
Towards Risk-Driven Security
Requirements Management in Agile

Software Development

Dan Ionita1(B), Coco van der Velden2, Henk-Jan Klein Ikkink2, Eelko Neven2,
Maya Daneva1, and Michael Kuipers2

1 Department Cybersecurity and Safety, University of Twente,
Enschede, The Netherlands

{d.ionita,m.daneva}@utwente.nl
2 Centric B.V., Gouda, The Netherlands

{coco.van.der.velden,henk-jan.klein.ikkink,eelko.neven,
michael.kuipers}@centric.eu
https://scs.ewi.utwente.nl/

Abstract. The focus on user stories in agile means non-functional
requirements, such as security, are not always explicit. This makes it
hard for the development team to implement the required functionality
in a reliable, secure way. Security checklists can help but they do not
consider the application’s context and are not part of the product back-
log.

In this paper we explore whether these issues can be addressed by a
framework which uses a risk assessment process, a mapping of threats
to security features, and a repository of operationalized security features
to populate the product backlog with prioritized security requirements.
The approach highlights the relevance of each security feature to prod-
uct owners while ensuring the knowledge and time required to implement
security requirements is made available to developers. We applied and
evaluated the framework at a Dutch medium-sized software development
company with promising results.

Keywords: Secure software development · Security requirements ·
Risk assessment · Empirical research method

1 Introduction

Agile software development relies on the team’s ability to decompose, refine, and
operationalize high-level user requirements such as user stories. The majority of
users and customers lack awareness of the security risks in the implementation
and usage of the software and settle for compliance. Furthermore, most agile

Supported by The Netherlands Organisation for Scientific Research (NWO) in the
context of cyber-security research (grant number 628.001.011).

c© Springer Nature Switzerland AG 2019
C. Cappiello and M. Ruiz (Eds.): CAiSE Forum 2019, LNBIP 350, pp. 133–144, 2019.
https://doi.org/10.1007/978-3-030-21297-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21297-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-21297-1_12

134 D. Ionita et al.

teams do not have a security expert on board. Therefore, product owners (POs)
have a hard time identifying and prioritizing security requirements and develop-
ers often rely on security checklists which are not integrated with agile project
management processes and tools. This results in software which fails to properly
mitigate many risks relevant to its users or its application domain.

To address this, we propose a secure software development framework con-
sisting of (1) a high-level risk assessment process to be undertaken with the
application’s stakeholders, (2) a mapping of threats to security requirements
and (3) a searchable repository of security requirements integrated with agile
project management tools. The goal of the risk assessment is to identify and
prioritize risks, the mapping is used to derive high level security requirements
(i.e. features) based on these risks, and the repository makes it easy to inject
these features together with their operationalizations into the agile development
workflow. The three components work together to support risk-driven selection,
prioritization and implementation of security requirements in a way that requires
minimal security knowledge and effort from users, customers, and POs. As a
whole, the approach is designed to provide traceability of security requirements
and forces the development team to consider the effort required to implement
security features in their planning.

The framework aims to align with the agile manifesto [3]. First, it provides a
means to discuss security with the customer of an agile project. Second, it pro-
duces a list of prioritized requirements in a format that can be directly imported
into product backlogs. Third, it leaves it up to the teams to break down the
requirements into tasks and add these to sprints. Fourth, it includes control
points for testing the implementation. Fifth, it is able to respond to changes
in the risk landscape. Furthermore, the framework was applied in a real-life
organization and its evaluation shows promising results.

In what follows, Sect. 2 summarizes our research methodology. Sections 3 and
4 position our work in relation to the real-world problems that we want to address
as well as related publications. Section 5 introduces our framework based on
a practical example of how this was implemented at Centric, a medium-sized
software development company. Section 6 discusses our preliminary evaluation
and Sect. 7 draws wraps up with conclusions and future work.

