®

Check for
updates

Deontic Reasoning for Legal Ontologies

Cheikh Kacfah Emani and Yannis Haralambous®)

IMT Atlantique, Lab-STICC, UBL, 29238 Brest, France
{cheikh.kacfah,yannis.haralambous}@imt-atlantique.fr

Abstract. Many standards exist to formalize legal texts and rules. The
same is true for legal ontologies. However, there is no proof theory to
draw conclusions for these ontologically modeled rules. We address this
gap by the proposal of a new modeling of deontic statements, and then
we use this modeling to propose reasoning mechanisms to answer deon-
tic questions i.e., questions like “Is it mandatory/permitted/prohibited
to...”. We also show that using this modeling, it is possible to check the
consistency of a deontic rule base. This work stands as a first important
step towards a proof theory over a deontic rule base.

1 Introduction

Artificial intelligence for law is a prolific research area. In this area there have
been many works on legal texts (e.g., legislation, regulations, contracts, and
case law) modeling. This modeling pursues many goals, such as works on rule
interchange issues, interoperability of rules’ systems which lead to proposal of
rules’ format [1-4], legal ontologies construction [5,6], design principles [7,8],
works on compliance checking problems [9,10] or automatic formalization of
rules [11-13], etc. In legal texts which compose corpora for these works, we
usually have deontic statements. Some rule representation standards include
the modeling of deontic statements [2—4]. But there is no reasoning process
using these deontic statements. For example using current standards there is no
mechanism that one can use to answer questions like Is fishing forbidden near
the port of Brest?, or to make inferences like Since going left is forbidden then
I must go straight, etc. Our goal in this article is to propose mechanisms for
answering deontic questions. Our proposal stands as a first attempt for a proof
theory for ontologically modeled deontic rules. Our contributions are:

— An ontological modeling of deontic statement suitable for automatic reasoning
on deontic rules.

— A first proposal of mechanisms for automatic answering of deontic questions
towards a rule base.

— A first proposal of consistency checking process over a deontic rule base.

The rest of the paper starts with a presentation of related work in Sect. 2. Then,
in Sect. 3, we introduce our work with a delimitation of the scope of rules we
target. Next, in Sect. 4, we detail our modeling of rules. After that, we present

© Springer Nature Switzerland AG 2019
P. Hitzler et al. (Eds.): ESWC 2019, LNCS 11503, pp. 209-224, 2019.
https://doi.org/10.1007/978-3-030-21348-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21348-0_14&domain=pdf
http://orcid.org/0000-0003-1443-6115
https://doi.org/10.1007/978-3-030-21348-0_14

210 C. K. Emani and Y. Haralambous

the mechanisms to answer a deontic question and we discuss consistency check-
ing in Sect.5 and we illustrate them with detailed examples in Sect. 6. Finally,
we present future work in Sect.7. A demo is available at https://tinyurl.com/
ydgwznba.

2 Related Work

Rule modeling has been a very active field in the past years and still has a
great interest for researchers. During the last years, many authors have proposed
modeling languages and formalisms to represent rules and/or legal documents.
We present some of their works and we conclude this section with a presentation
of works on a proof theory for defeasible rules for propositional logic.

— Legal Knowledge Interchange Format (LKIF) is a specification that includes
a legal core ontology and a legal rule language that can be used to deploy
comprehensive legal knowledge management solutions. LKIF was developed
in the ESTRELLA project [1,14,15]

— RuleML is a family of languages, whose modular system of schemas for XML
favors web rule interchange [2,16]. The family’s top-level distinction is delib-
eration rules and reaction rules. Deliberation rules are made of modal and
derivation rules, which themselves include facts, queries, and Horn rules.
Reaction rules include Complex Event Processing, Knowledge Representa-
tion, Event-Condition-Action rules, as well as Production rules. RuleML rules
can combine all parts of both derivation and reaction rules. There are many
engines built for rulebases for subsets of RuleML (OO jDREW!, Prova?,
DR-Device®, NxBRE?, PSOATransRun®, etc.) but none of them infers on
deontic rule bases.

— OWL Judge [17] allows to make deontic inferences on rules modelled in OWL
DL by using the LKIF modelling. Using a standard OWL reasoner (Pellet in
their case) authors can classify rule instances as “permitted” or “prohibited”.
This is similar to our goal of deontic QA but we do not work only at instances’
level and we provide detailed pieces of information (exceptions, related cases,
etc.) so that a user can really figure out what the legal texts state on its
question.

— LegalRuleML is a standard (expressed with XML-schema and Relax NG) that
is able to represent the particularities of the legal normative rules with a rich,
articulated, and meaningful markup language [3]. LegalRuleML models defea-
sibility of rules and defeasible logic, deontic operators (e.g., obligations, per-
missions, prohibitions, rights), temporal management of rules and temporality
in rules, classification of norms (i.e., constitutive, prescriptive), jurisdiction

! http://www.jdrew.org/oojdrew/.

2 https://www.prova.ws/.

3 http://lIpis.csd.auth.gr/systems/dr-device.html.

* https://nxbre.soft112.com/.

