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Chapter 2
Finite Element Modelling Framework 
for Electroconvulsive Therapy and Other 
Transcranial Stimulations

Azam Ahmad Bakir, Siwei Bai, Nigel H. Lovell, Donel Martin, Colleen Loo, 
and Socrates Dokos

2.1  �Introduction

Electroconvulsive therapy (ECT) has been used to ameliorate major depressive dis-
order for patients who are resistant to drug therapy. The treatment involves applying 
a train of alternating pulses across two electrodes placed on the scalp. ECT is an 
effective treatment [1], but also carries a risk of cognitive side effects, such as dis-
orientation and memory loss [2]. Treatment efficacy has been noted to rely on mul-
tiple factors, such as electrode placement and stimulus dose [3]. In addition, there is 
currently also great interest in other brain stimulation techniques for therapeutic 
neuromodulation or neurostimulation, including transcranial direct current 
stimulation.

Due to electrical conductivity variation across different tissues, the current path-
ways induced by electrical stimulation are not straightforward to identify. The pres-
ence of highly resistive skull and air-filled paranasal sinuses impedes the passage of 
electrical currents, forcing the majority of currents to travel through the less resistive 
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regions [4]. Furthermore, the white matter exhibits a strongly anisotropic conductiv-
ity due to its myelinated structure, thus determining the prefential current pathway 
within the brain [5, 6]. As such, the electrical current distribution in the brain result-
ing from brain stimulation is complex and cannot be readily imaged, and is imprac-
tical to be measured empirically. Alternatively, the electrical current and electric 
field (E field) in the brain can be simulated via computational modelling. The finite 
element (FE) method is one of the most popular numerical approaches for solving 
models expressed as partial differential and integral equations.

The main goal of computational modelling for ECT and other brain stimulation 
techniques is to determine the region(s) modulated by the electrical stimulus. It is 
believed that non-invasive brain stimulation shifts the tissue’s membrane potential, 
subsequently affecting neuronal firing [7]. The use of computational modelling to 
examine differences in regional E fields as the ECT stimulation approach is altered 
allows for a better understanding of the relationship between brain stimulation and 
clinical effects with current forms of ECT, as well as offering the potential for futher 
improvements in ECT stimulation techniques. In this chapter, we will discuss 
approaches and steps necessary to implement computational modelling of the 
human head to determine the voltage and E field distribution during the application 
of ECT and other transcranial electric stimulation techniques.

2.2  �Methods

Figure 2.1 describes the steps needed to undertake a computational study of electri-
cal brain stimulation. Similar steps have been performed as part of previous finite 
element studies [3, 5, 8, 9], with minimal variation to suit the need for each study.

Fig. 2.1  Flowchart describing the workflow needed to implement a finite element model of the 
head, mainly involving segmenting the head structures (top row) and extracting white matter 
anisotropy (bottom row)
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2.2.1  �Image Pre-processing

In order to simulate the properties of different head structures, these structures need 
to be individually reconstructed from the acquired images. The process of partition-
ing the image into different domains or “masks” is known as image segmentation.

In order to increase the accuracy and reduce the effort of image segmentation, 
certain pre-processing procedures are performed prior to segmentation. These may 
include resampling (to reduce the resolution), cropping (to restrict the image set to 
the region of interest, i.e. ROI), artefact correction (such as motion, metal and bias 
field artefacts), edge and contrast enhancement and image registration. These opera-
tions can be performed using a selection of open-source image-processing software, 
such as ImageJ (https://imagej.nih.gov/ij/), 3D Slicer (https://www.slicer.org/) and 
ITK-SNAP (http://www.itksnap.org/). Among these, bias field correction and image 
registration are highly common pre-processing steps in the segmentation of MR 
head scans.

�Bias Field Correction

Bias field noises are caused by low intensity and smooth signals that distort the MRI 
images, and are present especially in older MR devices [10]. This type of noise 
causes regional differences in signal intensity in the images, leading to non-uniform 
intensities in the same head structure, as shown in Fig. 2.2. If left uncorrected, seg-
mentation quality may be affected. Bias field correction can be performed prior to 
segmentation using open-source tools designed specifically for head segmentation, 
as listed in Table 2.1.