2 Research Methodology

This paper is the result of an extensive collaboration between the University of
Twente and Centric B.V., a medium-sized Dutch application provider. Therefore,
the underlying methodology applied throughout the research is Technical Action
Research (TAR): a technique is designed and applied to a real-life problem in
order to draw conclusions about both the technique and the problem. TAR
helps both the company, in that it is provided with a working solution, and the
researcher, in that he/she has the opportunity to perform real-life validation [20].

Risk-Driven Security Requirements Management in Agile 135

Problem Investigation. To better understand the problem context, we did a
literature survey on security requirements management in agile software devel-
opment. In parallel, we interviewed security coordinators, penetration testers,
developers, POs, as well as the management and governance team working on
various projects within Centric. The findings are summarized in the Sect. 3.

Treatment Design. To define our solution direction, we explored literature on
strategies for incorporating security in agile workflows. The findings are sum-
marized in Sect. 4. We designed a framework which aligns with some of these
strategies while addressing the issues highlighted by the problem investigation.
Each component of the framework was developed iteratively in consultation with
relevant stakeholders from Centric. The framework is described in Sect. 5.

Treatment Validation. To validate the proposed treatment we ran five focus
groups within Centric where we applied the risk assessment methodology
described in Sect. 5.1. We systematically compared the results of applying the
mapping described in Sect. 5.2 to the judgment of security experts. Finally, we
created a template project according to the repository structure proposed in
Sect. 5.3 in a major issue tracking software and ran a survey to assess its usabil-
ity and utility.

3 Motivation and Background

Established approaches to security engineering as part of software development
fail to address the particular needs of agile [2]. As a result, security considerations
in agile software development are often based on security baselines, despite the
fact that best practice insists security should be risk-driven [1,4,8]. “Discrete
techniques” such as security checklists integrate very poorly into agile approaches
[18]. The requirements listed in baselines and checklists don’t always have an
owner and are often considered towards the end of development [19].

Daneva and Wang [5] indicate that security requirements engineering in agile
boils down to documenting risks and mitigations. But POs, as well as develop-
ers, often lack security knowledge [19]. Our framework provides assistance in
formulating risk scenarios and centralizes security knowledge, making it easily
reusable across teams and even across projects.

Daneva and Wang also point out that the gate-keeping role of the PO often
hampers the elicitation and implementation of security requirements. This is
mainly because agile is business-value-driven [3] and security is hard to “sell”
[6]. We propose mitigating this by highlighting the business value – in terms of
risk reduction – that each security requirements provides.

Furthermore, our informal interviews and conversations with domain experts
and stakeholders revealed that:

– Security requirements are not risk-based. We mitigate this by maintaining a
mapping base of risks and requirements.

136 D. Ionita et al.

– Security requirements are not user-driven. We mitigate this by prescribing a
non-technical risk assessment methodology.

– Security requirements are not application-specific. We mitigate this by linking
requirements to the result of the risk assessment.

– Penetration tests are standardized. We mitigate this by generating a list of
the most important security requirements to be tested.

– Security requirement documents are missing implementation-specifics. We
mitigate this by maintaining a central repository of operationalized security
features.

– It’s hard to keep track of the implementation status of security requirements.
We mitigate this by making security requirements available on issue trackers.

4 Related Work

Siponen et al. [18] conclude that an agile security requirements management
technique must include a quantified risk assessment in the requirements analysis
phase. Security requirements should be explicitly included in the design phase,
their implementation must be monitored throughout the implementation phase
and they should be tested in the testing phase. Our proposal mandates starting
with a risk assessment, including the resulting requirements in the planning and
effort estimations, and making sure acceptance criteria are known and tested.

A notable approach for eliciting security requirements in agile are abuser
stories. Similar to abuse cases, they document threat scenarios [14,15]. However,
this approach has some caveats. E.g. several threat scenarios can be mitigated
by the same security feature, sometimes with different efficiency. And since most
issue trackers do not allow a backlog item to have multiple parents, defining
these as backlog items results in many security requirements being duplicated.
This would also fail to reflect the relative importance of security features with
regard to their efficacy and the number of threat scenarios they mitigate. In
order to avoid these issues, our approach maintains a separate overview of threat
scenarios as part of the risk assessment document described in Sect. 5.1.

