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Abstract. Process models are an important means to capture informa-
tion on organizational operations and often represent the starting point
for process analysis and improvement. Since the manual elicitation and
creation of process models is a time-intensive endeavor, a variety of tech-
niques have been developed that automatically derive process models from
textual process descriptions. However, these techniques, so far, only focus
on the extraction of traditional, imperative process models. The extrac-
tion of declarative process models, which allow to effectively capture com-
plex process behavior in a compact fashion, has not been addressed. In
this paper we close this gap by presenting the first automated approach
for the extraction of declarative process models from natural language.
To achieve this, we developed tailored Natural Language Processing tech-
niques that identify activities and their inter-relations from textual con-
straint descriptions. A quantitative evaluation shows that our approach
is able to generate constraints that closely resemble those established by
humans. Therefore, our approach provides automated support for an oth-
erwise tedious and complex manual endeavor.

Keywords: Declarative modelling · Natural language processing ·
Model extraction

1 Introduction

In many business processes the activities are executed in a typical order, without
considerable deviations or exceptions. These business processes can be well cap-
tured using traditional, imperative business process modeling notations, such as
the Business Process Model and Notation (BPMN), because the resulting model
specifies which execution orders are allowed. However, other business processes,
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Table 1. Description and notation of considered Declare constraints

often referred to as knowledge-intensive business processes, are more complex.
Their execution orders cannot be fully specified in advance [10]. Such processes
are much better captured using declarative process models, since these do not
depend on an explicit definition of the allowed behavior [4]. Instead, they use
constraints to define the boundaries of the permissible process behavior. This
enables declarative models to represent complex processes in a compact way.
What both types of process models have in common is their general usefulness
for effectively conveying how business processes are executed and for analyzing
business processes [13].

Nevertheless, the elicitation and creation of process models does not come
without problems. First, many process actors and domain experts lack the knowl-
edge necessary to establish process models themselves [15,30]. Second, the elici-
tation of process models represents a highly time-consuming task [17]. As a result
of both these issues, a wealth of process-related information is often captured in
more accessible representation formats, such as textual documents [3,30]. Rec-
ognizing the widespread use and relevance of textual documents to capture pro-
cess information, a variety of techniques have been developed that automatically
extract process models from natural language (e.g. [15,16,31]). However, these
existing techniques focus solely on imperative process models. Therefore, there
is currently no technique available that can extract declarative process models
from natural language text.

To overcome this gap, we use this paper to introduce the first approach for
the automatic extraction of declarative process models from natural language.
To achieve this, we developed tailored Natural Language Processing (NLP) tech-
niques that identify activities and their inter-relations from textual constraint
descriptions. By considering the semantics of these extracted components, we
subsequently generate declarative constraints aiming to capture the logic defined
in the textual description. A quantitative evaluation shows that our approach is
able to generate constraints that show a high resemblance to those established
manually. As such, our automated approach supports an otherwise tedious and
complex manual endeavor.

The remainder of this paper is organized as follows. Section 2 introduces
declarative process modeling and the challenges associated with the automatic
extraction of declarative constraints from text. Section 3 presents our proposed
approach. Section 4 describes a quantitative evaluation in which we demonstrate
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the usefulness of our approach. Section 5 elaborates on related work before Sect. 6
provides a conclusion and discusses directions for future research.

2 Problem Illustration

This section provides essential background regarding declarative process model-
ing (Sect. 2.1) and introduces core challenges associated with the extraction of
declarative models from natural language (Sect. 2.2).

2.1 Declarative Modeling

A declarative model represents the behavior of a process by means of constraints,
i.e., temporal rules that specify the conditions under which activities can or
cannot be executed. For the purposes of this paper, we focus on Declare, one
of the most well-established declarative process modeling languages to date [4].

Declare provides a standard library of templates (repertoire [9]), which are
constraints parametrized over activities. In this paper, we consider five of the
most commonly occurring templates [14], depicted in Table 1, focusing in par-
ticular on the ones that are topmost in the subsumption hierarchy of Declare
constraints [9]. Existence constraints are unary constraints, i.e., predicating on
single tasks. For instance, Init(a) and End(b) establish that all process instances
must begin with activity a and terminate with b, respectively. Relation con-
straints are binary and relate the execution of an activity to the occurrence of
another one in the same instance (i.e., in one particular execution of the pro-
cess). For example, Response(a, b)requires that if a is carried out, then b must
be eventually performed.Precedence(a, b) imposes that b cannot be executed if
a has not occurred earlier in the process instance. Succession(a, b) is a so called
mutual relation constraint that expresses the joint conditions of Response and