5 http://wiki.ruleml.org/index.php/PSOA _RuleML#Implementation.

https://tinyurl.com/ydgwznba
https://tinyurl.com/ydgwznba
http://www.jdrew.org/oojdrew/
https://www.prova.ws/
http://lpis.csd.auth.gr/systems/dr-device.html
https://nxbre.soft112.com/
http://wiki.ruleml.org/index.php/PSOA_RuleML#Implementation

Deontic Reasoning for Legal Ontologies 211

of norms, isomorphisms between rules and natural language normative provi-
sions, identification of parts of the norms (e.g., bearer, conditions), authorial
tracking of rules, etc. Concerning the rules themselves, LegalRuleML mod-
els the two main types of rules: (i) constitutive rules which define concepts
or constitute activities that cannot exist without such rules, and (i) pre-
scriptive rules which regulate actions by making them obligatory, permit-
ted, prohibited, recommended. The general shape of a LegalRuleML rule is
body = head where, for both constitutive and prescriptive rules, where
body is a set of formulas and deontic formulas and head is a formula (more
precisely, the head of a constitutive rule is a formula and the one of a pre-
scriptive rule is a set of deontic formulas). In this work, we take advantage
of the rich modeling of normative documents within the LegalRuleML ontol-
ogy and we propose an alternative to the ontological modeling of prescriptive
rules. Using this new modeling, we propose mechanisms to answer deontic
questions; they stand as a first step for the proposal of a proof theory for
ontologically modeled deontic rules.

— To answer deontic questions, we take into account the defeasibility of rules
(i.e., rules can be defeated by stronger ones) and the existence of superiority
relation between conflicting rules. Antoniou et al. [18] present a proof theory
for defeasible logic, in the frame for propositional logic. They claim that a
conclusion in a defeasible theory D is a tagged literal that can have one of the
following forms: +Agq if the proposition q is definitely provable in D, +0q if ¢q
is defeasibly provable in D, —Aq if it is proved that ¢ is not definitely provable
in D and —0q if it is proved that ¢ is not defeasibly provable in D. We will see
that for a deontic question, we can answer definitely yes/no with or without
exceptions or we can answer yes/no for specific cases only, with or without
exceptions; there are also some cases where the answer is “unknown,” and
finally cases for which the reasoner identifies inconsistencies.

3 Scope of the Modeling

As we mentioned in the related work section, our modeling is in line with Legal-
RuleML ontology (LRO). Our focus is on rule modeling for deontic reasoning.
Our concern is the rules themselves and not the ecosystem around rules i.e., tem-
poral data, jurisdiction, authorial tracking of rules, etc., since they are modeled
in ontologies like LRO. The questions we intend to answer are:

1. How can we model rules to ease automated legal reasoning on these rules?
2. How can we perform automated reasoning on deontic rules?

In LegalRuleML specifications, the body of rules can have both simple formulas
and deontic formulas. Also, the head of rules can be either a simple formula
for constitutive rules or a set of deontic formulas for prescriptive rules. Here we
consider prescriptive rules with no deontic formulas in the body part. A general-
ization to other types of rules is part of our future work (see Sect. 7).

212 C. K. Emani and Y. Haralambous

4 Rule Modeling

We model a rule as a four-dimensional object: We consider that a rule is made of
target(s), condition(s), context(s) and requirement(s). We provide the definition
of these terms and illustrate them using the rule The captain of any ship, called
upon to assist or tow a ship carrying oil or gaseous hydrocarbon residues in
French territorial waters, shall immediately inform CROSS.%

— Target. The target of a rule is the entity towards which the rule is directed.
It is the answer to the question “Who is the rule aimed at?”. In our example,
the target is The captain of any ship.

— Requirement. The requirement is what the target should do. In the example,
the requirement is shall immediately inform CROSS.

— Context. To find the context of a rule we answer the question “In which
situation should be the target to execute the requirement of the rule?”. In
our example, the context is that the captain of the ship being called upon to
assist or tow a ship carrying oil or gaseous hydrocarbon residues.

— Condition. Conditions are criteria that must be fulfilled so that the target is
able to execute the requirement. In our example, the condition is that the ship
(calling for assistance) facing an emergency is in French territorial waters.

We use the class shom:DeonticRule, the properties shom:ruleTarget,
shom: ruleContext, shom:ruleRequirement, shom:ruleCondition and
shom:deonticAction to model a rule. We use these entities to extend LRO as
we show in Fig.17.

In addition to the description of rules, LRO is able to describe the superior-
ity relation that can exist between rules. Indeed, in some legal corpora we find
conflicting rules and the ability of having a superiority relation avoids inconsis-
tencies. In Sect. 6 we provide detail examples where we can see how LRO models
the superiority relation and how this relation impacts inferences. It is crucial to
have such priority relation to drive the right conclusion from a rule base.

5 Answering Deontic Questions

In this section, our goal is to draw a conclusion to answer the generic question
“Is it OP to follow the requirement R for target 7 within the context C and
under the condition K?” where OP denotes the correct form of one of the deon-
tic terms mandatory, permitted, prohibited or recommended. We introduce this
section with notation elements and mechanisms to answer a deontic question
(Sect.5.1) and then we detail the concepts introduced to present these mecha-
nisms (Sects. 5.2 and 5.3).

 Excerpt from Article 10 of arrété https://tinyurl.com/arrete2002. CROSS is a
Regional Operational Centre for Monitoring and Rescue.