Fig. 2.2  The effect of bias field correction (a) before and (b) after a correction performed in 3D 
Slicer. The patient’s face was hidden for privacy
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�Image Registration

It is not uncommon to obtain multimodal MRI scans, such as T1-weighted scans 
together with T2-weighted, proton density (PD)-weighted or diffusion-weighted 
scans, to provide complementary information regarding tissue structures in the 
brain. As these scans may be acquired in different coordinate systems, it is essential 
to perform image registration to transform these into the same coordinate system 
prior to segmentation. A common registration method is affine transformation, 
which is a linear transformation aligning two sets of images together through trans-
lation, scaling, shear mapping and rotation [11]. When a linear registration method 
is not able to provide a satisfactory outcome, such as when registering scans from 
different subjects, a non-linear transformation method should be applied. These 
transformations are performed, automatically or manually guided, through identifi-
cation of anatomical landmarks, such as the corners of the ventricles, which are 
easily distinguishable from the images. Image registration is typically available in 
image-processing software packages.

�Image Segmentation

The structural domains are separated through their identifiable landmarks and/or 
edges. T1-weighted MRI is typically used as it provides a good contrast between 
whole head structures, especially between grey and white matter. Skull extrac-
tion can be challenging, especially at the ethmoid sinus region, but this can be 
rectified by combining the T1-scan data with CT, T2-weighted or PD-weighted 
MRI scans [12].

Several open-source software packages designed for brain segmentation have 
been developed by different research groups. These can automatically extract major 
head structures, such as grey and white matter, skull and cerebrospinal fluid (CSF), 
from MRI images. Several of these can also further partition the grey matter into 
various cortices based on pre-defined atlases. A list of automatic brain segmentation 
software packages is provided in Table 2.1.

Table 2.1  List of open-source software packages for brain segmentation

Software package Developer

BrainSuite (http://brainsuite.org/) University of California, Los Angeles and 
University of Southern California

FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) Oxford University
SPM (https://www.fil.ion.ucl.ac.uk/spm/) University College London
FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) Harvard University
SimNIBSa (http://simnibs.de/) Copenhagen University Hospital Hvidovre 

and multiple institutions

Further details on each software tool are available from the listed websites
aSimNIBS combines other software such as FreeSurfer and SPM to build a pipeline for brain 
stimulation modelling
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It is good practice to perform additional checks following automatic segmenta-
tion to ensure there are no segmentation errors. This is usually performed in image 
processing software that allows manual segmentation, e.g. open-source 3D Slicer 
and ITK-SNAP, as well as commercially available tools such as Materialise Mimics 
Innovation Suite (https://www.materialise.com/), Amira (https://www.fei.com/soft-
ware/amira-for-life-sciences/) and Simpleware (https://www.synopsys.com/simple-
ware). Other processing, such as smoothing, can also be performed to improve 
segmentation quality. Several software packages provide training datasets and 
online tutorials to assist learning.

�Manual Segmentation

Thresholding is a critical step in manual segmentation. A thresholding filter can be 
applied to select particular brain regions. For example, grey and white matter can be 
easily discerned from T1-weighted MRI images since they exhibit different image 
intensities. As such, they can be readily segmented into individual masks. In addi-
tion to grey and white matter, the CSF space can also be easily recognised from its 
high intensity in T2-weighted images. This facilitates masking of CSF in between 
the pial surface (outer grey matter surface) and the dura surface (inner skull surface) 
as well as the interior brain ventricular system.

Segmentation can also be performed with other image processing techniques 
such as “seeding and growing”, Boolean operations and mask growing/shrinking. 
These options are available as standard features of most image segmentation soft-
ware packages [13]. “Seeding and growing” begins by manually placing seed points 
in a particular region. The seed points are then expanded to adjacent pixels based on 
certain region membership criteria, such as pixel intensity and connectivity, until all 
the connected pixels cover the structure of interest. This prevents the inclusion of 
other regions of similar pixel intensities into the same mask: for example, segment-
ing the brain by thresholding alone, ignoring connectivity, may inadvertently 
include the bone marrow of the skull.

Boolean operation techniques work directly on segmented masks, creating a 
union, intersection or difference between two masks. These can be used to obtain 
regional domains encapsulated between two domains. For example, the CSF is 
encapsulated between the dura and pia structures. Rather than directly segmenting 
the CSF, it can instead be obtained by performing Boolean subtraction of the encap-
sulating domains enclosing the brain and skull. This ensures continuity of the sur-
faces between domains in addition to segmentation efficiency. Boolean operations 
can also be used to detect boundary intersections between masks resulting from 
segmenting errors, as detailed in Section “Challenges and Tips in Segmentation”.