Table 2. Exemplary natural language descriptions and Declare constraints

ID Description Constraint

S0 The process starts when a claim is received. Init(receive claim)

S1 A claim must be created before it can be approved Prec.(create claim, approve claim)

S2 Before a claim is approved, it must be created Prec.(create claim, approve claim)

S3 Creation of a claim should precede its approval Prec.(create claim, approve claim)

S4 If a claim is approved, then it must have been created first Prec.(create claim, approve claim)

S5 A claim must be created before it can be approved Prec.(create claim, approve claim)

or rejected Prec.(create claim, reject claim)

S6 When an order is shipped, an invoice can be sent Prec.(ship order, send invoice)

S7 When an order is shipped, an invoice must be sent Resp.(ship order, send invoice)

S8 When an order is shipped, an invoice must be sent first Prec.(send invoice, ship order)

S9 An invoice cannot be paid before it is received NotScsn.(pay invoice, receive invoice)

S10 An invoice can be paid before it is received Scsn.(pay invoice, receive invoice)

S11 The process ends when the invoice has been paid End(pay invoice)
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Precedence over a and b. Aside from these five templates, we also consider their
negative counterparts. For instance,NotSuccession(a, b) is a negative relation
constraint which states that if a is executed, then b cannot be carried out any
longer.

2.2 Extraction Challenges

To extract declarative constraints from natural language, several challenges must
be addressed. These challenges range from identifying sentences that contain
constraints to extracting specific constraints from individual sentences. In this
work, we primarily focus on challenges related to the latter type. We use the
exemplary constraint descriptions from Table 2 as a means to illustrate six core
challenges addressed in this work. Note that the majority of these challenges are
caused by the flexibility of natural language, which allows the same Declare
constraint to be described by a wide variety of sentences.

C1: Synonymous terms and phrases. Synonyms represents terms that have
an equivalent meaning. For instance, the synonymous verbs “end ”, “complete”,
and “finalize”, can all be used to indicate the final step of a process, such as
seen for S11. On a higher level of granularity, entire phrases or sentences may
be used to describe the same concept. This requires an extraction approach to
analyze and recognize the meaning of a sentence, rather than simply relying
on a number of specific terms.

C2: Description order. Linguistic variability also manifests itself in the order
in which a sentence describes the constraint’s components. Some descriptions,
such as S1 and S3, use a chronological order, first describing the create claim
task, whereas S2 and S4 use the reverse order. To extract the appropriate con-
straints from these descriptions, it is therefore key to recognize the semantic
relations that exist among the described actions. Crucially, this relation can
depend on small textual cues, such as the inclusion of the word “first” at the
end of sentence S8. In this case, a single term fully reverses the semantics of
the constraint in comparison to S7.

C3:Noun-based actions. Identifying and extracting the actions contained in a
textual description represents a core task of process model extraction. State-
of-the-art approaches (cf. [15]) that address this task generally assume that
activities can be identified by considering verbs in sentences, i.e., verb-based
activity descriptions such as “a claim must be created ” in S1. However, in the
case of declarative constraint descriptions, this assumption is often violated.
They also describe activities using noun-based forms, such as “creation of a
claim” in S3. This presents a considerable challenge, since this means that
existing extraction techniques cannot be applied in our context.

C4: Constraint restrictiveness. The differences between the binary con-
straints Response(a, b), Precedence(a, b), and Succession(a, b) are con-
siderable from a semantic perspective. However, the differences in their tex-
tual descriptions can be minor. Compare, for instance, sentences S6 and S7

from Table 2. The term “can” in S6 indicates an optional follow-up to “ship
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order,” i.e., Precedence(ship order, send invoice). By contrast, the term “must”
in S7 indicates that send invoice has to occur, resulting in a Response con-
straint. To be able to appropriately differentiate among these constraint types,
an extraction approach should identify terms that indicate how restrictive a
constraint is meant to be.

C5: Negation. The ability to recognize negation in constraint descriptions is
crucial, because the presence of a single negating term can reverse the seman-
tics of the expression. This can, for example, be observed in description S9, in
which the use of “cannot” completely changes the meaning of the constraint
in comparison to S10.

C6: Multi-constraint descriptions. Single sentences may describe more than
one declarative constraint. This commonly manifests itself through the use of
coordinating conjunctions, indicated by terms such as “and ” and “or ”. These
terms can be used to link semantic components of a description that can
indicate additional constraints. For example, consider the description S5.
This description is identical to S1, aside from the conjunction at the end,
which reveals that the Precedence constraint should be applied to both
the approval and rejection of a claim.

