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Abstract. A security orchestration platform aims at integrating the activities
performed by multi-vendor security tools to streamline the required incident
response process. To make such a platform useful in practice in a Security
Operation Center (SOC), we need to address three key challenges: inter-
pretability, interoperability, and automation. In this paper, we proposed a novel
semantic integration approach to automatically select and integrate security tools
with essential capability for auto-execution of an incident response process in a
security orchestration platform. The capability of security tools and the activities
of the incident response process are formalized using ontologies, which have
been used for NLP based approach to classify the activities for the emerging
incident response processes. The developed ontologies and NLP approaches
have been used for an interoperability model for selection and integration of
security tools at runtime for the successful execution of an incident response
process. Experimental results demonstrate the feasibility of the classifier and
interoperability model for achieving interpretability, interoperability, and
automation of security tools integrated into a security orchestration platform.

Keywords: Security orchestration � Ontological model � Self-adaptive �
Automation and interoperability � Security automation

1 Introduction

The Security Operation Center (SOC) of an organization uses a variety of security
tools, developed by different vendors, to protect an organization’s Information and
Communication Technology (ICT) infrastructure and Business Application (BA) [1–3].
Examples of such tools are Intrusion Detection System (IDS), Firewall, Endpoint
Detection and Response (EDR), and Security Information and Event Management
(SIEM). According to a recent report by Enterprise Strategy Group [4], on average a
SOC has 25 different security tools, and this number goes up to 100 for some SOCs.
Most of these tools work independently. The security experts of a SOC are expected to
monitor and analyze the activities (i.e., validate alerts, correlate log, and remove
malware) of these security tools to respond to an incident [1, 5–7]. The continuous
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process of monitoring and analyzing the security activities are time-consuming, tedious
and repetitive [5, 8].

Most SOC in recent years uses Security Orchestration Platform (SecOrP) to
orchestrate the activities of security tools and automate the repetitive tasks manually
performed by security experts [5–7]. Deployment of a SecOrP requires an organization
to assess their existing security tools’ capabilities (e.g., intrusion detection, log man-
agement, packet sniffing, and log correlation) and prepare an Incident Response Plan
(IRP) [5–8]. An IRP is a sequence of activities that are performed by various security
tools. Based on the assessment of an organization’s existing tools and requirements,
APIs or plugins are developed for integrating security tools into SecOrP and rules are
defined to orchestration and automate the IRP [1, 5, 9].

Emerging threat behaviors and variations in organization’s infrastructure cause
experts to change the deployment and execution environment of SecOrP, such as the
integration of new tools, updates of tools capability or modification of an IRP [3, 7, 10].
Existing SecOrPs, however, are not adaptive towards such changes [3, 7, 10]. Experts
must sufficiently understand the APIs and rules of SecOrP to make it adaptive to the
changes by defining new rules or developing new APIs [5, 11, 12]. Human intervention
is required to adjust the changes because security tools are not interoperable and
SecOrP cannot interpret security tools’ activities and their input and generated data [12,
13]. A recent study by the SANS Institute (Escal Institute of Advanced Technologies)
has revealed that the integration of security tools is the third most challenging task of
SOC [14].

SecOrP requires the semantic knowledge to formalize various inputs, outputs, and
activities of security tools. The formalized concepts enable a SecOrP to interpret the
changes in runtime environment and automate the execution of modified or new IRP
without any human intervention. Ontologies can be used to provide the required formal
specification to support interoperability and semantic integration of security tools in a
SecOrP without any human involvement [15, 16]. Semantic integration refers to the
ability of SecOrP to understand the semantics of the input or output of security tools.
A SecOrP can semantically interpret the activities of security tools when the formal-
ization incorporates semantic integration of security tools.

The process of defining a suitable ontology is not straightforward [17]. A well-built
ontology depends on domain expertise. Formalizing various security tools and the
activities of IRP are challenging due to the ambiguity of the terminology used by
different vendors. The features of security tools and activities are defined using Natural
Language; same activity is defined using different terms in different IRP. The devel-
opment of ontology is an incremental process. Domain experts require to perform
manual tasks to keep ontologies updated as per the new knowledge.