" The prefixes are the following: owl:<http://www.w3.0org/2002/07/owl>,
:<http://example.com/>, rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns>,
rdfs:<http://www.w3.org/2000/01 /rdf-schema>, shom: <http://example.com/
shom>, 1rmlmm:<http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel>,

https://tinyurl.com/arrete2002
http://www.w3.org/2002/07/owl
http://example.com
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://example.com/shom
http://example.com/shom
http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel

Deontic Reasoning for Legal Ontologies 213

IrmImm:Prohibition
Irmimm:Obligation

is subclass of is subclass of
is subclass of

shom:Recommendation is subclass of—b{ IrmImm:DeonticSpecification }éis subclass of —{ Irmlmm:Right
A
shom:ruleRequirement
shom:DeonticRule is subclass of

shom:deonticAction

shom:ruleTarget owl:Thing

shom:DeonticEntity:

is subclass of

shom:hasRule | shom:DeonticQuestion

Irmlmm:over

shom:ruleContext

shom:ruleCondition

Irmimm:Override is subclass of: ruleml:Formula

is subclass of /

Irmimm:RuleStatement is subclass of—[|rmImm:ConstitutiveStatement}

is subclass of
|

[IrmImm:PrescriptiveStatement }

Irmimm:Statement

Irmimm:under

Fig. 1. The Graffoo diagram summarizing the extension of LegalRuleml ontology.

5.1 Drawing a Deontic Conclusion
We use the following notation:

— Qc.k,T,0p,R Tepresents the question: “Is it OP to follow the requirement R for
target 7 within the context C and under conditions 7. We use Q for the
shorten form of Q¢ x 7,0r,R

— +C€c k,70p,k denotes the fact that we conclude “yes” to Q¢ x 7,0p,R-
—C¢ k,7,00,r stands for the answer “no” to Q¢ x 7,0p,%- Their shortened forms
are +¢ and —¢€. We write +c or —c when the “yes” or “no” answer partially
holds, i.e., only for specific cases (to be determined in practice). +€g, —Cg,
+c¢g and —cg denote the fact that +&, —€, +¢ and —c¢ are augmented with
the list of exceptions.

— APros(Q) is the set of rules that support a “yes” to Q, i.e., that support a
conclusion +€. ACons(Q) is the set of rules that support a “no” to Q, i.e.,
that elements of ACons(Q) support —€.

— For two sets of rules Ry and Ry, Ry > Ry < Vryg € Ro,dry € Ry 11y #
ro and r1 > ro (i.e. r1 overrules 7).

— OPros(Q) is the set of rules that partially support a “yes” to Q, i.e., that
support a conclusion +c. Similarly, 9Cons(Q) is the set of rules that partially
support a “no” to Q, i.e., that support a conclusion —c.

To answer the question Q¢ k. 7.0p,7 (a.k.a. Q), we proceed as follows:

1. We build APros(Q) and ACons(Q). Hence, four scenarios can arise:
(a) APros(Q) # () and ACons(Q) # 0.
— If APros(Q) > ACons(Q) then +€g

214 C. K. Emani and Y. Haralambous

2.

— Else if ACons(Q) > APros(Q), then —Cg
— Else "unknown (potential inconsistencies)”
For —|—€E and —Cpg, the procedure to get exceptions is given in part
Sect. 5
(b) APros(Q) # () and ACons(Q) = . We conclude +Cg
(¢) APros(Q) = 0 and ACons(Q) # 0. We conclude —Cg
(d) APros(Q) =0 and ACons(Q) = 0. We go to step (2)
If APros(Q) = ACons(Q) = 0, we find if there are rules which support the
partial conclusions +c¢ or —c. So, we build OPros(Q) and dCons(Q) and:
(a) If OPros(Q) # 0 and OCons(Q) # 0: we conclude both +cg and —cg
(b) If OPros(Q) # 0 and dCons(Q) = (). We conclude +¢ (it cannot have any
exception, since at this stage 9Cons(Q) = ACons(Q) = ()
(¢) OPros(Q) = 0 and dCons(Q) # 0. We conclude —¢
(d) dPros(Q) = 0 and dCons(Q) = 0. Since APros(Q) = ACons(Q) = 0 we
answer "unknown”

In the next sections, we detail the construction of sets APros(Q), ACons(Q),

OPros(Q) and 9Cons(Q) (Sect. 5.2) and the way we find exceptions to a conclu-
sion (Sect.5.3).

5.2 Building of APros(Q), ACons(Q), 8Pros(Q) and dCons(Q)

In this section we give the formal expressions of APros(Q), ACons(Q), 0Pros(Q)
and 0Cons(Q). These expressions use the following notation:

— A a B represents the assertion “A rdf:type B”.
— A CT B means one of “A rdfs:subClassOf B,” “A owl:sameAs B,” “A a B”

is true. In this case we say that A is included in B or A is narrower than B
or B contains A or B is broader than A. The relation C7T is reflexive

— A C™ B means “3C so that C Ct A and C C*T B” is true. A specific case

of this relation is when A and B are both superclasses of a third class C'. In
this case, we say that A and B share a common sub-entity.

— A C* B means one of “ACt B” or “BCt A” or “A C"™ B” is true. In this

case we say that A is related to B.

- (Al,...,Ai,...,An)i)‘i(Bl,...,Bi,...,Bn) =Vi € [1,71],14,‘%37;, where R

represents the relations C or C* or C7.

