One observation is that all stores return complete, correct and error-free
result sets for the inverse, sequence and alternative expressions. A reason for
this might be the clarity of their semantics, since their definition is the same in

6 https:/www.blazegraph.com/.
7 https://franz.com/agraph/downloads.lhtml.
8 http://vos.openlinksw.com/owiki/wiki/VOS.
9 http://rdf4j.org/.

10 https://jena.apache.org/documentation/fuseki2/.

https://www.blazegraph.com/
https://franz.com/agraph/downloads.lhtml
http://vos.openlinksw.com/owiki/wiki/VOS
http://rdf4j.org/
https://jena.apache.org/documentation/fuseki2/

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 485

Table 2. Number of queries that returned incomplete, incorrect, or incomplete and
incorrect result sets, or threw an error during the execution.

Expression
Store Blaze-

graph
Allegro-
Graph Virtuoso RDF4J Jena

Fuseki Total
Number

of
Queries

In
co
m
pl
.
&

C
or
re
ct

C
om

pl
et
e
&

In
co
r.

In
co
m
pl
.
&

In
co
r.

E
rr
or

In
co
m
pl
.
&

C
or
re
ct

C
om

pl
et
e
&

In
co
r.

In
co
m
pl
.
&

In
co
r.

E
rr
or

In
co
m
pl
.
&

C
or
re
ct

C
om

pl
et
e
&

In
co
r.

In
co
m
pl
.
&

In
co
r.

E
rr
or

In
co
m
pl
.
&

C
or
re
ct

C
om

pl
et
e
&

In
co
r.

In
co
m
pl
.
&

In
co
r.

E
rr
or

In
co
m
pl
.
&

C
or
re
ct

C
om

pl
et
e
&

In
co
r.

In
co
m
pl
.
&

In
co
r.

E
rr
or

Inverse 0 20
Sequence 0 24
Alternative 0 23
Existential 3 0 1 0 6 0 2 0 0 0 0 3 0 0 3 0 0 0 0 0 24
Transitive Closure 0 0 1 0 0 0 0 0 6 0 4 8 0 0 4 0 0 0 0 0 34
Transitive Reflexive
Closure

7 0 1 0 5 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 38

Negated Property
Set

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 21

Inverse Negated
Property Set

0 0 0 0 4 0 6 0 0 0 0 11 0 0 0 11 0 0 0 0 21

Negated and Inverse
Negated Property
Set

0 0 0 0 6 2 8 0 0 0 0 0 0 0 0 17 0 0 0 0 31

Total 10 0 3 0 24 2 16 0 6 0 4 29 0 0 7 39 0 0 0 0 236

different sources, such as the official SPARQL 1.1 definition, [9] and [12]. Fur-
thermore, the transformation of these property path expressions into SPARQL
1.0 queries is straightforward, such that already implemented SPARQL1.0 query
operators could be reused.

In the rest of this section the cases in which queries did not return correct,
complete and error-free result sets for each store are discussed.

Blazegraph: Blazegraph returns complete and correct result sets for most
queries, but there are 13 result sets which are not complete or correct. The
first three queries that did not return complete and correct result sets are ASK
queries. These three queries incorrectly returned true and have in common that
the combination of subject and predicate can be found in the graph whereas
the object does not occur. For queries in which also the object occurred in the
graph, true was correctly returned.

All other queries with incomplete result sets return correct results. The tested
property paths of these queries are of the form variable, property path expression,

486 A. Skubella et al.

variable. Furthermore, they all involve either the existential or the transitive
reflexive closure expression. After examining the missing results, we noticed that
only results produced by the term {(a, a)|a ∈ Γ} from Definition 8 (6) are
missing.

AllegroGraph: Our evaluation indicates that the semantics used by Allegro-
Graph deviates from the W3Cs semantics in case of existential E? and transitive
reflexive closure property path expressions E∗. If [[E]]VG

G �= {}, AllegroGraph
uses the W3Cs semantics. But in cases of [[E]]VG

G = {}, AllegroGraph always
returns {}. Furthermore, if the object and subject are equal in ASK queries the
query returns false even though true would be correct.