We propose an integration framework for SecOrP that integrates the data generated
by different security tools to automate the execution of an IRP by making security tools
interoperable. The proposed integration framework consists of an ontological model, a
prediction module and an annotation module. We have formalized the core concepts of
SecOrP in an ontology that are required to automate the execution of an IRP. We have
followed a systematic approach to define the classes of our ontology and the rela-
tionships among the classes.
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We have designed and developed a prediction module utilizing the existing Natural
Language Processing (NLP) and Machine Learning (ML) techniques to automatically
classify the activities with text description according to the ontology. For a new activity
description in an IRP, we have performed a text-based similarity measure with the
existing list of activity description. We have defined a threshold for the similarity
measure that is used to invoke the prediction module when the similarity score is above
the threshold. For a similarity score below the threshold, we have designed an anno-
tation module to generate and recommend the possible classes to experts and auto-
matically annotate the new classes in ontology after an expert selects the classes.

We have designed and implemented an interoperability model to select the best
suite of tools that have the required capability to execute an IRP. We check the
compatibility of the set of selected tools for interoperability based on their capabilities
in terms of their input, output and execution environment. In this paper, we do not
show the development and evaluation of the ontology; instead, we demonstrate the use
of the ontology by the prediction module and interoperability model for auto-execution
of IRPs. Following are the key contributions of our work expected in this paper.

– An ontological model to formalize the diverse activities and capabilities of security
tools (ref. Sect. 4.1).

– A prediction module to automatically classify activities according to the ontology
and an annotation module to annotate the unmatched activities with the existing
ontology (ref. Sect. 4.2 & 4.3).

– An interoperability model to select the security tools to automate the sequence of
activities in an IRP (ref. Sect. 5).

2 Related Work

A large-scale SecOrP requires formalization of the concepts of different security tools
and their respective activities. Most of the existing literature on SecOrP only focuses on
providing APIs or plugins for multi-vendor tools without considering the importance of
formalizing the standard features or concepts used by different tools [1, 5–7]. STIX1,
CyBox2, and Unified Cybersecurity Ontologies (UCO) are the examples of some of the
known ontologies for the security domain. UCO combines the existing ontologies.
However, it does not provide an ontology for security tools and their activities; nor
does UCO support an IRP’s activities, which are required by a SecOrP. A few studies
formalize various concepts of information security, threats and attacks related infor-
mation for sharing the information among security community [15, 16, 18]. Though,
none of these studies focuses on formalizing the concepts of IRP or diverse nature of
security tools.

One recent study has developed ontologies for enabling tool-as-service (TSPACE)
for cloud-platform [17]. Based on stakeholder’s requirements and tools artifacts, the

1 https://stixproject.github.io/about/.
2 https://cyboxproject.github.io/.
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required tools are selected using the ontologies, which help stakeholder to alleviate the
semantic conflict while integrating multiple tools. The proposed ontology in TSPACE
cannot automate the execution of the activities or enable interoperability among
security tools. Moreover, TSPACE does not capture the capabilities of tools essential
for interpretability and interoperability. Our proposed ontological model provides the
capabilities of security tools to support interpretability and interoperability of security
tools in a SecOrP. Our work supports the interoperability issue by mapping the
capabilities of the security tools with the activities of an IRP. Using the ontological
model, a SecOrP is able to interpret the diverse security tools capabilities for making
them work together to automate the execution of security tools’ activities without any
human intervention.

Besides a general lack of interpretability and interoperability among multi-vendor
security tools, we also did not find any work that addresses the issues with changing
IRP due to emerging threat behavior. Our proposed prediction module supports the
auto-classification of new activity description according to the ontology for automatic
execution of IRP. To the best of our knowledge, this is the first work that has enabled
auto-integration of security tools in a SecOrP and developed a prediction module to
classify activity description based on ontology. The automation is achieved by enabling
interpretability and interoperability among a variety of security tools from different
vendors and auto-classification of activity description according to the ontology.