— We call parameters of an entity the quadruple made of its context C, its

condition K, its target 7 and its requirement R. Here the term “entity”
refers to a question Q¢ x 7.0p,7, Or to a conclusion £C€¢ k. 70p,z Or to an
instance r of shom:DeonticRule. We note the parameters of an entity F as
(CEvKE7TE7RE)~

— We define the notion of conflicting deontic operator. For each type of deontic

operator, Table 1 gives the ones that are in conflict with it.

To understand Table1 let us take for instance the first deontic operator:

—(PER) = {PRO} means that everything that is prohibited (in a given context,
conditions, and for a given target), is not permitted (in that same context, under
those same conditions and for that same target).

Deontic Reasoning for Legal Ontologies 215

Table 1. Operations on deontic operators. PER: permission, PRO: prohibition,
OBL: obligation, REC: recommendation, RIG: right

Deonctic operator (OP) | Conflicting deontic operator (—(0P))
PER {PRO}

PRO {PER, REC, OBL, RIG}

OBL {PRO}

REC {PRO}

RIG {PRO}

Definition 1. The sup-rules of (C,K,T,0P,R), are the rules having a deontic
operator equal to OP and whose parameters are broader than (C,KC,7,R), i.e.,

sup-rules(C, K, T,0P,R) = {r,(C,K,T,R) C* (C,,K,,T,,R,) A OP, = OP}.

Definition 2. The neg-sup-rules of (C,K,7,0P,R), are the rules having a
deontic operator that conflicts OP and whose parameters are broader than

(C,K,T,R), i.e.,

neg-sup-rules(C, KC,7,0P, R) = {r, (C,K,T,R) ct (Cr,Kr,Tr,Re) AOP,. € —-(oP)}
= U sup-rules(C, K, T,0P" | R).

0P’ € —(0P)

The sup-rules of (C,K,7,0P,R) are the rules that (fully) endorse the veracity
of the assertion In context C, and under conditions K, the target T is OP to
(do/have/follow) R. This endorsement relies on the fact that each parameter of
a rule of sup-rules(C,/C,7,0P,R) is broader than its corresponding parameter
in (C,K,7,R) and that the operator of the rule equals OP. On the other hand,
neg-sup-rules are the rules that counter-attack the aforementioned assertion.

Definition 3. The rel-rules of (C,K,7,0P,R) are the rules having a deontic
operator equal to OP and whose parameters are related to (C,KC,T,R), i.e.,

rel-rules(C,K,7,0P,R) = {r, (C,K,T,R) C* (C+,K;,T-,R,) A OP, = OP}.

Definition 4. The neg-rel-rules of (C,K,7,0P,R) are the rules having
a deontic operator that conflicts OP and whose parameters are related to

(C,K,T,R), i.e.,

neg-rel-rules(C, K, T,0P, R)

{r,(C,K,T,R) C* (C;,K,,T;,R;;) A Op, € —(OP)}
U rel-rules(C,K,T,0P', R).

0P/ € —~(0OP)

216 C. K. Emani and Y. Haralambous

A rule p is an element of rel-rules(C,K,7T,0P,R) if each of its parameters
(Cp,Kp,T,5,R,) is related, i.e., is broader or narrower than, or shares a common
sub-entity with, the corresponding parameter from (C,/C,7,R). So when we
put all parameters of p together, either: (i) (C,K,7,R) C* (C,,K,,7,,R,)
or (ii) there is at least a parameter of p that is strictly narrower than® the
respective one in (C, K, T, R). Hence, “related” rules in case (i) are also member
of sup-rules(C,KC,T,0P,R) and those in case (ii) support partially, because of
their “strictly narrow” parameters, the assertion behind (C, K, 7,0P, R): we use
them to define OPros.

A similar discourse holds for neg-rel-rules(C, IC,7T,0P,R).

Definition 5. We say that a rule r (fully) supports a “yes” to Q if
(i) OP,. = OPg and (ii) (Cg,Ko,70,Ro) €V (Cr, K\, T, R;). In other words,
if r belongs to sup-rules(Q). Hence,

APros(Q) = sup-rules(Q). (1)

Definition 6. We say that a rule v (fully) supports a “no” to Q if
(i) r € neg(Q) and (i) (Co,Kg,To,Ro) C* (Cr,Kr, T, R.). In other words, if
r belongs to neg-sup-rules(Q). So,

ACons(Q) = neg-sup-rules(Q). (2)

Definition 7. We say that a rule r partially supports a “yes” to Q
Zf (1) 0P, = OPQ7 (11) (CQa’CQ7TQ7RQ) cr (CTWICM,];WRT) and (111) r ¢
sup-rule(Q). Thus,

OPros(Q) = rel-rules(Q) \ sup-rules(Q). (3)

Definition 8. We say that a rule v partially supports a “no” to Q if
(1) 0P, € ’I’LBg(Q), (11) (CQJCQaTQaRQ) cr (CT'a,CM/];"aRT) and (111) r ¢
neg-sup-rule(Q). Therefore,

0Cons(Q) = neg-rel-rules(Q) \ neg-sup-rules(Q). (4)

We use the SPARQL query of Listing 1.1 to retrieve elements of sup-rules(Q).
The WHERE clause of this SPARQL query strictly follows the expression given in
Definition 1. In this SPARQL query, Class(OP) represents the class of the deontic
operator OP, i.e., a sub-class of 1rmlmm:DeoncticSpecification asshownin Fig. 1.
Definition 6 gives two equivalent expressions of neg-sup-rules(Q), where the second
reuses sup-rules(Q). Therefore we can adapt the SPARQL of Listing 1.1 with the
suitable parameters, to build neg-sup-rules(Q).