AllegroGraph also returns empty result sets, if the negated property set con-
tains at least one non-existing property. Furthermore, if the property path con-
tains two variables, AllegroGraph interprets the inverse negated property set
as negated property set, leading to result sets in which the assignments of the
two variables to terms are swapped. The same applies to the inverse part of the
negated and inverse negated property set.

Virtuoso: Virtuoso does not execute queries with two variables combined with
the existential, the transitive closure or the transitive reflexive closure property
path expression. For such queries the store returns an error, which says “Transi-
tive start not given”. This behavior seems to be a deliberate choice in the design
of the RDF store and might have to do with the fact that Virtuoso is built on
relational databases. In relational databases very large joins might be necessary
in order to answer these queries and therefore, this feature may have not been
implemented.

For queries with one or no variable and the existential or transitive reflexive
closure property path expression Virtuoso returns complete and correct result
sets. For the transitive closure property path expression there are 10 queries,
which do not return complete result sets for Virtuoso. These queries all have
a cycle like �v1, e, v2, ..., vn, e, v1� as tested semantic aspect and the missing
result is always the start vertex v1 of the cycle. This indicates that the transi-
tive closure property path expression might be implemented in such a way that
[[P∗]]ΓG is evaluated and the reflexive start is removed from the result set. In such
a case, queries with cycles would return correct results except for the starting
and the end vertex respectively.

For the negated property set Virtuoso returns correct and complete result
sets for each query. For 11 queries with the inverse negated property set Virtu-
oso returns errors. The queries that return errors are distributed over all query
forms and semantic aspects such that we could not identify the underlying cause.
Finally, the combination of the negated and inverse negated property set returns
complete and correct result sets.

RDF4J: RDF4J returns false for three ASK queries with the existential prop-
erty path expression where the correct result is true. In each of the three queries,
the subject and object are equal. This indicates, that RDF4J ignores the results
included in {(a, a) ∈ Γ} in ASK queries with the existential property path

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 487

expression. Furthermore, RDF4J incorrectly returns false as result for ASK
queries with a transitive closure property path expression, if they have a cycle
as tested aspect.

For queries with the negated property set, the inverse negated property set
and the combination of both sets RDF4J does not execute queries of the form
subject property path expression object or variable property path object. This
means every time such a query is executed the store returns an error.

Apache Jena Fuseki: Fuseki was the only store that executed every benchmark
query without errors and returned complete and correct result sets. It seems that
the store follows the W3Cs definition of property path semantics.

4.3 Summary of Results

In summary, all stores returned complete and correct result sets for queries with
an inverse, sequence or alternative property path expression. For queries contain-
ing an existential property path expression in it, Blazegraph, AllegroGraph and
RDF4J all handle the term {(a, a)|a ∈ Γ} differently and are not following the
W3Cs semantics. In case of transitive closure property path expressions, Virtuoso
and RDF4J ignore results from cyclic paths. AllegroGraph returns empty result
sets for queries with the negated property set, if one of the IRIs in the negated
property set does not exist in the dataset. Furthermore, AllegroGraph seems to
interpret the inverse negated property set as negated property set in queries with
two variables. Virtuoso throws errors for ample queries with the inverse negated
property set and RDF4J does not execute queries with the negated property set,
inverse negated property set or the combination of both sets, where the object
of the property path is an RDF term.

Furthermore, Virtuoso does not allow queries with variable path length with-
out a fixed starting or ending point. This means whenever a query with 2 vari-
ables containing an existential, a transitive closure or a transitive reflexive closure
property path expression is executed, Virtuoso returns an error. From the tested
5 RDF stores only Apache Jena Fuseki could return complete and correct result
sets for all queries.

5 Related Work

Common benchmarks for RDF stores like the Lehigh University Benchmark
[8], the DBPedia SPARQL Benchmark [14] or the Berlin SPARQL Benchmark
[2] are designed to test the performance of RDF stores in different application
scenarios. Since they were created before the release of SPARQL 1.1 they do not
test property paths. Furthermore, the Lehigh University Benchmark is the only
benchmark that also evaluates completeness and correctness of result sets.