Terpstra et al. [19] performed a practitioner survey of problems and coping
strategies for handling security requirements in agile project management and
agile software development projects. The methodology proposed in this paper
aligns well with many of these strategies. For example, by adding security fea-
tures – including acceptance criteria - to the backlog we are making sure they
are considered during effort estimations, and that these features are part of the
definition of “done”.

5 The Proposed Framework

The aim of the framework is to support the identification, prioritization and
implementation of security requirements in an agile workflow. Its application
consists of three phases:

Risk-Driven Security Requirements Management in Agile 137

1. Risk assessment: Each risk is quantified and mapped to one or more of
threats in consultation with relevant stakeholders (the left side of Fig. 1). This
performed according to a pre-defined risk assessment methodology described
in Sect. 5.1 below.

2. Prioritization of security requirements: Based on the ranked list of
threats resulting from the risk assessment, a prioritized list of security require-
ments is automatically derived (the middle part of Fig. 1). This is achieved
by means of an intermediary threat-requirement map described in Sect. 5.2
below.

3. Populate product backlog: The PO imports the relevant security require-
ments with associated priorities to the product backlog of his agile issue
tracking tool of choice (the right side of the Fig. 1). This is facilitated by
means of a security requirements repository described in Sect. 5.3 below.

PB
Is

Fe
at

ur
es

Ep
ic

Ranked
threats

Prioritized
security

requirements

1. Identify risks

• Describe in natural
language

2. For each risk

• Classify (C/I/A)
• Identify threat agent(s)
• Identify threat(s)
• Estimate likelihood
• Estimate impact

Prioritization of security
requirements (automatic)

Populate
product
backlog

(manual)

Risk
assessment

(manual)

Security

De
sc

+
CP

De
sc

+
CP

De
sc

 +
 C

P

De
sc

 +
 C

P

SR 1 SR 3

Threats Security
requirements

Threat A

Threat B

SR 1

SR 2

SR 3

SR 2

De
sc

 +
 C

P

Fig. 1. Overview of the proposed framework

5.1 The Risk Assessment Methodology

Most secure software development guidelines such as the CIP Overheid [12] or
the ISO 27000x series [9–11] recommend performing a risk or threat assessment
as early in the software lifecycle as possible. This helps avoid architectural risks
and reduces the amount of work needed to fix security issues late in the project.
But more importantly, it provides a good understanding of the most significant
threats and risks.

In our framework, risk assessment serves as a starting point. Its results are
to be correlated with the mapping described in the following section in order
to produce a ranked list of security requirements. To this end, the risk assess-
ment must be correct and complete, and should therefore be performed in close

138 D. Ionita et al.

consultation with the PO and customer in order to make sure the most rel-
evant risks are identified, that the impact estimations are accurate, and that
the resulting mitigations are taken into consideration during agile planning. In
addition, the assessment must produce output which can be consumed by the
threat-requirement map, namely a quantitative ranked list of pre-defined threats.

Structure. We use a spreadsheet as the basis for our assessment, see Fig. 2. It
consists of the following columns:

Risk label - a brief description of the risk.
Explanation - an description of the process by which the risk could materi-
alize.
Type - Confidentiality, Integrity, or Availability.
Threat agent(s) - An individual or group which are likely to try to mate-
rialize the risk.
Threat(s) - One or more cyber-threats by which the risk could materialize.
Likelihood - The expected frequency with which the Threat agent would
attempt to use the Threat in order to materialize the risk.
Impact - The cost or loss caused by the occurrence of the risk.
Rating - Likelihood x Impact.

Risk label Explanation
Type
C/I/A

Threat agent(s) Threat(s)
Likelihood
(0-100)

Impact
(0-100)

Expose data of
famous people

Employee accidentaly leaks personal (sensitive)
information of Politicians or celeberties. E.g.HR
reviews, medical info, leave.

Confidentiality Insiders
Information
leakage

50 50

Data breach -
famous people

Hacker beach the system. Politicians, Royal and
celeberties have personal (sensitive) exposed. E.g.
HR reviews, medical info, leave.