Next, we describe our extraction approach, which aims to overcome these chal-
lenges.

3 Extraction Approach

Figure 1 provides an overview of the three-step approach we propose to extract
declarative constraints from textual descriptions. First, linguistic processing is
performed to extract semantic components from a constraint description. Those
components are specifically targeted at the extraction of declarative constraints,
e.g., the terms that enable differentiation among the various constraint types.
By building on general-purpose NLP techniques, our approach is able to deal
with a broad variety of linguistic patterns used in constraints (challenges C1
and C2). Second, our approach analyzes the semantic components in order to
identify the activities named in the description. A main novelty in this step is
the explicit consideration of noun-based activities, which addresses challenge C3.
Finally, in the third step, our approach generates constraints based on identified
activities and other semantic information. This step particularly focuses on the
identification of subtle semantic differences, which are crucial for the proper
differentiation among constraint templates (challenge C4) and negation (C5).
The final outcome consists of one or more declarative constraints (challenge
C6).

3.1 Step 1: Linguistic Processing

In the first step of our approach, we employ widely-used NLP techniques to
identify semantic components that are of specific importance to the extraction
of declarative constraints. Figure 2 provides an overview of those components,
which are identified as follows.
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Fig. 1. Overview of the extraction approach

Fig. 2. Main semantic components extracted in the linguistic-processing step

Verbs. Verbs convey actions, occurrences, or states in natural language texts,
such as “to create”, “to occur ”, and “to be”. So-called part-of-speech taggers are
well-suited to identify them. They assign a tag indicating a word category to
each word in a natural language text [20]. An example of such a tagger is the
widely employed Stanford parser [21]. To illustrate the usefulness of taggers for
the identification of verbs, consider the tags assigned by the Stanford Parser on
the words of sentence S5:

“A/DT manager/NN must/MD create/VB a/DT claim/NN before/IN it/PRP
can/MD be/VB accepted/VBN or/CC rejected/VBN ./.”

Since the explanation of all tags goes beyond the scope of this paper, we focus
here on the tags that indicate verbs. In particular, the /VB tag indicates the
base form of a verb and the /VBN tags indicate the past participle of a verb.
Therefore, by considering part-of-speech tags we can extract three main verbs
from the description: “create”, “accepted ”, and “rejected ”.

Subjects and Objects. The subject of a verb indicates the entity that performs
the action. In a process context, the subject typically corresponds to the actor
executing an activity (e.g., a manager who creates a claim). Similarly, the object
of a verb indicates the entity that is acted upon. In a process context, the object
of a verb often corresponds to the business object that is affected by an activity,
e.g. the claim business object being created.

For the identification of subjects and objects, we employ NLP techniques that
compute dependency grammars for natural language texts. Those grammars cap-
ture the grammatical relationships among the words in a sentence using depen-
dency relations. Typed dependency relations, such as the Stanford relations [7],
describe grammatical relations of a certain type that exist between two words.
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For instance, the relation nsubj(create,manager) denotes that “manager ” is
the subject performing the verb “create”. Table 3 provides an overview of the
dependency relations obtained for constraint S5.

The most important Stanford relation used to extract subjects is the afore-
mentioned nsubj relation. To extract objects, we consider two relations: dobj
and nsubjpass. The dobj relation indicates the direct object of a verb, as in
the relation dobj(create, claim) from Table 3. The nsubjpass relation refers to
the synthetic subject in a passive clause. However, from a process perspective,
this synthetic subject actually fulfils the same role as an object. For example,
the phrase “A claim is created ” contains the relation nsubjpass(create, claim),
which is equivalent to the dobj relation for active phrases.

Specifiers. We augment the extracted verbs, subjects, and objects with various
specifiers. In particular, we focus on the extraction of modal verbs, negations, and
prepositions. By employing the previously introduced grammatical dependencies,
we identify these as follows:

Modal verbs. Modal verbs are auxiliary verbs that are used to indicate if some-
thing is certain, probable, or possible (or not). The principal modal verbs
in English are: can/could, may/might, must, will/would and shall/should.
Modal verbs play a key role in our approach, because they are an impor-
tant means to distinguish among various declarative constraints, such as
Response and Succession (challenge C4). Therefore, we explicitly extract
modal verbs and associate them with the related main verbs. For example, in
sentence S5 we use the aux relation to relate “must” to the verb “created ”.