3 Motivation Scenario

An incident is any unwanted event that violates specific security objectives (confiden-
tiality, integrity, and availability) of an organization’s assets. An IRP aims to provide the
best sequence of activities that are necessary to perform in response to an incident, e.g.,
alerts for the phishing email, DDoS attack, and so forth. Table 1 shows an IRP for one
such incident, spear phishing email. A phishing email is used to obtain sensitive
information by disguising as a trustworthy entity in electronic communication.

Table 1. The incident response plan for a phishing attack

# Response Activity Description

ac1 Is this a phishing
attack?

Validate if this is a phishing attack

ac2 Scan endpoint –
malware found?

After running a scan, determine whether malware was found

ac3 Remove malware –

success?
Determine whether the malware was successfully removed

ac4 Wipe and reimage If you did not successfully remove the malware found, this
task instructs you to perform a wipe and reimage the infected
computer

ac5 Update email
protection software

If it was determining as phishing attack, you are prompted to
update email protection software accordingly

ac6 Remove unread
phishing email

Perform the steps necessary to remove unread phishing email
still in the queue
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Figure 1 shows a scenario of SecOrP where it collects the details of an incident,
checks in the playbook for the corresponding IRP and rules therein, select the tools to
perform the activities based on the rules, orchestrates the activities and automates the
execution of an IRP. Most SecOrPs have a playbook as shown in Fig. 1 where a SOC
defines rules based on their respective IRPs. SecOrP shows the scan and ongoing
operation through its dashboard based on which a SOC team makes the required
decisions, defines new rules in the playbook and performs complex analysis. We refer
to the activities that are performed by SecOrP to orchestrate and automate an IRP as
Task. To address the interoperability issue, an existing SecOrP offers APIs or plugins to
communicate with different security tools. Most of these APIs or plugins are not
vendors or tools agnostic and fail when updates or changes are required [1, 5, 9]. There
are several challenges associated with existing SecOrP; however, in this work, we only
focus on the challenges mentioned below. We use the example of Table 1 to illustrate
the challenges that arise during the auto-execution of IRP by SecOrP.

First, the IRP of Table 1 is written in text and does not follow a formal structure.
There exists ambiguity among different words. Different words are used to define the
same types of activities. For example, both Response and Activity Description of
Table 1, i.e., “Is this a Phishing attack?” and “Validate if this is a phishing attack” are
referring to the same activity. A SOC does not follow any specific structure while
defining the activities of an IRP. The similar types of activities performed for different
security incidents require different tools. For example, “remove malware” and “remove
phishing email” both refer to activity “remove” although the execution of these
activities requires two different types of security tools. A SecOrP cannot automatically
interpret the abovementioned similarities or ambiguity.

Second, a SecOrP needs to deal with different tools that are not interoperable to
automate the execution of an IRP’s activities. For example, to execute an activity ac1 of
Table 1, a threat intelligence platform, e.g., Malware Information Sharing Platform
(MISP3), is needed. AMISP is used by a SecOrP to validate the incident. The execution
of ac2 requires an EDR tool to scan endpoints and a SIEM to identify the malware from
EDR logs. Each activity has one or multiple rules associated with it. A SecOrP uses
these rules to orchestrate and automate an IRP by using different security tools. For

Fig. 1. Overview of a security orchestration platform

3 https://www.misp-project.org/.
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example, if the ac1 is true, then only it executes ac2. Based on the results of ac2, it
further executes ac3 or other activities.

Third, a SecOrP needs to control the flow of the activities performed by different
tools. Experts modify the activities based on the tool’s availability and preferences. For
example, an expert may change one activity description in an IRP from “analyzing the
alert log” to “correlating alert log” after installation of a new IDS in the network
router. Installation of a new server requires the security tools’ capabilities to fulfil the
security requirement of a server. An IRP team defines the plan to protect the server
from security incidents. In case, existing tools are unable to provide the required
capability; a SOC integrates new security tools to protect the server.

Fourth, there may be multiple tools available for execution of a single activity. For
example, different EDR tools and dedicated malware detection tools are used to per-
form “scan endpoint for malware.” There is a lack of systematic approach that can be
followed to perform the selection of interoperable security tools.