Confidentiality Cyber-criminals Data breach 20 55

Hacktivist leak
sensitive info

Hackivist - targeted attack e.g. salary data of
politicians and charities, to expose controversial
information.

Confidentiality Hacktivists
Data breach,
Phishing

5 65

Fraudulent
contract
adjustments

HR contracts are adjusted for personal benefit. E.g.
salary, or contract hours.

Integrity Insiders
Insider threat,
Web-based
attack

10 15

Fig. 2. Fragment of a risk assessment

Process. The table (Fig. 2) is filled in from left to right, however, we found that
first selecting a likely threat agent stimulates creativity. This is in line with the
philosophy of the Intel’s Threat Agent Risk Assessment [17] which starts by
agreeing on a list of relevant threat agents. Each risk is given a label, described
in free text, and classified in terms as confidentiality, integrity, or availability. In
order to further scope down the risk and ensure consensus among participants,
a relevant threat agent(s) is chosen if one was not chosen already. It is possible
that the same risk produces a different impact, or manifests with a different
likelihood depending on the threat agent and their purpose. Therefore, the same
risk may appear on multiple rows, but mapped to a different threat agent. Then,
each risk is mapped to one or more of the pre-defined threats. Finally, each risk
is quantified in terms of likelihood and impact which are multiplied in order to
obtain a risk rating.

Risk-Driven Security Requirements Management in Agile 139

5.2 The Threat-Feature Map

To arrive at the ranked list of security requirements needed to populate the prod-
uct backlog, a mapping between the threat taxonomy used in the risk assessment
and a set of security features is necessary. To strengthen the usability and jus-
tifiability of the mapping, the list of threats should be based on an established
threat taxonomy such as ENISA’s [7] or Intel’s [17], and the list of requirements
should be based on established secure software development guidelines such as
OAWSP [16] or Grip on SSD [13]. Note that there is a many-to-many relationship
between threats and requirements. Furthermore, this relationship is not binary;
some security requirements are better at mitigating a threat than others. This
relevance factor should also be reflected in the mapping.

Threat Rating

Threat A 1000

Threat B 300

Threat A Threat B

Req Y 3 2

Req X 0 5

Require-
ment

Relative
priority

Req Y 3600

Req X 1500

Risk label Threat(s) Rating
Risk 1 Threat A 700

Risk 2
Threat A,
Threat B

300

Fig. 3. A simple example of using the threat-requirements map for prioritization

Figure 3 shows a simple example of using the mapping to automatically derive
a list of prioritized requirements:

1. Sum up the rating of each risk where a particular threat is mentioned, we
obtain a ranked list of threats with relative ratings.

2. Then, for each security requirement, sum up the relative rating of each threat
it mitigates multiplied by the threats’ relevance factor.

What we end up with is a ranked list of security requirements with relative
ratings. These rating is finally normalized to a scale which matches the one used
in sprint planning, usually 1 to 4.

5.3 The Security Requirements Repository

An important aspect of the proposed methodology is that it helps the develop-
ment team account for security requirements during sprint planning by making
prioritized security requirements available on the product backlog. Therefore,
the ranked list of requirements produced by applying the threat-requirement
mapping to the results of the risk assessment needs to find their way into the
product backlog. Furthermore, these requirements need to be operationalized.
To facilitate this, we propose creating a repository of security requirements in
the agile issue tracking software being used by the development team. To be

140 D. Ionita et al.

able to do so, we overload established agile terminology to accommodate secu-
rity requirements, as shown in Fig. 4 below. The security features stored in the
mapping of Sect. 5.2 are defined as Features and their respective requirements
are stored as User Stories.

Epic

Feature

Product Backlog Item (scrum)
User Story (agile)

Security

Security
feature

Security requirement

Fig. 4. Casting security requirements into the agile taxonomy

In order to promote accessibility and re-usability of this knowledge, we pro-
pose storing the repository as a template project in the software development
project management toolkit of choice (e.g. Microsoft TFS/VSTS or JIRA).
Based on the results of applying the mapping described in Sect. 5.2, the PO
can import the relevant security features from the repository and assign pri-
orities to them. This can be done manually or by means of an extension such
as “Issue templates for JIRA”1. As long as the selected features are imported
together with their children (i.e. the associated backlog items), then all relevant
information will be visible on the developer’s backlog.