Mask growing/shrinking is another technique that operates directly on segmented 
masks. It is similar to performing a mask scaling. Depending on the algorithm, this 
may be performed in 2D or 3D, or using a uniform or non-uniform approach based 
on pixel intensity. The combination of these two operations may be used to remove 
islands, close holes, or interpolate between every two or three image slices.
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�Surface Smoothing

Following manual or automatic segmentation, output masks are often rough and 
contain sharp edges. Small islands, i.e. disconnected shells, may also be formed 
during segmentation and should be removed. These issues can be addressed using a 
smoothing process as shown in Fig. 2.3.

Surface smoothing can be performed on the masks within the image processing 
software, using either Gaussian, median or Laplace smoothing. It can also be per-
formed after the masks have been exported as surface triangulated objects, usually 
in .stl (stereolithography) format. Operating platforms that can perform smoothing 
include Blender (https://www.blender.org/), Geomagic Wrap (https://
www.3dsystems.com/software/geomagic-wrap) and Materialise 3-matic (https://
www.materialise.com/). The smoothing strength must be tuned so that the accuracy 
of the structure is not compromised. Any sharp edges in the form of spikes need to 
be removed, since this may prevent efficient meshing in later stages of the model-
ling effort. Furthermore, such a structure is unlikely to be correct, particularly if 
located between the brain gyri.

Fig. 2.3  (a) Thresholding of white matter, where the mask was initially generated automatically 
by FSL and imported into 3D Slicer for further processing. (b) The initial surface output from (a). 
(c) Gaussian smoothing applied to (b), with zoomed in view in the yellow box region in (b). (d) 
The final smoothed structure with segmentation errors in the form of small shells removed and 
remaining holes patched

A. Ahmad Bakir et al.

https://www.blender.org/
https://www.3dsystems.com/software/geomagic-wrap
https://www.3dsystems.com/software/geomagic-wrap
https://www.materialise.com/
https://www.materialise.com/


33

�Cortical Structure Labelling

Different brain regions are responsible for different physical and mental functions. 
For this reason, it is often of interest to observe the effect of ECT or other transcra-
nial electric stimulation techniques on specific brain substructures. Nonetheless, 
extracting these structures can be challenging since it requires knowledge of ana-
tomical landmarks, which are not readily discernible. In addition, manual segmen-
tation can risk losing consistency among multiple subjects, especially if the 
segmentation is performed by different people.

Some brain segmentation software provide automatic labelling of brain regions, 
as shown in Fig. 2.4. This labelling is based on established brain atlases where each 
region has been meticulously mapped. Examples of brain atlases are BrainSuite’s 
BCI-DNI_brain [14] and USCBrain [15], which are available in the BrainSuite 
software.

The first step in brain region labelling involves registering the subject’s skull-
stripped brain images to the atlas. This utilises linear and nonlinear warping to align 
the subject’s brain with the atlas. Subsequently, the regions are automatically 
labelled based on anatomical landmarks [14, 16].

�Challenges and Tips in Segmentation

Several challenges can be encountered during the segmentation process. In this sec-
tion, several tips and precautions are presented.

Fig. 2.4  Brain labelling tool in BrainSuite. (a) Masks overlaid on T1-weighted images where dif-
ferent colours signify distinct brain regions. (b) 3D surfaces generated from the masks. Smoothed 
individual cortical regions can then be produced by intersecting these labelled masks with the 
smoothed grey matter mask created previously

2  Finite Element Modelling Framework for Electroconvulsive Therapy and Other…
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Unwanted intersections between surfaces can present difficulties during the vol-
umetric meshing stage. As these intersecting surfaces are usually small, as shown in 
Fig. 2.5, very fine mesh elements will be created around these surfaces. The inter-
sections could also lead to errors during simulation since these structures are merely 
segmentation artefacts. For example, if the inner skull surface protrudes into the 
outer skull, this will create a hole in the skull domain, connecting the CSF directly 
to the scalp. Since the skull is highly resistive, a preferential current pathway is 
unintentionally created, producing a simulation error.

To prevent such intersections, segmentation can be performed from the outer-
most surface first, gradually moving towards the inner surface. Inner surface seg-
mentation can then be performed using the outer surface boundary as a guide. Small 
intersections can also be highlighted using Boolean operators and subsequently cor-
rected manually. It should be noted that intersections can exist even for automated 
segmentation tools such as those of FSL and BrainSuite. As such, the segmentation 
output must always be visually inspected.