Negation. As indicated in challenge C5, the recognition of negations in constraint
descriptions is important because failing to do so can lead to the identification
of a constraint that is completely the opposite of what is intended.
To identify negated verbs, we use the neg dependency relation. For example,
for constraint description S9, “An invoice cannot be paid before it is received”,
the relation neg(paid, not) indicates the negation. By extracting this infor-
mation, we are able to properly identify negative constraints.

Prepositions. Prepositions are terms used to specify a relationship between a
noun and other parts of a sentence. In the context of constraint descrip-

Table 3. Grammatical dependencies for constraint S5

Relation Meaning Relation Meaning

det(manager,A) determinant nsubjpass(accepted, it) passive subject
nsubj(create,manager) subject aux(accepted, can) auxiliary verb
aux(create,must) auxiliary verb auxpass(accepted, be) passive auxiliary
det(claim, a) determinant advcl(create, accepted) adverbial clause
dobj(create, claim) object cc(accepted, or) coordination
mark(accepted, before) marker conj(accepted, rejected) conjunct
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tions, prepositions are commonly used to indicate ordering relations that
exist between activities. For instance, in constraint description S5, the term
“before” is used to describe a relation between “a claim is approved ” and
“must create a claim.” In particular, it denotes that the latter part must occur
before a claim’s approval. Thus, we augment nouns with information on their
prepositions. To that end, we primarily use the mark and advmod Stanford
dependencies, such as the mark(accepted, before) included in Table 3.

Interrelations. Finally, our approach extracts information regarding two types
of interrelations that can exist among verbs in a constraint description: adverbial
clauses and conjunctions.

Adverbial clauses. Adverbial clauses are dependent clauses that modify other
entities in a text. In the case of constraint descriptions, these can be used
to describe relations that exist among verbs. For example, Table 3 shows the
relation advcl(create, accepted), which indicates that the phrase containing
the former term (“A manager must create a claim” represents a specifier for
the phrase containing the latter term “it can be accepted ”). In particular, it
specifies a temporal relation between the two phrases. In the remainder, we
will denote a relation between two verbs v1 and v2 as rel(v1, v2).

Coordinating conjunctions. Conjunctions indicate relations between two entities,
which are important when handling multi-constraint descriptions (C6). Com-
mon conjunctions are indicated by “and ” and “or ”. For example, in constraint
S5, the term “or ” indicates that there is a relation between “accepted ” and
“rejected ”. By identifying this relation, we recognize that “rejected ” is in the
same adverbial relations as “accepted ”, i.e., rel(created, rejected) is derived
from the adverbial relation rel(created, accepted) and the conjunctive relation
conj(accepted, rejected).

After this linguistic processing step, which covers all the linguistic components
just discussed, we use the extracted components to identify the activities con-
tained in a constraint description.

3.2 Step 2: Activity Extraction

Activities denote core constructs in any process description, thus also for con-
straints in declarative process modeling. An activity in a process description
generally refers to an action that is performed on some business object, option-
ally by a specified actor. For example, in constraint S1, we observe the activities
“create claim” and “approve claim”. As indicated by challenge C3, to properly
extract activities, we need to consider both verb-based and noun-based activities.

Verb-Based Activities. For the extraction of verb-based activities, we employ
the state-of-the-art technique used by Friedrich et al. [15], which utilizes the
semantic components identified in the previous step. The verb corresponds to
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the action, the verb’s subject to the actor, and the verb’s object to the activity’s
business object. For example, in Sect. 3.1, we analysed the verb “created ”, having
“manager ” as a subject and “a claim” as the object. This translates to the
create claim activity, performed by a manager.

Noun-Based Activities. A noun-based activity is a noun phrase in a con-
straint description that corresponds to a process activity, such as “creation of
a claim” and “its approval ” in constraint S3. The main concern regarding their
extraction is the ability to recognize the situations in which they occur. There-
fore, we focus on the identification of verbs that describe the flow of a process,
rather than activities. In sentence S2, for instance, the verb “precedes” describes
a flow relation between its subject, “creation of the claim”, and its object, “its
approval ”. To recognize such cases, we decided to use an established set of so-
called temporal verbs [5, p. 39]. This taxonomy includes verbs such as: to start,
to proceed, to end, to finish, to follow, to happen. We augment this list with
some of their synonyms, such as to occur, to complete, and to finish. When our
approach recognizes that an extracted verb corresponds to a temporal verb from
the aforementioned list, the approach generates activities based on the subject
and object of the verb (if any). For example, the approach would extract the
claim creation claim approval activities from sentence S3. Furthermore, for noun-
based activities stemming from verbs with both a subject and an object, we
extract a semantic relation between those components. For example, in S3, we
recognize that a relation exists between its activities, i.e., the approach extracts
rel(claim creation, claim approval).