Implementation of the requirements can then take place as per the agile
philosophy: the requirements are broken down into tasks, effort estimations are
performed, and the tasks are assigned to sprints, based on the priorities of their
parent features.

6 First Evaluation

In order to evaluate the proposed framework, we tested each of its three compo-
nents individually in practical settings. Specifically, we investigated whether:

1. the risk assessment methodology is usable;
2. the threat-requirement map produces a correct ranking of security features;
3. and the security requirements repository is able to store a security require-

ments knowledge base.

We used ENISA’s Threat Landscape [7] as a source for threats and CIP Over-
heid’s Grip on Secure Software Development [13] as a source of security features

1 https://marketplace.atlassian.com/apps/1211044/issue-templates-for-jira.

https://marketplace.atlassian.com/apps/1211044/issue-templates-for-jira

Risk-Driven Security Requirements Management in Agile 141

and requirements. Both knowledge bases are well established in academia as well
as practice and are actively maintained. The threats were added as a drop-down
to the risk assessment spreadsheet, the requirements were added to the secu-
rity requirements repository, and they were both mapped to each other in the
threat-feature map.

The Risk Assessment Methodology. We performed a total of five assess-
ments together with the PO and one other stakeholder of five different appli-
cations from a variety of domains: finance, HR, retail, social, and privacy. The
risk assessment sessions lasted between two and three hours and resulted in the
identification of an average of 18 risk scenarios per assessment. All assessments
were facilitated by at least one of the authors.

We observed the participants found the exercise engaging and simply going
through each threat helped them identify risks they had not considered. We also
administered a questionnaire after each session, the results of which are shown
in Table 1.

Table 1. Practitioner feedback on the risk assessment methodology

Question Average rating (1–5)

Has the assessment helped you identify risks? 3.2

Has the assessment helped you understand risks? 3

Has the assessment helped you select security requirements? 3

Would you execute the assessment with clients? 3.2

How easy was performing the assessment? 3.4

Would you recommend the assessment to others? 4.4

Is the assessment suitable for agile processes? 1.8

After the assessment, participants felt they have a better awareness and
understanding of the risks their application is exposed to. Even though the
questionnaire was administered before the participants were shown the resulting
feature prioritization, many stated the assessment helped them think of impor-
tant security requirements. On average, the participants felt the assessment was
not difficult, despite lacking security expertise and having no security experts
in the session. Participants also indicated they would perform the assessment
with a client and that they highly recommend other teams perform one. The
assessment was not deemed suitable for agile processes. However, the assess-
ment is meant as an entry point in order to obtain a list of requirements and
priorities without security knowledge; once the requirements are copied to the
project backlog, their implementation can take place in an agile way. Further-
more, changes to the application’s risk profile can be reflected in the assessment
in order to re-calibrate the priorities at any time.

142 D. Ionita et al.

The Threat-Feature Map. In order to assess the feasibility of defining a
mapping of threats to security features, the authors manually mapped the 15
threats maintained by ENISA [7] to the 27 security features part of the CIP
Overheid’s Grip on SSD [13]. For each threat, we evaluated the likelihood (high-
medium-low) it would exploit common one of the web-application vulnerabilities
used internally for penetration testing. Then, for each vulnerability, we specified
which security feature is able to mitigate it. The result was a matrix of relevance
factors for each threat-feature tuple.

We asked three security experts in our partner organization to manually
assign priorities of 0 (do not implement) to 4 (critical) to each of the security
features in our mapping given the results of one of the risk assessment. Each
expert was given the assessment of a different application but none of the experts
were familiar with the application itself nor were they involved in creating the
mapping. The threat-feature map only uses the threat and risk rating columns,
however, the human assessors could base their judgment on the entire table.