Other challenges can also arise when segmenting the skull in T1-weighted 
images, since both compact/cortical bone and CSF appear dark. This may be 
resolved by directly obtaining the skull mask from CT scans. However, it is often 
difficult to acquire CT scans due to concerns over unnecessary radiation exposure. 
The skull is thus extracted by defining the outer skull surface using T1- or 
PD-weighted images, and the inner skull surface using T2- or PD-weighted images. 
The spongy bone of the skull is often identifiable as a bright region between the two 
thin dark regions (compact bone) outside the brain. Segmenting the air-filled 
paranasal sinuses within the skull may also be difficult as they appear dark. They are 
often recognised as frontal bone regions where spongy bone is missing.

It is not uncommon to generate a mutually exclusive mask for each domain. This 
may however create surface continuity problems, especially after surface smooth-

Fig. 2.5  Intersections 
between grey and white 
matter due to segmentation 
error. This can be 
overcome if segmentation 
of the grey matter is 
performed first, followed 
by white matter 
segmentation
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ing, during which both inner and outer surfaces of each mask are exclusively modi-
fied. A better practice would be creating inclusive masks, i.e. an outer domain mask 
within which all other domains of interest are contained. For instance, instead of 
creating a grey matter-only mask, a brain mask that also contains CSF in the ven-
tricles as well as white matter can be generated. Separation can be accomplished 
using Boolean operations after all necessary modifications are performed. In some 
FE meshing tools, separation is not only unnecessary but may also cause contact 
surface problems between domains.

2.2.2  �White Matter Anisotropy

White matter consists of myelinated neuronal tracts, which contribute to its highly 
anisotropic behaviour. This microanatomical characteristic influences the electrical 
conductivity such that it is more conductive along the tract than in the transverse 
direction [6]. Consequently, this affects the spread of the ECT electric field. 
Simulation studies by Lee et al. [5] and Bai et al. [6] show that disregarding this 
anisotropy can result in errors in deeper brain structures such as the corpus collosum 
and hippocampus. As such, the anisotropy helps direct current towards deeper brain 
regions, where significant effects have been noted following ECT [17].

The linear relationship between electrical conductivity and water diffusion ten-
sor has been experimentally validated [18, 19], suggesting that the conductivity 
tensor shares the same eigenvectors as the diffusion tensor. The water diffusion ten-
sor can be extracted using the diffusion tensor model for diffusion-weighted MRI 
(DW-MRI) [20], which can be performed in FSL using the probabilistic tracking 
algorithm from the FDT diffusion toolbox [21–23].

Two separate files containing b-values and b-matrices for all gradient directions 
are required as input for the diffusion tensor calculation. The former summarises the 
sensitivity to diffusion for each gradient direction, whereas the latter reflects the 
attenuation effect in x, y and z for each gradient direction [20]. In addition, the input 
also requires a 3D NIfTI image file of the brain region of interest (ROI), and a 4D 
NIfTI image file combining all gradient direction scans. Eigenvectors and fractional 
anisotropy (FA) are then calculated.

FA determines the anisotropic characteristics of a tensor. In brief, an FA value of 
0 indicates complete isotropy whilst a value of 1 indicates complete anisotropy. The 
FA value is determined from the eigenvalues (λ1, λ2,   λ3) of the diffusion tensor as 
follows [24]:
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where l̂  is the average of the three eigenvalues. Regions with a low FA value (typi-
cally FA < 0.45), which suggests a low local anisotropy, are removed from the ten-
sor analysis [25] (Fig. 2.6).

The conductivity tensor of white matter, σ, is calculated from:

	
ss = ( )S diag Ss s sl t t, , T ,

	
(2.2)

where S is the orthogonal matrix of unit eigenvectors obtained from the white mat-
ter diffusion tensor, and σl and σt are the conductivities in the longitudinal and trans-
verse fibre directions, respectively, which may be calculated using various methods 
[26, 27]. Following the diffusion tensor calculation, conductivity tensors of data 
points in the DW-MRI scans can then be linked to their individual coordinates. Only 
conductivity data with a strong anisotropy signal (FA ≥ 0.45) should be exported. 
Afterwards, the conductivity at the undefined region can be linearly interpolated 
using the neighbouring strong anisotropy signals.