3.3 Step 3: Constraint Generation

In the final step of our approach, we generate declarative constraints based
on the extracted activities and their semantic interrelations. Algorithm 1 shows
the main flow of this generation step. The algorithm takes as input a relation
rel(a, b) that exist between two extracted activities. These relations result from
the verb interrelations, as identified in Sect. 3.1, and from the noun-based activity
extraction, described in Sect. 3.2.

Notably, our approach can handle multi-constraint descriptions (chal-
lenge C6) because we apply the algorithm to all relations rel(a, b) identified
in a description. For instance, we identify two relations in sentence S5, namely
rel(create claim, accept claim) and rel(create claim, reject claim). As a result, our app-
roach generates two declarative constraints out of a single sentence.

In the remainder of this section, we will describe the core aspects of our
algorithm. We examine (i) the generation of unary constraints (lines 3–8), (ii)
the determination of the temporal order in binary constraints (lines 9–11), (iii)
the differentiation among precedence, response, and succession constraints (lines
12–18), and (iv) the identification of negated constraints (lines 19–20).
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Algorithm 1. Declarative constraint generation
1: function GenerateConstraint
2: Input: rel(a, b) � Relation between actions a and b
3: metaAct ← ⊥; otherAct ← ⊥; � Placeholders for unary constraints
4: if isMetaAction(a) then metaAct ← a, otherAct ← b; � Check for meta-activities
5: if isMetaAction(b) then metaAct ← b, otherAct ← a;
6: if metaAct �= ⊥ then � A unary constraint should be generated
7: if hasStartVerb(metaAct) then return Init(otherAct)
8: if hasEndVerb(metaAct) then return End(otherAct)
9: if reversedDirection(rel(a, b)) then � Check temporal order of binary constraint
10: act1 ← b; act2 ← a
11: else act1 ← a; act2 ← b

12: template ← ⊥
13: if isMandatory(act1) ∧ ¬isMandatory(act2) then � Determine binary constraint template
14: constraint ← Precedence(act1, act2)
15: if ¬isMandatory(act1) ∧ isMandatory(act2) then
16: constraint ← Response(act1, act2)
17: if isMandatory(act1) ∧ isMandatory(act2) then
18: constraint ← Succession(act1, act2)
19: if hasNegation(act1, act2) then � Check if template should be negated
20: constraint ← NotSuccession(act1, act2)
21: return constraint

Unary Constraint Generation. Unary relations correspond to the Init(a)
and End(a) constraint templates, which identify the start and end points in a
process. To identify those types of constraints, we recognize that their constraint
descriptions describe activities from the viewpoint of the process itself, rather
than from the viewpoint of an actor in the actor. Consider, for instance, the
sentence S0: “The process starts when a claim is received.” In this description,
the subject, i.e., the actor that performs the start activity, is the process, rather
than, for instance, a department or a manager.

To generate the unary Init and End constraints, we identify the involvement
of such process subjects. We achieve this by checking the actor of an activity
against a set of process-related terms (employed by Friedrich et al. [15]), which
includes terms such as “process”, “instance”, and “case”. When such a process
subject occurs as the actor in a description, we establish that the description
contains a sort of meta-action related to the process flow (lines 3–5). If a meta-
action is detected, we then determine if the constraint describes Init or End
by comparing the verb to synonyms of “start” and “end ” in WordNet [25] (lines
7–8). As a result, our approach generates the constraints Init(receive claim) for
description S0.

Binary Constraint Direction. A crucial aspect for the correct extraction of
binary constraints, such as Response(a, b) and Precedence(a, b), is to rec-
ognize which activity in a description corresponds to a and which to b. Such
a recognition is not trivial because, considering two activities, the correspond-
ing propositions can be put in different points of the sentence though keeping
the same temporal order. For instance, description S1, “A claim must be cre-
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ated before it can be approved ”, describes activity a (i.e., create claim) prior to
b (approve claim). In S2, propositions are switched but the same constraint is
described: “Before a claim is approved, it must be created”. We shall name the
switch of propositions with respect to the temporal order as reversed direction.
To properly recognize constraint directions, we consider three aspects that can be
present in textual constraint descriptions: temporal prepositions, temporal verbs,
and tenses.