Considering the changing activities in IRP that needs integration of new tools, the
challenge is how to provide an interoperability model for a variety of security tools to
automatically execute different sets of IRP. In the next sections, we first propose the
semantic integration framework and then the interoperability model that uses the
component of the integration framework to address the abovementioned challenges.

4 Integration Framework for Security Orchestration
Platform

4.1 Ontological Model to Enable Semantic Integration

A SecOrP deals with various types of data produced by heterogeneous security tools.
These data can be structured, semi-structured, or unstructured. Data produced by one
tool are not always interpretable by another tool. Therefore, these heterogeneous
security tools are not interoperable. We develop an ontological model to represent
multi-sourced data and enable semantic-based data integration among heterogeneous
security tools in a SecOrP [15, 16]. We define the classes of the required ontology by
following a structured approach to keep consistency among the classes.

Design and Development of an Ontology Class. We follow a bottom-up approach to
develop the main concepts of our ontology that contains three main classes: Secu-
rityTool, Capability, and Activity. These classes are defined to formally represent
heterogenous security tools from different vendors. We leverage the TSPACE work
[17] to design the capabilities of security tools in-terms of their functional and non-
functional features. The functional feature is the ability of a security tool to execute an
activity such as packet capturing, intrusion detection and so forth. The non-functional
features include input and output data structures, and configuration details required to
execute an activity. For example, a network-based IDS takes network traffic or packet
(i.e., tcpdump), where a host-based IDS works with system logs (i.e., syslog). Even
though both types of IDSs produce alerts as an output, the output format (i.e., PCAP,
CSV) and data (i.e., IP address, URL) also vary depending on SOC’s preferences.
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The Capability class of the ontology consists of the two subclasses Func-
tionalCapability and NonFunctionalCapability to capture the features of security tools
as shown in Fig. 2. The diversity among input and output data structures is appre-
hended using three subclasses under Non-FunctionalCapability class: Input, Output,
and RuntimeEnvironment. The input and output of the security tools need to be
explicitly defined to be analyzed by a SecOrP. A well-designed Capability class
enables SecOrP to auto-generate the APIs between security tools by retrieving the
information about required input commands and produced output. The ability of a
SecOrP to deconstruct the output of one tool and then to use the output to formulate the
input of another tool enables interoperability between isolated security tools.

We analyze the functional capabilities of multiple security tools to identify the
subclasses of the SecurityTool class, where each tool has more than one functional
capability. The SecurityTool class is categorized based on the main functionalities of
the security tools. We define the first level of the subclass of the security tool based on
the types of activities (e.g., detect, monitor, scan, validate and so on) they provided.
For example, IDS, SIEM, Antivirus, and Firewall are different types of security tools
that are defined as the subclass of the SecurityTool class. The available commercial and
open source security tools are categorized under each of these subclasses based on the
benchmark of their functional capabilities. For example, different types of SIEM, i.e.,
Splunk4 and RSA NetWitness5, are subclasses of SIEM.

We define and categorize different types of activities as the subclass of the Activity
class. The activities are associated with the detection, prevention, recovery and
remediation actions of a threat defense and response life-cycle. We follow a systematic
set of guidelines to define the subclasses of the Activity class manually. First, we only
use the verb and noun of the sentence of activity description to define the subclasses of
the Activity class. For example, for the activities of Table 1, Validate, Remove, Scan,
Wipe, Reimage and Update are the subclasses of level 1 of the Activity class. Then, we

Fig. 2. Excerpt of our ontology (For better quality see at https://github.com/Chadni-Islam/
Security-Ontology/blob/master/Ontology.jpeg)

4 https://www.splunk.com/.
5 https://www.rsa.com/en-us/products/threat-detection-response/ .
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combine the adjacent verb, noun, and adjective and discard all other parts-of-speech to
define the categories of the subclasses as shown in Fig. 3.