2.2.3  �FE Meshing

After segmentation, the masks are exported as triangulated surface objects, usually 
in the form of an .stl file. The masks need to be polyhedralised (tetrahedralised in 
most scenarios), before they are ready to be used in FE analysis. Polyhedralisation 
(or FE meshing) is the process of generating polyhedral mesh elements to approxi-
mate a geometric domain, and these elements are the basis of the FE method. FE 
meshing is performed in dedicated meshing software, such as the open-source 
SALOME (https://www.salome-platform.org/), Materialise 3-matics, Simpleware, 
as well as ICEM CFD and Fluent which are both from ANSYS, Inc. (https://www.
ansys.com/). The volumetric mesh will then be imported into FE simulation soft-
ware such as COMSOL Multiphysics (https://www.comsol.com/) or ANSYS 
Workbench.

A tight contact between masks is essential to ensure continuity between meshed 
domains. It is thus often advisable in many of these meshing software packages to 
not import perfectly mutually exclusive masks. One practice is to generate inclusive 
masks, as detailed in Section “Challenges and Tips in Segmentation”. Another is to 
generate an open intersecting surface in one mask; for example, an open intersect-
ing surface at the end of the spinal cord extending beyond the closed surface of the 
skull. Afterwards, an intersecting curve must be formed at the intersection so that 
both surfaces can be meshed, followed by the remaining volumes.

In addition, the shape of these triangulated surface objects may be approximated 
with non-uniform rational basis spline (NURBS) surfaces, whose shapes are deter-
mined from a series of control points. The NURBS-approximated objects, exported 
in IGES format, can be imported as geometry into FE software and readily meshed 
into a cluster of polyhedral mesh elements. This provides flexibility in modifying 
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the model geometry directly within the FE analysis platform. The NURBS-
conversion process is available in 3-matics, Geomagic, Blender etc.; however, 
tedious manual operations are inevitable if the object has a complex structure.

Whilst meshing is mostly performed automatically by such software, care should 
still be taken in setting up the meshing method, including maximum and minimum 
element size, element growth factor, mesh smoothing parameters and if necessary, 
mesh coarsening paremeters. It is also recommended to check mesh quality to iden-
tify poor quality elements, duplicate elements or uncovered faces. These errors may 
need to be repaired manually.

2.2.4  �Physics and Property Settings

Bioelectromagnetism is the study of electric, magnetic and electromagnetic phe-
nomena arising from living cells, tissues or organisms. In the field of bioelectro-
magnetism, biological tissues are generally considered as “volume conductors”, in 
which the inductive component of the impedance is neglected, and resistances, 
capacitances and voltage sources are distributed throughout a three-dimensional 
(3D) region [28].

In the low-frequency band, where the frequency of internal bioelectric events lies, 
capacitive and electromagnetic propagation can be neglected [29, 30], thus treating 
bioelectric currents and voltages in living tissues as stationary [31]. This is known as 
the quasi-static approximation. A recent modelling study by Bossetti et  al. [32] 

Fig. 2.6  (a) Original diffusion tensor images with colour denoting the principal direction (largest 
eigenvalues) of the diffusion tensor (red indicates left-right, green indicates anterior-posterior, and 
blue is inferior-superior). (b) Fractional anisotropy with lighter colour indicating higher anisot-
ropy. These images were generated using 3D Slicer software
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investigated the difference in neural activation between solving the quasi-static field 
approximation and solving the full inhomogeneous Helmholtz equation using 
square-pulse current stimuli. They found that for commonly used stimulus parame-
ters, the exact solution for the potential (including capacitive tissue effects) can be 
well approximated by the quasi-static case. Given the relatively low values of permit-
tivity and magnetic permeability in living tissues, the quasi-static approximation can 
therefore be employed in computational head models of transcranial stimulation.

The electrical potential φ resulting from ECT can be obtained by solving the 
Laplace equation:

	
Ñ× - Ñ( ) =ss j 0,

	
(2.3)

where φ is the electric potential and σ is the electrical conductivity tensor. In order 
to solve Eq. 2.3, boundary conditions have to be defined at all domain boundaries/
surfaces. Based on the “quasi-uniform” assumption, the degree of activation in a 
target region is proportional to the local electric field magnitude 



E  [33]. The elec-
tric field 



E  is determined from Maxwell’s equations under quasi-static conditions 
using

	


E = -Ñj. 	 (2.4)

Simulation results can be analysed by comparing the average electric field mag-
nitude E  in several ROIs of the brain, which is determined using:

	

E
E dV

dV
= òòò
òòò



,

	
(2.5)

where 


E  is the local electric field magnitude at every spatial point in the ROI, and 
the denominator is simply the volume of the ROI.