8 T.e., not the same and not broader than (within the meaning of C1).

Deontic Reasoning for Legal Ontologies 217

Listing 1.1. The SPARQL query to build sup-rules(Co, Ko, 7o,0P0,Ro)
SELECT ?rule WHERE { ?rule a shom:Rule;
shom: ruleContext ?ctx; shom:ruleCondition ?cdt;

shom:ruleTarget ?tgt; shom:ruleRequirement ?req.

{Co rdfs:subClassOf* | a | owl:sameAs ?ctx}

{Kg rdfs:subClassOfx | a | owl:sameAs ?cdt}

{7o rdfs:subClassOf* | a | owl:sameAs ?tgt}

{?req a Class(OPg); shom:deonticAction ?act

{Ro rdfs:subClassOf* | a | owl:sameAs ?act} }

We rely on the SPARQL query of Listing 1.2 to build the set rel-rules(Q).
This query follows the expression of rel-rules(Q) given in Definition 3. Also,
following its second expression in Definition 4, we can retrieve elements of
neg-rel-rules(Q) using the SPARQL query of rel-rules(Q).

Listing 1.2. The SPARQL query to build rel-rules(Co, Ko, 70,0Pg,Ro)
SELECT ?rule WHERE { ?rule a shom:Rule;
shom:ruleContext ?ctx; shom:ruleCondition ?cdt;
shom:ruleTarget ?tgt; shom:ruleRequirement ?req.
{ {Co rdfs:subClassOf* | a | owl:sameAs ?ctx} UNION
{?ctx rdfs:subClassOfx | a Co} UNION
{?subCtx rdfs:subClassOf* | a | owl:sameAs Co , ?ctx}}
{ {Kg rdfs:subClassOfx | a | owl:sameAs ?cdt} UNION
{?cdt rdfs:subClassOfx | a Kg} UNION
{?subCdt rdfs:subClassOf* | a | owl:sameAs Ko , ?cdt} 3}
{ {7g rdfs:subClassOf* | a | owl:sameAs ?tgt} UNION
{?tgt rdfs:subClassOf* | a 7o} UNION
{?subTgt rdfs:subClassOf* | a | owl:sameAs 7o
{ {?req a Class(OPg); shom:deonticAction ?act.
{Rgo rdfs:subClassOfx | a | owl:sameAs ?act} UNION
{?act rdfs:subClassOfx | a Rg} UNION
{?subAct rdfs:subClassOf* | a | owl:sameAs Ro , ?act}}} }

, ?tgt}d

Having detailed how to obtain APros(Q), ACons(Q), dPros(Q) and
0Cons(Q), we move to the next section where we present how to obtain excep-
tions to a conclusion.

5.3 Exceptions to a Conclusion

In some cases there are specific rules that counter-attack the conclusions +¢€,
—C, +c¢ or —c. These rules are called “exceptions”. In Definition 9 below, €
represents a conclusion, which can be +¢&€, —€, +c¢ or —c.

Definition 9. An exception to a conclusion € is any rule r that (i) is partially
in favor of an opposite conclusion €' to the one actually made (i.e., €), and
(ii) is not overruled by a rule that fully supports the conclusion €.

218 C. K. Emani and Y. Haralambous

Since an exception supports an opposite conclusion to the one actually made
we must distinguish the case where the current conclusion is +€ or +c¢, and the
case where it is —€ or —c. This is necessary because the criteria to be opposed
to those two groups of conclusions are not the same:

1. A rule that counter-attacks +€ or +c¢ necessarily has a deontic operator that
is in conflict with the one of the conclusion. Hence, in this case, a formal
transcription of Definition 9 tells us that the set of exceptions equals to:

()
{7“ S { U 8PrOS(QC¢,K¢,T¢,OP’,RE)}

0P’ € neg(OPg)

A Pr e API‘OS(QCG,K;@,TQ,OP@RG),7‘/ >r } (5)
(if)

In Eq. 5:

— Part (i) represents the formal expression of item (i) of Definition 9. There,
we mention that a rule that is an exception to a “positive” conclusion (i.e.,
+¢ or +c) necessarily has a partial support to a “yes” at any question
with parameters related to those of the conclusion, but with a conflicting
deontic operator.

— Part (ii) represents the fact that the rule must not be overruled by another
rule (fully) in favor of the conclusion (hence the use of APros). It corre-
sponds to item (ii) of Definition 9.

2. A rule that counter-attacks —€ or —c¢ must have a deontic operator that
is the same as the one in the conclusion. Hence, similar to Eq. 5, a formal
representation of Definition 9 tells us that, in this case, the set of exceptions
equals to:

(i)
{7’ € {0Pros(Ce, K¢, Te, 0Pe, Re) Y ADr € ACons(Qcc,;ct,Te,op@Rc),r' >r }
(i)

(6)

It is important to notice that we must find exceptions to rules recursively.
In other words, for rules that partially attack a conclusion, we must investigate
whether these rules have exceptions in their turn, and so on.