Temporal prepositions. The prepositions that we extracted in step 1 can represent
valuable indicators. In particular, prepositions can correspond to a subset of
temporal prepositions, which indicate different temporal relations that exist
between components of a sentence, in our context between activities. For
this, we build on an established classification of temporal prepositions.1 In
our approach, we consider the preceding and following subclasses. The former
contains prepositions such as “ahead of ”, “before”, and “prior to”, whereas the
latter includes “after ”, “beyond ”, and “subsequent to”.
To illustrate the use of temporal prepositions to our aim, consider again
sentence S2. In step 1 of our approach, it identifies “before” as a preposition
of “accepted ” and an interrelation between “accepted ” and “created ”. Given
that the preposition “before” belongs to the class of preceding prepositions, our
approach is able to recognize that “accepted ” should be preceded by its related
verbs, i.e. by “create”. Therefore, it accurately identifies that a corresponds
to create claim and b to accept claim.

Temporal verbs and tenses. For descriptions involving noun-based activities, the
process verbs identified in Sect. 3.2 can provide valuable indicators of reversed
directions. Consider, for example, constraint description S3, “Creation of a
claim should precede its approval.” In this text, the verb “precede” corre-
sponds to a temporal verb from the taxonomy described in Sect. 3.2. This
verb specifies that “claim creation” should occur before the “claim approval ”.
Conversely, if the text had used the verb “follow ” rather than “precede”, our
approach would have identified the reversed direction.
The way in which temporal verbs are used plays a crucial role here. Most
importantly, we differentiate between active forms, e.g. “precede,” and passive
forms, e.g. “is preceded by.” As an illustration, consider a sentence S′

3 that
reads “Creation of a claim is preceded by its approval.” The replacement of an
active verb (as seen in S3) with its infinitive form yields exactly the opposite
temporal order between the two activities. The identification and selection
of the proper one is included in lines 9–11. Once it has been determined, we
finally need to identify the correct constraint template.

Binary Constraint Templates. For the binary constraint templates
Precedence, Succession, and Response, a key aspect of their accurate elic-
itation is to recognize what elements distinguishes them. All three constraint
templates denote a temporal order between activities a and b. However, the key
1 See: www.clres.com/db/classes/ClassTemporal.php.

www.clres.com/db/classes/ClassTemporal.php


376 H. van der Aa et al.

difference is in the restrictions that the constraints impose. Precedence(a, b)
states that b can only occur if a has already been performed. Response(a, b)
indicates the opposite, namely that if a has occurred, then b must follow at
some stage. Finally, Succession(a, b) lies at the intersection of the previous
constraints, and enforces that neither a nor b can occur independently from each
other.

To identify these different templates in a textual constraint description, we
identify indicators of restrictiveness in the text. In particular, we set out to
determine whether the tasks involved in a constraint are mandatory or optional
(as indicated in lines 12–18). Specifically, we consider the use of modal verbs,
as discussed in Sect. 3.1. The modal verbs can, could, may, and might indicate
that something is optional, whereas must, will, would, shall, and should gener-
ally specify that an activity is mandatory. Consider, for instance, the difference
between the constraint descriptions S6 and S7 from the running example. These
descriptions differ because S6 states that “an invoice can be sent” while S7

states that “an invoice must be sent”. For these constraints, the replacement
of the optional modal “can” with the mandatory modal “must” means that S7

describes a Response constraint, rather than Precedence. We use the pres-
ence of modals as follows to determine the template of the constraint.

Precedence(a,b). If a has an associated mandatory modal, whereas b
is associated with an optional modal, then this yields the constraint
Precedence(a, b) because a is a mandatory prerequisite for the optional
follow-up b. This is, for instance, seen for constraint S1, which states that “A
claim must [mandatory] be created, before it can [optional] be accepted.”

Response(a,b). If b is accompanied by a mandatory modal whereas a either
has an optional or no modal, then the approach recognizes a Response(a, b)
constraint, such as seen for constraint S7: “When an order is shipped [no
modal], an invoice must [mandatory] be sent.”

Sussession(a,b). Finally, using the same reasoning, when both activities are
accompanied by mandatory modal verbs, a Succession(a, b) constraint is
generated.