�Tissue Conductivity

It is typical to assume homogeneity and isotropy in most head tissues, except for 
white matter. Tissue conductivities for each domain, presented in Table 2.2, were 
determined from previous experimental studies, as described in Bai et al. [25].

�Electrode Placement

Conventional ECT electrode placements including bifrontal (BF), bitemporal (BT) 
and right unilateral (RUL) placements have been substantially investigated using 
computational modelling [3, 5, 26]. Several variations of electrode placement have 
also been investigated with estimates of electric field strengths in key brain regions, 
with an aim to improve existing ECT protocols [34, 35].
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There are several ways to define the location of an electrode on the scalp:

	1.	 Creating a geometric object representing the physical ECT electrode on the 
scalp, e.g. a short cylinder with a diameter of 5  cm and a conductivity of 
9.8 × 105 S/m [5]. A normal inward current density J|electrode can be defined at the 
top boundary of one electrode,

	
J

I

A
= ,

	
(2.6)

where I is the stimulus current, e.g. 800 mA for ECT, and A is the top boundary 
electrode area. A ground condition (φ = 0) can be defined at the top boundary of 
the other electrode. Current continuity or other conditions representing the skin-
electrode interface can be defined at the scalp surface of both electrodes.

	2.	 An isolated geometric boundary (e.g. a circular boundary of diameter 5  cm) 
defined on the scalp surface. The boundary condition for the ECT electrodes can 
thus be defined, with other conditions representing the skin-electrode interface 
over this isolated boundary.

	3.	 A mathematically defined boundary created by intersecting the scalp surface 
with a geometry defined by analytic functions (e.g. an analytically defined sphere 
with a diameter of 5 cm for creating ECT electrodes) [25, 36]. An evenly distrib-
uted normal current density J is then applied over the analytically defined geom-
etry. A normal inward current boundary condition is defined over the entire scalp 
such that everywhere, except at the ECG electrodes, the normal current density 
is zero. The other electrode is defined to have a normal outward current density, 
−J|electrode.

Table 2.2  List of tissue 
conductivities employed by 
Bai et al. [3, 25]

Head tissue
Conductivity 
(S/m)

Scalp 0.41
Eyes 0.41
Sinus 0a

CSF 1.79
Grey matter 0.31
White matter – fibre 0.65
White 
matter – transverse

0.065

Skull – compact 0.006
Skull – spongy 0.028

aNote that setting the conductivity to zero 
in any tissue region may present a numer-
ical issue in the simulations. The com-
mon practice is to either set this domain 
as inactive in the simulations or to assign 
an extremely low value such as 1e-8 S/m
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�Other Boundary Conditions

The neck region on the lower boundary of the head can be defined using a ground 
[25] or distributed impedance boundary condition [3]. The latter sets the neck as 
being connected to a resistive compartment, which in turn is connected to ground. 
This permits some flow of current through the neck boundary, albeit negligible in 
magnitude (0.001% of delivered ECT current). The boundary condition of this dis-
tributed impedance is defined as follows: 

	



n J
ds

× = -( )neck
neck

ref

s
j j ,

	
(2.7)

where 


n J× neck  is the normal outward current density at the neck boundary, σneck is 
the conductivity assigned to the boundary, ds is the thickness of the boundary and 
φref is the reference voltage, which is set to zero for ground.

The rest of the scalp is set as an insulated boundary (i.e. zero normal component 
of current density). If the sinuses are inactive in the simulation, their boundaries 
should be set to insulated as well. All other internal boundaries must be set as con-
tinuous current density interfaces to ensure electric continuity between domains.

�Numerical Solver Settings

Under quasi-static assumptions, the stimulus amplitude and the resulting voltage, 
electric field and current density are all in a linear relationship. Therefore, it is suf-
ficient to employ a steady-state solver. A detailed head model usually involves com-
puting over a large number of mesh elements (>5 million). In COMSOL, there are 
two classes of linear solvers for computation: direct solvers, such as PARDISO, 
which are time-efficient but require large computational memory, and iterative solv-
ers, such as conjugate gradient, which approach the solution gradually, and thus are 
memory-efficient but may require substantial computational time. An iterative solver 
is a better choice for standard desktop workstations with 24 to 64 Gb RAM. The 
absolute tolerance of the error in previous works was set to 10−5 [36] or even at 10−8 
[5, 9]. In general, a lower absolute tolerance yields a more accurate result, provided 
it is greater than the numerical precision of the computer processor.