In Fig. 2, we summarize the steps of our deontic reasoning process as it is
implemented to answer a deontic question. In this figure:

— All steps before the dashed line map the process described in Sect. 5.1 where
we identify the conclusion to the question.
— The processes labeled @ and @ correspond to Egs. 5 and 6 respectively.

Deontic Reasoning for Legal Ontologies 219

— In the process ©, we recursively find exceptions, and then in @ we build the
exceptions dependency graph G. G is oriented. Vertices of G are the rules used
to answer the question (i.e., APros and ACouns if non empty or 9Pros and
0Cons otherwise), including the exceptions identified during step ®. Further-
more, (r,p) is an edge of G if p is an exception of r. Hence, a cycle in G is
equivalent to an inconsistency.

— Step @ is a user friendly output of the answer.

Conclusion = :
Inconsistency : R
5 Else |
Deontic d
Question DPros>DCons®| Conclusion = +Cg

DPros !={} and DCons>DPros
DCons !={}

1=
DPros and ngoéo'ns(:}(;nd
DCons

building

DPros ={} and
DCons !={}

Conclusion =
e s
Dpros ={} and dPros '={} and. canclusioh = +CEW
DCons ={} dCons 1={} and “cg i
dPros and
dCons building

Recursive
exceptions
finding

dPros !'={} and
dCons ={}

Build
exceptions

dPros ={} and
dCons '={} depr;incy
dPros ={} and

dCons ={}
v

Answer pretty
printing

Conclusion =
Unknown

Fig. 2. Pipeline to answer a deontic question. (Color figure online)

Checking the consistency of a deontic rule base By analyzing the structure of the
exceptions dependency graph we can now detect inconsistencies. But this holds
only for the subset of rules, including their exceptions, that are used to answer
a given deontic question. Therefore, the challenge is to ask a question Qg that
embraces all rules of the base, like: Whatever the context, the condition and the
target, is it permitted to do something?. Formally, all the parameters of Qg are
equal to owl:Thing, so it is immediate to see that each rule of the base is related
(in the meaning of the operator C*). Consequently, according to Fig.2, one of
the following will always be true:

— We reach the red node so the inconsistency of the base is immediate.

— We reach one of the orange nodes, so there is no exception to a “yes” or “no”
to Qq and then no inconsistency is possible.

— We reach the yellow node, which means the rule base is empty, since param-
eters of any rule are necessarily related to those of Qgq, in which case we can
conclude that the base is not inconsistent.

220 C. K. Emani and Y. Haralambous

— We reach a conclusion which requires to find exceptions (i.e., +€g, —Cg,
+cp and —cg), and knowing that the parameters of any rule are related to
those of Qq, the recursive search of exceptions will involve every rule of the
base; having a cycle in this graph is equivalent to the presence of inconsistent
requirements in the base.

6 Detailed Examples

We use the following excerpt of the French arrété préfectoral n° 96/2015° to
illustrate how we draw conclusions from a deontic rule base:

— Article 1: It is forbidden to navigate near the Paluel nuclear center
(PNC).

— Article 2: In derogation to Article 1, are allowed to sail near the
PNC: Military vessels; any vessel in need of assistance.

From these two articles, we extract the following rules and priority relations:

Listing 1.3. Example of deontic rules

1 :ps1 a lrmlmm:PrescriptiveStatement; lrmlmm:hasRule :R1.

2 :ps2 a lrmlmm:PrescriptiveStatement; lrmlmm:hasRule :R2, :R3.

3 :R1 a shom:Rule; shom:ruleTarget :Vessel; shom:ruleCondition owl:Thing ;

4 shom:ruleRequirement :ProhibitionNavPaluel ; shom:ruleContext owl:Thing ;

5 rdfs:comment "It is forbidden to navigate near the PNC" . #For any vessel

6 :R2 a shom:Rule; shom:ruleTarget :MilitaryVessel; shom:ruleCondition owl:Thing ;
7 shom:ruleRequirement :PermissionNavPaluel ; shom:ruleContext owl:Thing ;

8 rdfs:comment "Military vessels are authorised to navigate near the PNC”

9 :R3 a shom:Rule; shom:ruleTarget :Vessel ; shom:ruleCondition owl:Thing ;

10 shom:ruleRequirement :PermissionNavPaluel ; shom:ruleContext :Assistance ;
11 rdfs:comment "Any vessel for assistance purpose is authorised to navigate...”
12 :ProhibitionNavPaluel a lrmlmm:Prohibition; shom:deonticAction :NavPaluel.

13 :PermissionNavPaluel a lrmlmm:Permission; shom:deonticAction :NavPaluel.

14 :NavPaluel rdfs:subClassOf owl:Thing .

15 :Vessel rdfs:subClassOf owl:Thing .

16 :MilitaryVessel rdfs:subClassOf :Vessel

17 :Assistance rdfs:subClassOf owl:Thing .

18 :PS2_OVER_PS1 a lrmlmm:Override; lrmlmm:over :ps2; lrmlmm:under :ps1.