Table 2 compares the automated prioritization to the manual one for each
application. In two of the three assessments the automatically generated results
differed significantly from the expert judgment. However, the automatically
assigned priorities were similar to the manual ones for the HR system. Across
the three assessments 1-in-4 of security features were assigned the same priority
by the mapping and the expert. Of the features which were assigned different
priorities, 57% deviated by one.

Table 2. Statistical comparison of the automated prioritisation vs. expert judgment

Application Privacy HR Taxes

Correct guesses 3 8 9

Off by 1 14 14 7

Correlation −0.18 0.28 0.12

p-value 0.82 0.07 0.26

Despite promising results with the HR application, the mapping has overall
failed to deliver a prioritization significantly better than random when compared
to expert judgment. Either (1) the mapping is incorrect or incomplete, or (2)
judging the priorities is difficult and error-prone. Both explanations could be
investigated given higher availability of experts by (1) using the expert judgments
to infer a mapping or (2) measuring inter-expert agreement.

The Security Requirements Repository. To validate our claim that the
structure proposed in Fig. 4 is able to encode any security requirement we defined
a template project in Microsoft Team Foundation Server (TFS) and used it to
store the entire set of high-level security requirements, operationalized require-
ments, and control points mandated by the CIP Overheid’s Grip on Secure

Risk-Driven Security Requirements Management in Agile 143

Software Development. We also wrote a script which is able to import these
requirements into any other TFS project. We are currently working on a graph-
ical TFS extension to make this process easier and allow users to also assign
priorities during the import (more on this in Sect. 7).

7 Conclusions

Simply performing a risk assessment as described in Sect. 5.1 raises awareness
of security issues. Experts did not always agree with the priorities assigned
by the threat-requirement mapping, but found manual prioritization difficult.
Finally, we showed how the availability, usability, and maintainability of a secu-
rity baseline can be improved by storing it as a linked collection of backlog items.
We believe our framework can help agile development teams take security into
account during by providing a first indication of the most important security
features, their priority, and the tasks required. Security experts should still be
involved during implementation and testing; they can use the assessment and
initial prioritization as a starting point or reference.

The proposed framework was developed and tested at a single Dutch soft-
ware developer, and only applied to mobile and web applications. However, the
developer makes use of standard stacks, development practices, and supporting
tools. Therefore, following Wieringa [20], we think that the framework could
potentially be applicable to other organizations that have similar organizational
and software development context to the one of our partnering Dutch company.

Nevertheless, we are looking for industry partners to refine the threat-feature
map and strengthen our evaluation. We also want to extend the security require-
ments repository with technology-specific and domain-specific requirements to
enable selection as well as prioritization. Finally, we are exploring using Artificial
Intelligence to prioritize requirements based on prioritizations of experts.

References

1. Hammoudeh, A.: A risk-driven approach to security, from check boxes to risk
management frameworks (2016). https://securityintelligence.com/a-risk-driven-
approach-to-security-from-check-boxes-to-risk-management-frameworks/

2. Baskerville, R.: Agile security for information warfare: a call for research. In: ECIS
2004 Proceedings p. 13 (2004)

3. Beck, K., et al.: Manifesto for Agile Software Development (2001)
4. Boehm, B.W.: A spiral model of software development and enhancement. Com-

puter 21(5), 61–72 (1988)
5. Daneva, M., Wang, C.: Security requirements engineering in the agile era: How

does it work in practice? In: 2018 IEEE 1st International Workshop on Quality
Requirements in Agile Projects (QuaRAP), pp. 10–13, August 2018. https://doi.
org/10.1109/QuaRAP.2018.00008

6. Davis, A.: Return on security investment-proving it’s worth it. Netw. Secur.
2005(11), 8–10 (2005)

https://securityintelligence.com/a-risk-driven-approach-to-security-from-check-boxes-to-risk-management-frameworks/
https://securityintelligence.com/a-risk-driven-approach-to-security-from-check-boxes-to-risk-management-frameworks/
https://doi.org/10.1109/QuaRAP.2018.00008
https://doi.org/10.1109/QuaRAP.2018.00008