2.3  �Simulation Results

2.3.1  �Electric Feld for Three ECT Electrode Configurations

The MRI scan of a patient (39-year-old male) with bipolar disorder was acquired at 
Neuroscience Research Australia following an ECT session. The patient provided 
an informed consent for study participation, which also received ethics approval by 
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the University of New South Wales. A T1-weighted 3 T head scan was obtained 
along with diffusion tensor imaging in 32 directions. The head scan was truncated 
at the chin, and the voxel size was 1 mm in all directions. The head was segmented 
into multiple domains corresponding to the tissues listed in Table 2.2. White matter 
anisotropy was obtained by the methods described in Sect. 2.2.2.

Three common ECT electrode configurations were simulated: bifrontal (BF), 
bitemporal (BT) and right unilateral (RUL) as depicted in Fig. 2.7. An electrical 
ECT stimulus was applied using an isolated circular boundary defined to be 5 cm 
diameter. This boundary was supplied with a current density J at the anode and -J at 
the cathode. The stimulus current was set at 800 mA in all electrode configurations. 
The lower neck boundary was set to a distributed impedance as in Eq. (2.7), with ds 
set to 5 cm from the ground reference, whilst σneck was set to the scalp conductivity.

The analysis was performed on regions of the brain associated with emotional 
responses, directing attention, memory, verbal and learning skills, among others 
[37], namely the cingulate gyri, parahippocampal gyri, subcallosal gyri, amygdala, 
inferior frontal gyri, hippocampus and middle frontal gyri. These ROIs were 
extracted automatically using BrainSuite’s labelling tool and BCI-DNI atlas. This 
approach allows specific comparison in the particular brain region rather than quali-
tative observation in the whole brain.

Average 


E was calculated for each ROI using Eq. (2.5) and the results for each 
electrode configuration were compared. The results in Fig. 2.8 indicate that the right 
middle frontal gyrus displayed the largest average E-field for all three electrode 
configurations. RUL produced a maximum E-field in all right sides of the analysed 
locations as well as the left cingulate gyrus. Otherwise, the maximum average E

� ��
 

of the other left-brain regions was achieved via the BT configuration.

Fig. 2.7  Simulated electric potential on the scalp surface under three ECT electrode configura-
tions. The sites of maximum and minimum electric potential are the electrode placement sites. The 
face of the patient is hidden for privacy. Results are shown for a single ECT pulse
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The resulting electric field magnitude, 


E , is displayed in Fig. 2.9. The electric 
field in the BF and BT configurations showed a more symmetric electric field pro-
file, whilst RUL displayed a larger 



E  over the right brain hemisphere relative to 
the left. The BF configuration resulted in higher 



E  at the frontal lobe regions of 
the brain only. On the other hand, the 



E distribution in the BT configuration 
encompassed both the frontal and temporal lobe regions.

The BT configuration has been noted to be the most efficacious among the three 
electrode placements using the least amount of stimulus dose; however, it is also 
associated with a larger rate of cognitive side effects [38]. These effects are possibly 
due to the larger brain area affected by the electrical field as shown in Figs. 2.8 and 
2.9. The RUL configuration is known to result in less verbal impairment [39], pos-
sibly due to the lesser impact on the speech area at the left inferior frontal region. 
Nonetheless, the RUL configuration typically requires a suprathreshold stimulus 
(exceeding seizure threshold) to be effective [39]. The BF configuration, on the 
other hand, is also known to result in less cognitive impairment than BT, but none-
theless using lesser stimulus dosage than RUL [40]. As such, electrode placement 
sites and stimulus dosage can affect the outcome of ECT, which can be investigated 
further using the modelling framework described in this chapter.

Modelling results such as those shown here can provide additional understanding 
of clinical ECT findings in a given patient. The electric field, voltage and current 
data obtained from the simulation can be used to infer ECT impact on the brain. 

Fig. 2.8  Average electric field magnitude in specific ROIs: (a) cingulate gyri (CG), (b) amygdala 
(AD), (c) hippocampus (HC), (d) parahippocampal gyri (PG), (e) inferior frontal gyri (IFG), (f) 
middle frontal gyri (MFG) and (g) subcallosal gyri (SG). The position of these ROIs within the 
brain is described in (h)
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Nevertheless, these results are preliminary and should be treated with caution since 
results may differ from subject to subject. However, such results can be used to asso-
ciate brain regions affected by ECT with patient responses following the treatment, 
providing for the future development of safer and more effective ECT protocols.