Each subclass of the Activity class has multiple subclasses based on the capabilities
required to execute the activity. For example, the execution of two validation activities:
validation of a phishing email and validation of exposure of confidential information
require different capabilities; therefore, they are categorized under different subclasses:
ValidatePhishingAttack and ValidateDataExposure. We also consider the activity “Is
this a phishing attack?” under the class Validate, as this is more similar to validating
whether an alert/attack is phishing or not. We consider a different sentence with similar
meaning into the same class. For example, the activity “scan endpoint for malware”
and “scan host for malware” requires the same types of capabilities and thus are
categorized under the same class ScanEndpointMalware. These subclasses can have
more subclasses depending on the requirements to execute the activities. Figure 2
shows part of the subclasses of the Activity class that we have built following the
abovementioned process.

Defining Relationships and Constraints. We define the relationship between the
classes to select the tools with appropriate capabilities to execute an activity. The
relationships between the classes are shown in Fig. 2. We define a set of reasoning
rules to enhance the relationships between different classes for error-free integration.
These rules enable us to express conditions about the occurrence or non-occurrence of
the required activities, the creation of instances, tracking and managing activities of a
SecOrP. For example, each security tool must have at least one functional capability
associated with threat defense and incident response to execute an activity. The security
tools must satisfy the capabilities associated with a class to be part of that class.

Execution of each activity depends on the availability of the relevant security tools
and preference of an organization’s security requirements. An auto-execution of an
activity requires at least one tool with the required functional capability to execute a
desired activity. We impose different types of restrictions for creating the instance of a
class that must satisfy the relationship it holds with other classes. The defined rules
enable a SecOrP to avoid ambiguity while creating an instance of a class. A SecOrP
executes the activities sequentially; as a result, the security tool that is selected to
execute aci+1 must have access to the output of a security tool that executes aci. For
example, if Splunk requires to analyze the alert log produce by Snort6, it must have

ac1 : Is (Verb) this (Det) a (Det) phishing (Verb) Attack (Noun) ? (Punc) = Is (Validate) Phishing Attack
Subclass: Validate Validate Phishing Validate Phishing Email
ac2: Determine (Verb) whether (Adp) the (Det) data (Noun) associated (Verb) with (Adp) this (Det)  
is (Verb) sensitive (Adj) =   Determine Data Sensitivity
Subclass: Determine Determine Data Determine Data Sensitivity

Fig. 3. The parts of speech tagging of the incident response plan and removing stop words

6 https://www.snort.org/.
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access to the output file of Snort. Similarly, a SecOrP needs to have the authorization to
run and stop every security tool that is integrated into it.

The proposed ontological model enables a SecOrP to interpret activities and
security tools capabilities. Retrieving the information of the non-functional capability
class, SecOrP can interpret the data generated in various forms and also formulate the
input command to invoke a particular tool for auto-execution of the activity.

4.2 Classification of Activities Based on Text Similarity

A SOC adds new types of activities or updates the existing IRP to keep playbook
updated for emerging threat. Considering the available tools to execute IRPs, we
leverage existing NLP and ML techniques to automatically classify the new activity
description according to the activity ontology. It makes SecOrP capable of analyzing an
IRP and transforming the data into a representation that gives both an analyst and
machine insights about the data. We consider the classes of Activity class in different
level separately (Fig. 2). An example of a class on each level includes: level 1
{Remove, Scan, Validate}, level 2 {RemoveSpam, RemoveMalware, ScanFile}, and
level 3 {RemovePhishingEmail, ValidatePhishingEmail}. From the perspective of ML,
this problem is designed as a multiclass supervised text classification problem.

Given a new activity description in an IRP, we design the prediction module to
classify the activity description according to the classes of the ontology. The overall
workflow of building an ML-based prediction module is given in Fig. 4. The dataset is
consist of the activity descriptions labeled according to the ontology. Table 2 shows
examples of the labels that correspond to the activity described in each level of the
ontology for Activity class. Initially, the dataset is divided into training and testing set.
The key components of building the ML model includes text preprocessing, model
selection, model building, and prediction. The model selection and model building
processes work on the training set and the prediction process work on the testing set or
with new activity description.