In [7] Gubichev et al. propose an indexing approach called FERRARI to
efficiently evaluate property paths. In order to show the efficiency of their app-
roach they also propose a small benchmark with 6 queries over the YAGO2 [10]
RDF dataset. Although this approach tests queries with property paths, it only

488 A. Skubella et al.

measures execution times and does not evaluate correctness or completeness of
result sets.

In spite of the fact that the benchmark proposed in [19] is not a benchmark
for property paths in particular rather than a benchmark primarily designed for
streaming RDF/SPARQL engines it tests property paths among various other
SPARQL 1.1 features. Even though the completeness and correctness of result
sets is not calculated, the results of the benchmark show that most of the bench-
marked stream processing systems do not support property path queries.

In [18] a system is presented that generates small datasets based on given
queries, their query features (e.g., the OPTIONAL or FILTER construct) and a
data set. Additionally to the small datasets, the system returns the reference
result sets for the given queries. They allow for checking the completeness and
correctness of the query result sets returned from the evaluated RDF stores. This
system is not a benchmark in particular but could be used to create datasets for
benchmarks, which evaluate the completeness and correctness of result sets.

In [11] a benchmark for the evaluation of property path support is introduced.
This benchmark can use an arbitrary RDF dataset as benchmark dataset and
creates queries based on 8 query templates. Due to the small number of queries
and the fact, that these queries do not test all property path expressions, this
benchmark cannot be used for the semantic evaluation of property path imple-
mentations. Nevertheless the results of this benchmark indicate that ample RDF
stores return incomplete or incorrect result sets for property path queries.

To the best of our knowledge no RDF benchmark exists that tests if the
result sets of property path queries are complete and correct based on the W3Cs
semantics.

6 Conclusion

Property paths were introduced with SPARQL 1.1 in 2013. They allow for
describing complex queries in a more concise and comprehensive way. In order
to evaluate the performances of property path query executions of RDF stores,
we have developed a benchmark for semantic-based evaluation of property path
implementations called BeSEPPI. BeSEPPI comes with a small RDF dataset
especially created for the evaluation of property path queries and 236 queries,
which test each property path expression. By calculating the completeness and
correctness of result sets, our benchmark checks whether property path imple-
mentations adhere to the W3Cs semantics of property paths. Furthermore, our
benchmark can also be used to measure execution times. The evaluation of exe-
cution times of the benchmarked stores can be found in the technical report [17].

With BeSEPPI we have benchmarked 5 common stores, namely Blaze-
graph, AllegroGraph, Virtuoso, RDF4J and Apache Jena Fuseki. The results
of BeSEPPI show that only Apache Jena Fuseki could return complete and cor-
rect result sets for all 236 queries. Each of the other 4 stores returned incomplete
or incorrect result sets for some queries and Virtuoso and RDF4J do not support
all types of queries.

BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations 489

With our evaluation we could observe that ample RDF stores do not com-
pletely adhere to the W3Cs semantics of property paths. Therefore, BeSEPPI
seems to be useful for RDF store developers to evaluate or improve their prop-
erty path implementations.
The results in [11] have shown, that the correctness and completeness of property
path query result sets may depend on the size of the loaded dataset. Therefore,
we will perform a semantic evaluation of property path implementations on a
large dataset in the future. Furthermore, we will evaluate the correct associativ-
ity (i.e.[[E1/E2/E3]]ΓG = [[(E1/E2)/E3]]ΓG = [[E1/(E2/E3)]]ΓG) and the correct
precedence (i.e.[[E1|E2∗]]ΓG = [[E1/(E2∗)]]ΓG) of several combined property path
expressions in the future.

References

1. Arenas, M., Pérez, J.: Federation and navigation in SPARQL 1.1. In: Eiter,
T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 78–111.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9 3

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. 5, 1–24 (2009)

3. https://www.w3.org/2001/sw/DataAccess/rq23/sparql-defns.html#defn ASK
4. https://lists.w3.org/Archives/Public/public-sparql-dev/2017OctDec/0009.html
5. https://lists.w3.org/Archives/Public/public-sparql-dev/2018JanMar/0004.html
6. DuCharme, B.: Learning SPARQL. O’Reilly Media Inc., Sebastopol (2011). Chap.