2.4  �Discussion

2.4.1  �Model Extensions

The modelling framework described in this chapter only addresses the computa-
tion of average electric field within different brain regions. Other possibilities for 
data analysis include: focality analysis by masking regions with electric field mag-
nitude below a specified threshold [41], reconstruction of binarised subtraction 
maps for direct comparison of stimulus effects among different electrode place-
ments [3], and analysis of heating during brain stimulation by incorporating a bio-
heat equation [42].

Moreover, the framework described here only simulates the head as a passive 
volume conductor under electrical stimulus, disregarding the complex excitable tis-
sue properties of brain neurons. Nevertheless, the underlying brain activity is still 

Fig. 2.9  Distribution of electric field magnitude in V/m on the grey matter surface. The maximum 
electric field is capped to 200 V/m for image clarity. The labels on the first row indicate the image 
orientation as follows: A anterior, P posterior, R right and L left

2  Finite Element Modelling Framework for Electroconvulsive Therapy and Other…



44

poorly understood. The neuronal tissue itself acts as an internal source of current, 
which may disrupt the externally applied stimulus. A review by Ye and Steiger sum-
marizes the evidence for such phenomena from various experimental and simula-
tion studies [43]. Brain neurons are also interconnected to more distal regions due 
to the existence of neural tracts, which connect different regions of the brain. Thus, 
excitation of one region will propagate along the axon [37].

Several modelling studies have addressed the issue of brain activation. A recent 
study by Riel et al. [44] performed a preliminary activation analysis along the white 
matter fibre tracts using a volume conductor model. The fibre tracts were extracted 
from a DW-MRI image using constrained spherical deconvolution, and electrical 
potentials were subsequently interpolated along the fibre tracts for calculating the 
activation function [44]. Bai et al. [36] presented a finite element (FE) whole-head 
model incorporating Hodgkin-Huxley-based continuum excitable neural descrip-
tions in the brain, which was able to simulate the dynamic changes of brain activa-
tion directly elicited by ECT, allowing investigation of parameters such as pulse 
duration [36]. Nevertheless, the computation was rather lengthy. In addition, the 
intracellular potential in the model was assumed to be resistively tied to a remote 
fixed potential, whose physiological meaning was difficult to interpret. This con-
straint did not allow for the spread of excitation through neural networks in the brain.

McIntyre et al. have, over the years, introduced a representation of white matter 
(WM) fibres in the vicinity of the subthalamic nucleus (STN), combined with a 
volume conductor model of deep brain stimulation (DBS) [45, 46]. After the electric 
potential induced by a DBS device was calculated by the FE solver, the time-
dependent transmembrane potential was solved in NEURON software using a 
Hodgkin-Huxley-type model based on the interpolated potential distribution along 
the length of each axon. The model was able to predict activation in STN neurons 
and internal capsule fibres, and the degree of activation matched well with animal 
experimental data [45].

�Subject-Specific Tissue Conductivity

The electrical conductivities of head tissues in most modelling studies are based on 
in vitro measurements. It is anticipated that some variation exists due to experimen-
tal conditions and sample preparation, let alone any inter-subject differences. 
However, it would be highly invasive to perform in vivo measurements of electrical 
conductivity, especially within brain structures.

Recent work by Fernández-Corazza et al. used electrical impedance tomography 
(EIT) to noninvasively obtain the conductivity of head tissues [4]. They injected 
small amounts of electrical current through multiple electrode pair configurations. 
A Laplace equation, as in Eq. (2.3), was then solved for every electrode pair. 
Afterwards, an inverse problem was solved to optimise the electrical conductivity 
using Newton’s optimisation method to fit the Laplace equations to EIT experimen-
tal data. It was observed that the accuracy of this method also depends on the accu-
racy of the skull segmentation. Their study showed that an over-smoothed and 
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compact skull geometry, with closed foramen, can overestimate the conductivity by 
almost 30% relative to a more accurate skull segmentation.

2.5  �Conclusion

Computational head models and FE simulation provide additional insights into 
understanding regions of the brain affected by ECT and other transcranial stimulation 
techniques by using metrics such as the electric field distribution, which are difficult 
to obtain by direct experimental measurement. Furthermore, these head models can 
serve as a tool for testing novel ECT protocols prior to animal and clinical studies.
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