Text Preprocessing. We start with a corpus of activity description and follow the
standard process of text wrangling and pre-processing. During the preprocessing step,
we remove the null-value, punctuation, stop words, and meaningless words for the
analysis. We perform parts-of-speech tagging of the text before removing the stops
words and only keep the verb, adjective, and noun.

Fig. 4. Development of the prediction module
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Model Selection. We use the preprocessed text to perform k-fold cross-validation to
select the optimal classifiers for the prediction module. As shown in Fig. 4, the model
selection method has four steps: data splitting, n-gram generation, feature transfor-
mation, and model training and evaluation. The preprocessed text in each fold is split
in the training set and validation set of equal sample size. We generate word-based n-
gram for the training and validation set that are merely the combinations of adjacent
words of length n. We combine the n-gram with the Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) for each activity description.

The ML-based classifiers cannot directly process the text documents. Most of them
expect numerical feature vector of fixed size whereas the raw text documents are of
variable length. The features generated from n-gram are presented into Document-Term
Matrix (DTM) where each row corresponds to an activity description and each column
correspond to a word in the term.

In the model training and evaluation steps, we train the four classifiers (Random
Forest, Linear Support Vector, Multinomial Model of Naïve Bayes, and Logistic
Regression) on the training set and then evaluates the model on the validation set using
different evaluation metrics (accuracy, recall, precision, and f1-score). The classifier
with the highest average cross-validation score is selected as an optimal classifier. The
process is repeated for each level (level 1, 2 and 3). The optimal classifiers and feature
representations are returned for all three levels.

Model Building. The model building process uses the whole set of preprocessed
training set to generate the word n-gram. Here n-gram generation and feature trans-
formation are based on the identified feature configuration for each level of class. The
generated n-gram vocabularies are combined with the feature configuration to create
the feature model. The feature model has been saved to transform the data for future
prediction. The extracted features are trained with the optimal classifiers returned in the
model selection process to build the prediction model for each level.

Prediction. The prediction process is used for both testing the trained model and
classifying the new activity description. In this process, the activity descriptions are
first preprocessed and then using the saved feature model transformed to a feature set.
Finally, the features set is used by the saved trained model to determine the class of the
activity description in terms of the ontology for each level.

The prediction module reduces the manual analysis of the activity description by
classifying the activities according to the ontology.

Table 2. Activity description and corresponding class label

Activity description Level 1 Level 2 Level 3

Scan endpoint to see whether
malware was found

Scan ScanEndpoint ScanEndpointMalware

Is this a phishing email Validate ValidatePhishing ValidatePhishingEmail
Isolate the malicious node from
the network

Isolate IsolateMalicious IsolateMaliciousNode
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4.3 Design and Development of the Annotation Module

The new activity description may not always fall in any of the existing activity class of
the ontology. In this context, we are considering these types of description as an outlier.
To identify the outlier description, we perform text-based similarity checking of the
updated or new description with the existing activity description and measure the
cosine similarity. We define a threshold for considering whether the description is an
outlier in terms of the existing set of activity description. If the new description is not
an outlier, then only the description is sent to the prediction module. If the new
description is considered as an outlier, we develop the annotation module to automate
the generation of the possible list of classes following the same set of guideline that is
proposed to design the Activity class in Sect. 4.1. The generated classes are matched
with the existing set of classes, and if none of the classes are found in the ontology, the
annotation module recommends the possible list of the classes to a user. Once a user
selects the corresponding classes, it creates new classes for the activity description and
if required requests for additional details about the classes from the user to keep the
ontology consistent.

5 Interoperability Model for Execution of IRP

A SecOrP may need to invoke a different set of security tools in a different order to
execute a variable sequence of IRPs. For example, one IRP may include an activity
scan endpoint, followed by another activity correlate alerts log, whereas another IRP
may include correlating alerts logs followed by scan endpoint. Both of these IRPs
require the same security tools in different orders. We provide the interoperability
model for auto-execution of the required IRPs, where one tool can understand the
output of other tools. The model also helps SecOrP to interpret the output and input of
different security tools. For example, a SIEM tool needs an output of alerts produced by
IDS and a system log produced by EDR to perform correlation. Figure 5 shows the
overall workflow of the interoperability model starting from gathering a security
incident to notify a SOC. Two key tasks of the interoperability model are: select the
desired tools based on their functional and non-functional capabilities and invoke the
tools to execute an IRP. The key components of the integration framework (ontological

Fig. 5. Workflow of the proposed solution
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model, prediction and annotation module) as shown in Fig. 5 are used to design the
interoperability model.