Negation. Finally, we also consider the identification of negation in con-
straints (lines 19–20). In Sect. 3.1 we described how we identified negated verbs
based on dependency relations. For these cases, we return a NotSuccession
constraint, as it is the negative form of Succession, hence, a fortiori, of
Response and Precedence. For example, for constraint description S9

(“An invoice cannot be paid before it is received”), our approach recog-
nizes that this is a negative constraint. As a result, our approach returns
NotSuccession(pay invoice, receive invoice).
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Table 4. Overview of the test collection

Source Init End Precedence Response Succession Negation Multi-cons. Total

Declare [26] 1 0 0 3 0 0 0 4

DCR graphs [18,32] 1 1 12 7 2 2 6 22

Declare mining [11,24] 2 0 4 4 3 0 1 12

General descriptions [29] 7 3 32 5 2 2 20 49

Syntax variation 0 0 15 0 0 0 0 16

Full collection 11 4 63 19 7 4 27 103

4 Evaluation

To demonstrate the capabilities of our extraction approach, we conduct a quan-
titative evaluation by comparing automatically extracted declarative constraints
to a manually created gold standard. The evaluation goal is to learn how well the
automated approach approximates constraints created manually. If our extrac-
tion approach can automatically generate definitions that closely resemble those
created manually by experts, it seems fair to regard our approach as a viable
and efficient alternative to an otherwise time-consuming and complex manual
endeavor. The data collection and prototype used in this evaluation are both
publicly available.2

4.1 Test Collection

To compose the test collection used for our evaluation, we obtained textual con-
straint descriptions from various industrial and academic sources. The sources
can be divided into two sets: (1) sources that specifically describe declarative
process models, e.g., works on Declare [26] and DCR graphs [18,32], and
(2) sources that provide more general, i.e., not specifically declarative, pro-
cess descriptions, stemming from Sanchez et al. [29]. From these sources, we
derived the constraint descriptions that relate to the declarative constraint types
included in our scope.

The final collection consists of 103 constraint descriptions, of which Table 4
present the main characteristics. All further details of the collection are publicly
available at the aforementioned link. The descriptions included in the collec-
tion vary highly in terms of the syntax used to describe constraints. On the
one hand, this is because the descriptions stem from different sources and, thus,
from different authors. On the other hand, the syntactic differences were inten-
tionally created. A researcher, who is independent of the team involved in the
development of the proposed approach, established 15 variations of the con-
straint Precedence(create claim, approve claim), some of these variations are used
as part of the running example in Table 2. Due to these factors, we believe that
the test collection is well-suited to achieve a high external validity of the evalu-
ation results.
2 See: https://github.com/hanvanderaa/declareextraction.

https://github.com/hanvanderaa/declareextraction
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4.2 Setup Table 5. Overview of the evaluation results
Template Cases Precision Recall F1-score
Init 11 0.75 0.82 0.78
End 4 0.88 0.88 0.88
Precedence 63 0.78 0.71 0.74
Response 19 0.80 0.77 0.75
Succession 7 0.68 0.68 0.68
Negation 4 1.00 1.00 1.00
Single-constraint 74 0.79 0.82 0.80
Multi-constraint 27 0.74 0.61 0.67
Type recognition 132 0.86 0.86 0.86
Overall 103 0.77 0.72 0.74

To be able to compare the gen-
erated and manually extracted
declarative constraints, we con-
ceptualize the extraction of
declarative constraints as a
template or slot filling prob-
lem [20]. As a result, each
declarative constraint consists
of a number of slots, e.g., the
constraint Succession(a, b), con-
tains three slots: (1) a template slot, denoting that the template of the constraint
is Succession, (2) a slot for task a (3) a slot for task b. When a constraint
description contains multiple constraints, as seen for constraint S5, the number
of slots to be identified increases alongside the number of constraints. Given the
nature of a slot filling problem, we can quantify the performance of our app-
roach by computing the well-known precision and recall metrics. Using A to
denote the set of slots filled by our approach and G for the slots filled in the gold
standard, precision reflects the fraction of slots that our automated approach
filled correctly according to the gold standard (|A∩G|/|A|). Recall represents the
fraction of slots filled in the gold standard that were also correctly filled by our
approach (|A∩G|/|G|). Furthermore, we report the F1-score as the harmonic mean
of precision and recall.

4.3 Results

Table 5 provides an overview of the most important evaluation results. The table
shows that our approach achieves an overall precision of 0.77 and a recall of 0.72,
yielding an F1-score of 0.74. In the following, we investigate the results in detail
by considering how well our approach deals with the various challenges posed in
Sect. 2.