Hence, for the three rules R1, R2 and R3 above, we have:

— Cr1 = owl:Thing — Crp = owl:Thing Crs = :Assistance
— Kri = owl:Thing — Kr2 = owl:Thing Krz = owl:Thing
— Tr1 = :Vessel — Trp = :MilitaryVessel Trs = :Vessel

— OPgry = PRO — OPr, = PER OPrs = PER

— Rr1 = :NavPaluel — Rr2 = :NavPaluel Rrs = :NavPaluel

9 The full (French) version of the text is available at https://tinyurl.com/y77x32y3.

https://tinyurl.com/y77x32y3

Deontic Reasoning for Legal Ontologies 221

The following relations between R1, R2 and R3 hold

(Cras Kz, Tras Rez) €T (Car, Kty Tary, Re) - (7) (Crss Krss Tras Res) €T (Ca, Kty Tar, Rea) - (8)

(Cras Kz, Tras Re2) € (Crrs Ky Tors Rer) (9) (Crsy Kiss Trsy Res) € (Crry K, Tar, Re) - (10)

Also, we recall that CT and C* are reflerive relations.

6.1 Q% Is it Allowed to Navigate Near the PNC for Military

Vessels?
We have: Cga = owl:Thing, Ko« = owl:Thing, 7g. = :MilitaryVessel,
OPga = PER, and Rgs = :NavPaluel. We note that Q% and R2 have the

same parameters, and the same deontic parameters, so Eqs. 7 and 9 above hold
with Q% playing the role of R2. A rule p belongs to APros(Q®) if and only
if (Cga,Kga,Tge,Rga) C (C,K,,7,,R,) and OPga = OP,. So we have
APros(Q%) = {R2}. Also, v € ACons(Q?) if and only if (Cga, Kga, Tga, Rgas) CF
(Cy,Ky,7T,,R) and OP, € neg(OPga). So ACons(Q*) = {R1} (thanks to Eq.7).
Now we must see whether one of APros(Q%) or ACons(Q®) overrules the other.
Line 18 of the Listing 1.3 implies APros(Q®) > ACons(Q%). So we conclude that
we have +Cg, i.e., Yes, it is allowed to do so. Next, we need to identify poten-
tial exceptions. Based on Eq. 5, we say that 7 is an exception to the above con-
clusion if (Cm an’ ,];], R’?) g* (Cga s ICQa y Tga s Rga), (CQa y ICQa, TQa y RQa) g+
(Cy, Ky, Ty, Ryy), and OP,, € neg(OPga). No rule in the base meets this criteria, so
the answer to Q® remains unchanged (no exception added).

6.2 Qb Is Any Vessel Allowed to Navigate Near the PNC?

We have: Cgs = owl:Thing, Kg» = owl:Thing, 7os = :Vessel, OPgs = PER,
Rov = :NavPaluel. We note that Q% and R1 have the same parameters but have
conflicting deontic operators. APros(Q%) = () and ACons(Q°) = {R1}. Hence,
we conclude —C€pg (see item lc), i.e., No, it is not allowed. Let us now find
exceptions. In this case, we refer to Eq. 6, so 7 is an exception to the above
conclusion if (CU’ ICn, ZI’ Rﬁ) g* (CQb 5 ICQb, TQb, RQb), (CQb, ICQb s TQb, Rgb) g+
€y, Ky, T, Ry), and OP, = OPgs. Thanks to Eqgs.7-10 we see that R2 and R3
meet these criteria. To be definitely considered as exceptions, they must not be
overruled by any element of ACons(QP), i.e., R1. Actually this is the case, so
they are exceptions to —€g. A (recursive) search of exceptions to them remains
unsuccessful. So the final answer to QP is No, it is not allowed to do so, but there
are exceptions: — Military vessels are authorized to do so (Rule R2) — Any vessel
in need of assistance does so (Rule R3).

222 C. K. Emani and Y. Haralambous

6.3 QF° Is it Prohibited to Any Vessel to Navigate Near the PNC?

We use this question to illustrate partial conclusion. We assume for this case
that the rule base contains only R2 and R3. We have: Cge = owl:Thing,
Kge = owl:Thing, 7gc = :Vessel, OPge = PRO, Rg- = :NavPaluel. With
R1 discarded from the base, we have APros(Q°) = ACons(Q¢) = 0. Hence, we
must find partial support and counter-attack, i.e., OPros(Q¢) and 9Cons(Q°), to
the assertion denoted by Q°. We have 0Pros(Q¢) = () and 9Cons(Q°) = {R2,R3}.
Hence we conclude that we have —c, i.e., No, it is not prohibited to do so, but
rules in the base cover only specific parts of this case: — Military vessels are
authorized to do so (Rule R2) — Any vessel in need of assistance is authorized
to do so (Rule R3).

7 Future Work

As further developments of this work, we intend to perform the following tasks.

— Broadening the scope of the rules. As mentioned in Sect. 3, the scope
of rules considered in this work is the one of prescriptive with not deontic
formula in their body. We need to cover all types of prescriptive rules, i.e., also
the case of constitutive rules. Hence, we must propose a modeling that take
into account this extension. An interesting starting point for the modeling of
constitutive rules would be the decompositions The concept X counts as Y
or The concept X counts as Y in context C proposed by Searle [19].

— Towards a proof theory. We mentioned in the previous point the extension
of the scope of rules. This implies updating the mechanisms of answering to
deontic questions. Also we intend to propose a proof theory, i.e., how deontic
and non deontic assertions are derived in a base made of constitutive and
prescriptive rules.

— Automatic question answering. Currently we manually identify question
parts (i.e., context, condition, target, deontic operator and requirement). It
would be very useful to propose an approach to automatically decompose
questions into their formal parts and then answer them automatically.