We have designed a Query Engine (QE) to retrieve the information from the
ontology. Given a set of Security tools S = {s1, s2,…, sm,…}, a list of the required
activities AC = {ac1,ac2,…, ack,…} and a list of capability, F = {f1, f2,…, fj,…}, a
SecOrP looks up for the corresponding IRP for each security incident. For each activity
ack of IRP, SecOrP invokes the QE to search for the corresponding Activity class. If the
activity is found in the ontology, the SecOrP invokes QE to retrieve the capability
required to execute the activity. Considering fj is the required functional capability, a
SecOrP queries to retrieve the security tool that has the functional capability, fj. In case,
multiple tools are available, the SecOrp selects the right tool from the list. In the next
step, the SecOrP retrieves the non-functional capability of the selected security tool to
formulate the input command for instructing the tool to execute the activity. The QE
extracts the necessary information from the ontology to formulate the input for the tool.
After constructing the input command, a SecOrP calls the tool’s corresponding routine
to execute the activities. If the execution is successful, the next activity in the IRP is
executed by following the same sequence of tasks (performed by SecOrP).

Considering the output produced by one tool sm is provided as an input to another
tool sp, a SecOrP checks for the interoperability of the two security tools. The SecOrP
deconstructs the output of sm to formulates the input of the sp. It is only possible if the
tools are interoperable; otherwise, the SecOrP notifies the SOC.

An activity’s description may change continuously; if no class is found for a
particular activity, a SecOrP first invokes the AU unit to determine the possibility of the
new description to be part of the existing ontology. Based on the similarity measure-
ment it either generates the list of classes or invokes the prediction module to classify
the activity description. After getting an appropriate class from the prediction module,
the same steps of looking for the required functional capability and non-functional
capability to execute the activity are carried out.

Following the abovementioned process, a SecOrP can automate the sequence of
activities in an IRP even when changes occur in the underlying execution environment.
The interoperability model enhances the capability of a SecOrP to automate the exe-
cution of an IRP by interpreting the activity, required capability, and tools
interoperability.

6 Experiments and Results

We carried out a set of experiments to assess the feasibility of the proposed prediction
module and interoperability model.

Preparing the Dataset for Prediction Module: Our experimental dataset is based on
the IRP crawled from the website of ServiceNow7 that resulted in 1080 activity

7 https://docs.servicenow.com/: offers on-demand, cloud-based IT service management solution,
forms-based workflow application development, automation workflow, productivity tool for business
user and so forth.
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descriptions. For each activity description, we manually labeled the classes according
to the ontology as shown in Table 2. We have 34 categories under level 1, 67 cate-
gories under level 2 and 74 categories under level 3.

Implementing the Prediction Module: We used the sci-kit-learn, NLTK and spaCy
package of python to build a classifier. For each level, we first separately implemented
four classification algorithms with different hyper-parameter settings. We performed k-
fold cross validation for each configuration by splitting the data set into different training
and validation sets. We used the function GridSearchCV() to select the optimal con-
figuration and perform cross-validation for each classifier. For both Support Vector
Machine (SVM) and Linear Regression (LR), we considered different values for the
regularization parameter (i.e., 0.01., 0.1, 1, 10, and 100). For Multinomial Naïve Bayes
(NB), we considered prior probability of class True and False. For Random Forest (RF),
we considered different values for estimators (i.e., 10, 100, 20, 200, 50, and 500) and the
maximum number of leaves (i.e., 10, 50, 100, and 200). Figure 6(a) shows the results of
different classifiers for the optimal configuration. We examined the performance of the
classifiers in terms of accuracy and F1-score [19]. F1 score is considered more reliable
than accuracy. Accuracy reflects the total of the correct predictions divided by the total
number of cases. F-1 score is the harmonic mean of the Precision and Recall. The
precision represents the total of the correct predictions for each class divided by the total
number of activities predicted for that class. The recall is the correct prediction for each
category divided by the total number that belongs to this category. Comparing the
results of the classifier, we found that RF outperformed other classifiers. We built the
final model with the RF classifier. The optimal configuration for RF (estimators, max-
imum leaf) for levels 1, 2 and 3 are (50, 100), (100, 100) and (10, 200), respectively. We
used 70% of the activities for each level as the training data and 30% as the testing data.
Figure 6(b) shows the results of the RF for different evaluation metrics.