2, pp 19–44; Chap. 3. pp 45–100
7. Gubichev, A., Bedathur, S., Seufert, S.: Sparqling kleene: fast property paths in

RDF-3X, June 2013
8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-

tems. Web Semant. 3(2–3), 158–182 (2005). https://doi.org/10.1016/j.websem.
2005.06.005

9. Harris, S., Seaborne, A.: SPARQL 1.1 query language. https://www.w3.org/TR/
sparql11-query/

10. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spa-
tially and temporally enhanced knowledge base from Wikipedia. Artif.
Intell. 194, 28–61 (2013). https://doi.org/10.1016/j.artint.2012.06.001.
http://www.sciencedirect.com/science/article/pii/S0004370212000719. artifi-
cial Intelligence, Wikipedia and Semi-Structured Resources

11. Janke, D., Skubella, A., Staab, S.: Evaluating SPARQL 1.1 property path support.
In: BLINK/NLIWoD3@ISWC (2017)

12. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
paths. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srini-
vas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25007-6 1

13. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph.
In: Vrandečić, D., Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Celino, I.,
Sabou, M., Kaffee, L.-A., Simperl, E. (eds.) ISWC 2018. LNCS, vol. 11137, pp.
376–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6 23

https://doi.org/10.1007/978-3-642-33158-9_3
https://www.w3.org/2001/sw/DataAccess/rq23/sparql-defns.html#defn_ASK
https://lists.w3.org/Archives/Public/public-sparql-dev/2017OctDec/0009.html
https://lists.w3.org/Archives/Public/public-sparql-dev/2018JanMar/0004.html
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1016/j.artint.2012.06.001
http://www.sciencedirect.com/science/article/pii/S0004370212000719
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-030-00668-6_23

490 A. Skubella et al.

14. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL
benchmark – performance assessment with real queries on real data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–
469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 29.
http://dl.acm.org/citation.cfm?id=2063016.2063046

15. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF W3C rec-
ommendation (2008). https://www.w3.org/TR/rdf-sparql-query/#ask

16. Cyganiak, R., Wood, D.,Lanthaler, M.: RDf 1.1 concepts and abstract syntax.
Technical report, W3C Recommendation (2014)

17. Skubella, A., Janke, D., Staab, S.: BeSEPPI: semantic-based benchmarking of
property path implementations technical report. Technical report, Institute for
Web Science and Technologies (2019)

18. Thost, V., Dolby, J.: QED: out-of-the-box datasets for SPARQL query evaluation.
In: Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue
Sky Ideas Tracks co-located with 17th International Semantic Web Conference
(ISWC 2018), Monterey, USA, 8th–12th October 2018. (2018). http://ceur-ws.
org/Vol-2180/paper-69.pdf

19. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming
RDF/SPARQL benchmark. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudo-
rache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G.,
Bernstein, A., Blomqvist, E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 641–657.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1 40

https://doi.org/10.1007/978-3-642-25073-6_29
http://dl.acm.org/citation.cfm?id=2063016.2063046
https://www.w3.org/TR/rdf-sparql-query/#ask
http://ceur-ws.org/Vol-2180/paper-69.pdf
http://ceur-ws.org/Vol-2180/paper-69.pdf
https://doi.org/10.1007/978-3-642-35176-1_40

	BeSEPPI: Semantic-Based Benchmarking of Property Path Implementations
	1 Introduction
	2 Preliminaries
	2.1 Graph
	2.2 SPARQL 1.1 Property Paths

	3 Property Path Benchmark BeSEPPI
	3.1 Dataset
	3.2 Queries
	3.3 Metrics
	3.4 Execution Strategy

	4 Benchmark Results
	4.1 Experimental Setting
	4.2 Completeness and Correctness
	4.3 Summary of Results

	5 Related Work
	6 Conclusion
	References