8 Conclusion

In this paper, we address the problem of deontic reasoning for legal ontologies.
We tackle this issue in terms of deontic questions answering. First, we propose a
new deontic rule modeling paradigm for prescriptive rules and then we use this
modeling to present mechanisms for deontic question answering. The possible
answers we provide to deontic questions, are as diverse as the ones given by
a human, i.e., we are able to answer yes/no for the whole question or only for
specific cases, with or without exceptions. We also provide answer unknown when
there is no evidence in the rule base allowing to answer the question or unknown
(potential inconsistencies) if they are unresolved conflicting rules. This work
is a first step towards a proof theory for a deontic rule base.

Deontic Reasoning for Legal Ontologies 223

Acknowledgements. This work is funded by the Service hydrographique
et océanographique de la marine (Shom) as part of the REIZHMOR project.

References

10.

11.

12.

13.

14.

15.

. Gordon, T.F.: The legal knowledge interchange format (LKIF). Technical report,

ESTRELLA Project http://www.estrellaproject.org/doc/Estrella-D4.1.pdf

Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: a markup language
for semantic web rules. In: 1st International Conference on SW Working, pp. 381—
401 (2001)

Palmirani, M., Governatori, G., Athan, T., Boley, H., Paschke, A., Wyner, A.:
LegalRuleML core specification version 1.0. OASIS Committee Specification Draft
01 / Public Review Draft 01, October 2016

OMG: Semantics of Business Vocabulary and Business Rules (SBVR), v1.0.
Technical report, Object Management Group (2008). https://www.omg.org/spec/
SBVR/1.0/

Winkels, R., Boer, A., Hoekstra, R.: CLIME: lessons learned in legal information
serving. In: Proceedings of the 15th ECAI, pp. 230-234. IOS Press (2002)
Valente, A., Breuker, J.: A functional ontology of law. Artif. Intell. law 7, 241-361
(1994)

Gangemi, A.: Design patterns for legal ontology constructions. LOAIT 2007, 65-85
(2007)

Lame, G.: Using NLP techniques to identify legal ontology components: concepts
and relations. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.)
Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 169-184. Springer, Hei-
delberg (2005). https://doi.org/10.1007/978-3-540-32253-5_11

Yurchyshyna, A., Zarli, A.: An ontology-based approach for formalisation and
semantic organisation of conformance requirements in construction. Autom. Con-
str. 18(8), 1084-1098 (2009)

Pauwels, P., et al.: A semantic rule checking environment for building performance
checking. Autom. Constr. 20(5), 506-518 (2011)

Kacfah Emani, C.: Automatic detection and semantic formalisation of business
rules. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A.
(eds.) ESWC 2014. LNCS, vol. 8465, pp. 834-844. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07443-6_57

Hassanpour, S., O’Connor, M.J., Das, A.K.: A framework for the automatic extrac-
tion of rules from online text. In: Bassiliades, N., Governatori, G., Paschke, A.
(eds.) RuleML 2011. LNCS, vol. 6826, pp. 266-280. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22546-8_21

Kang, S., et al.: Extraction of manufacturing rules from unstructured text using
a semantic framework. In: ASME 2015 American Society of Mechanical Engineers
(2015)

Hoekstra, R., Breuker, J., Di Bello, M., Boer, A., et al.: The LKIF core ontology
of basic legal concepts. LOAIT 321, 43-63 (2007)

Gordon, T.F.: Constructing legal arguments with rules in the legal knowledge
interchange format (LKIF). In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R.
(eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 162-184.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85569-9_11

http://www.estrellaproject.org/doc/Estrella-D4.1.pdf
https://www.omg.org/spec/SBVR/1.0/
https://www.omg.org/spec/SBVR/1.0/
https://doi.org/10.1007/978-3-540-32253-5_11
https://doi.org/10.1007/978-3-319-07443-6_57
https://doi.org/10.1007/978-3-319-07443-6_57
https://doi.org/10.1007/978-3-642-22546-8_21
https://doi.org/10.1007/978-3-540-85569-9_11

224 C. K. Emani and Y. Haralambous

16. Boley, H., Paschke, A., Shafig, O.: RuleML 1.0: the overarching specification of
web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162-178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16289-3_15

17. Van De Ven, S., Hoekstra, R., Breuker, J., Wortel, L., E1 Ali, A.: Judging amy:
automated legal assessment using OWL 2. In: OWLED, vol. 432 (2008)

18. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM TOCL 2(2), 255-287 (2001)

19. Searle, J.R.: The Construction of Social Reality. Simon and Schuster, New York
(1995)

https://doi.org/10.1007/978-3-642-16289-3_15
https://doi.org/10.1007/978-3-642-16289-3_15

	Deontic Reasoning for Legal Ontologies
	1 Introduction
	2 Related Work
	3 Scope of the Modeling
	4 Rule Modeling
	5 Answering Deontic Questions
	5.1 Drawing a Deontic Conclusion
	5.2 Building of Pros(Q), Cons(Q), Pros(Q) and Cons(Q)
	5.3 Exceptions to a Conclusion

	6 Detailed Examples
	6.1 Qa Is it Allowed to Navigate Near the PNC for Military Vessels?
	6.2 Qb Is Any Vessel Allowed to Navigate Near the PNC?
	6.3 Qc Is it Prohibited to Any Vessel to Navigate Near the PNC?

	7 Future Work
	8 Conclusion
	References