144 D. Ionita et al.

7. ENISA Threat Landscape 2017: 15 Top Cyber-Threats and Trends. Technical
report, European Union Agency for Network and Information Security (2017).
https://doi.org/10.2824/967192

8. Goldfarb, J.: Risk-driven security: The approach to keep pace with
advanced threats (2015). https://www.securityweek.com/risk-driven-security-
approach-keep-pace-advanced-threats

9. Information technology - Security techniques - Information security management
systems - Requirements. Standard ISO 27001:2005, International Organization for
Standardization (ISO) (2005)

10. Information technology - Security techniques - Code of practice for information
security management. Standard ISO 27002:2005, International Organization for
Standardization (ISO) (2005)

11. Information technology - Security techniques - Information security risk manage-
ment. Standard ISO 27005:2011, International Organization for Standardization
(ISO) (2011)

12. Koers, M., Paans, R., van der Veer, R., Kok, C., Breeman, J.: Grip on secure
software development (SSD): ‘the client at the helm’, version 2.0. Technical
report, Centrum voor Informatiebeveiliging en Privacybescherming (CIP), March
2015. https://www.cip-overheid.nl/wp-content/uploads/2018/01/20160622 Grip
on SSD The method v2 0 EN.pdf

13. Koers, M., Tewarie, W.: Grip on secure software development (SSD):
security requirements for (web) applications, version 2.0. Technical report,
Centrum voor Informatiebeveiliging en Privacybescherming (CIP), October
2014. https://www.cip-overheid.nl/wp-content/uploads/2018/08/20180821-Grip-
on-SSD-Security-requirements-v2.0-2.pdf

14. McDermott, J.: Abuse-case-based assurance arguments. In: Proceedings 17th
Annual Computer Security Applications Conference, ACSAC 2001, pp. 366–374.
IEEE (2001)

15. McDermott, J., Fox, C.: Using abuse case models for security requirements analysis.
In: Proceedings of the 15th Annual Computer Security Applications Conference.
(ACSAC 1999), pp. 55–64. IEEE (1999)

16. OWASP: Top 10–2013: The ten most critical web application security risks. The
Open Web Application Security Project (2013)

17. Rosenquist, M.: Prioritizing information security risks with threat agent risk assess-
ment. Intel Corporation White Paper (2009)

18. Siponen, M., Baskerville, R., Kuivalainen, T.: Integrating security into agile devel-
opment methods. In: Proceedings of the 38th Annual Hawaii International Confer-
ence on System Sciences. HICSS 2005, pp. 185a–185a. IEEE (2005)

19. Terpstra, E., Daneva, M., Wang, C.: Agile practitioners’ understanding of security
requirements: insights from a grounded theory analysis. In: 2017 IEEE 25th Inter-
national Requirements Engineering Conference Workshops (REW), pp. 439–442.
IEEE (2017)

20. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

https://doi.org/10.2824/967192
https://www.securityweek.com/risk-driven-security-approach-keep-pace-advanced-threats
https://www.securityweek.com/risk-driven-security-approach-keep-pace-advanced-threats
https://www.cip-overheid.nl/wp-content/uploads/2018/01/20160622_Grip_on_SSD_The_method_v2_0_EN.pdf
https://www.cip-overheid.nl/wp-content/uploads/2018/01/20160622_Grip_on_SSD_The_method_v2_0_EN.pdf
https://www.cip-overheid.nl/wp-content/uploads/2018/08/20180821-Grip-on-SSD-Security-requirements-v2.0-2.pdf
https://www.cip-overheid.nl/wp-content/uploads/2018/08/20180821-Grip-on-SSD-Security-requirements-v2.0-2.pdf
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	Towards Risk-Driven Security Requirements Management in Agile Software Development
	1 Introduction
	2 Research Methodology
	3 Motivation and Background
	4 Related Work
	5 The Proposed Framework
	5.1 The Risk Assessment Methodology
	5.2 The Threat-Feature Map
	5.3 The Security Requirements Repository

	6 First Evaluation
	7 Conclusions
	References