C1, C2: Synonymous terms and description order. Challenges C1 and
C2 both relate to the variety of natural language descriptions that can be
used to describe a constraint. The ability of our approach to deal with these
challenges is, among others, reflected in the results achieved for the 15 con-
straints we introduced to test syntax variation. For those 15 descriptions,
which all describe the same constraint, our approach achieves precision and
recall scores of 0.88. This demonstrates that by building on NLP techniques
such as parsers, our approach is able to handle linguistic variation well.

C3: Noun-based activities. As described in Sect. 3.2, we have developed a
novel approach to extract activities from texts that also extracts noun-based
activities. The value of this extraction approach can be determined by com-
paring our approach’s results to those results that would be obtained if we
just relied on existing techniques, i.e., if we just identified activities using the
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extraction approach from [15]. By employing that activity extraction tech-
nique, a precision of 0.77 and recall of 0.66 are achieved. By using our app-
roach the recall thus increases from 0.66 to 0.72. This illustrates that the addi-
tional consideration of noun-based activities helps to improve performance.

C4: Constraint restrictiveness. As shown in Table 5, our approach identifies
constraint templates correctly in over 86% of the cases. This means that it
is well able to differentiate among the different levels of restrictiveness for
constraints. An in-depth analysis of the results also reveals that the template
identification errors are largely related to other problems of the approach.
For instance, for cases when the activities are not extracted properly, also the
constraint template is not identified correctly.

C5: Negation. As shown in Table 5, our approach successfully identifies the
negation present in constraint descriptions and, furthermore, does not indi-
cate negation when it is not present (i.e., no false negatives). Nevertheless, it
should be taken into account that only 4 cases in the test collection contain
negated constraints.

C6: Multi-constraint descriptions. Finally, we observe that the ability of
our approach to deal with multi-constraint descriptions varies. In Table 5, it
becomes clear that our approach achieves a lower recall for multi-constraint
descriptions than for single-constraint ones (0.61 versus 0.82). However, we
also observe that our approach is able to deal with descriptions contain-
ing multiple constraints of a single template rather well. Its performance for
descriptions that pertain contain multiple templates, e.g. a Response and
a Succession, is considerably lower. These descriptions are generally longer
and, as a result, typically more problematic for the NLP techniques on which
we build.

5 Related Work

Textual documents, such as work instructions and process descriptions, repre-
sent a valuable source of information in the context of business process manage-
ment [3]. Their value has led to the recent development of a variety of analysis
techniques that focus on process information contained in text, such as tech-
niques that compare process models against textual descriptions [1,29], as well
as techniques that consider textual descriptions for process querying [22,23], pro-
cess matching [6,33], and conformance checking [2]. Closely related to the goal
of this paper are existing techniques that focus on the extraction of imperative
process models from natural language texts [15,16,27], of which the technique
by Friedrich et al. [15] can be regarded as the state-of-the-art in this context [27].
Finally, recent research has focused on the identification and extraction of rules
from regulatory documents [12,34].

Our proposed approach provides unprecedented contributions related to the
extraction of declarative process models from text, specifically the identification
of constraint order (Challenge C2), the extraction of noun-based activities (C3),
the identification of constraint types (C4), and the handling of multi-constraint
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descriptions (C6). Though existing techniques are not suitable to fully address
them, the integration of the aforementioned advancements [12,34] draws plans
for our future work, as discussed in the conclusion.

6 Conclusion

This paper presented the first approach for the automated extraction of declar-
ative process models from textual descriptions. Our approach builds on and sig-
nificantly extends existing NLP techniques in order to identify process-related
information in constraint descriptions and transform these into declarative con-
straints. A quantitative evaluation demonstrates that our approach achieves a
high accuracy when compared to manually established constraints. Therefore,
our approach provides automated support for an otherwise complex and tedious
manual task, making the declarative modeling paradigm more accessible to a
wider audience.

In future work, we aim to extend our approach in several directions. First, we
aim to enhance our technique towards a richer repertoire of templates, consider-
ing subsumed constraint types such as alternate and chain templates, as well as
by including branched constraints [8]. Second, we intend to augment the control-
flow based constraints with other perspectives by focusing on the extraction of
data-based and temporal declarative constraints. Finally, we will go beyond the
consideration of individual sentences in isolation. Among others, this will involve
(i) the extraction of constraints that span multiple sentences, (ii) identifying
which sentences actually contain constraints, and (iii) relating extracted con-
straints to each other. Natural language processing techniques developed in the
contexts of requirements engineering [19,28], imperative process model extrac-
tion [15], and semantic matching [1] may all help in this regard. As a result,
this will enable the extraction of declarative models from full documents, such
as process documentations and normative texts.
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