Developing the Interoperability Model: We implemented a Proof of Concept
(POC) system using seven security tools (Snort, Splunk, LimaCharlie, Wireshark,
WinPcap, Microsoft essential, and MISP) to study the viability of the interoperability
model. We described their capabilities in terms of the ontological model and used a list
of IRPs with different activities. We used the network traffic and system logs as the
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Fig. 6. Bar plot of (a) validated weighted average of F1-score for optimal configuration of
different classifiers and (b) testing results of random forest for three levels of class
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input to identify the security incidents. The experimental study used 21 different
capabilities and 9 IRPs with 17 activities. We only considered the activities for which
the capabilities were available. We changed the activities and observed the corre-
sponding changes in the operation’s execution.

Discussion: The results showed that in more than 90% cases (Fig. 6(b)) the prediction
module accurately classified the activity descriptions. The performance in classifying
the activities in level 2 and 3 is lower than that in level 1. The reason for this appears to
be the number of members in these classes is lower than that in level 1. The more input
data we can provide to the classifier the more accurate results it will produce. Besides,
the activity description was passed to the prediction module only when the text sim-
ilarity was found, which makes the classifiers less error-prone towards the new activity
description that does not belong to any of the existing classes.

Out of the 17 IRPs, the POC was able to automate 15 IRPs successfully and 2 IRPs
partially. While modifying the activity descriptions, there were two activities (update
email protection software and detect phishing email) for which security tools were not
available. For these two activities, the interoperability model was unable to find suit-
able security tools, thus failed to automate the execution of that particular IRPs. Except
for these two activities, the POC automatically (a) retrieved the information from the
developed ontology; (b) generated the configuration details to call the desired security
tools; and (c) thus enabled interpretability and interoperability among different security
tools and SecOrP.

Threats to Validity: We developed the ontology based on freely available and open
source security tools’ capabilities, and activity descriptions, which might not fully
represent the situations of scenarios of an organization. Considering the development of
an ontology is an incremental process, a human expert can easily extend the ontology
to incorporate the tools used in an organization. The selected optimal may not guar-
antee the highest performance for classifying the new and updated activity descriptions
since an infinite number of configurations are available to tune the hyper-parameters of
ML classifiers. The selected classifiers might not be the best one, but it provides a
learning-based approach to classify the activity description which can be further
improved and extended with different classifiers and configurations. The model we
built is retrainable and can be easily trained with the new dataset.

7 Conclusion

Given the widespread adoption of SecOrP over the last couple of years, there is an
increasing demand for self-adaptive SecOrPs. Our research purports to devise a solu-
tion that can enhance the interpretability and interoperability of security tools inte-
grated into a SecOrP. The proposed approach allows a SecOrP to select the required
security tools that are interoperable for auto-execution of an IRP. We have introduced
an ontological model to formalize the security tools, their capabilities, and the activities
of an IRP. A learning-based prediction module is proposed to reduce the manual work
of security staff to define the classes for activity in a playbook. The proposed inter-
operability model successfully automates the execution of most of the IRPs at runtime.
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In future work, we will extend the system to automate the generation of the APIs from
the ontology. We also aim to use the semantic definition of tools capabilities to auto-
create the APIs when new security tools with new capability are integrated, and design
a probabilistic model for selecting and integrating security tool.
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