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Abstract. Advances in computer graphics allow to simulate ever growing
virtual worlds with a higher level of realism which can even be created in real
time. An integral part of these worlds are the terrains which are the physical
features of the land. Despite the capabilities of modern computer systems, the
creation process still demands high amounts of man-hours. To automatically
generate coherent, realistic-looking and useful content is still and open problem,
and research focuses on how to automatize these processes while allowing users
to exert a certain degree on control over the generated content. This survey goes
over the different techniques used for the automatic generation of terrains, which
include different land formations such as mountains, valleys, rivers, shores, etc.
These terrains have different uses such as simulation or entertainment which
translates on different needs over the desired realism of the terrain and the
degree of control that users have. Through time, different approaches have been
proposed: repeating patterns that resemble those seen in nature; using software
agents that imitate geological processes; using artificial intelligence techniques
for pattern recognition and imitation of landscapes; or allowing users to interact
with the system to draw desired terrain features. This review presents an
overview of the area and discusses how different techniques adapt to the dif-
ferent needs and different stages of terrain creation.
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1 Introduction

Procedural generation started as a solution for the constraints on memory availability
when programming videogames: instead of saving all assets, just seeds and instructions
would be saved. During the 80s, studies about the mathematical behavior of natural
occurrences kicked-off several works, among them was the simulation of terrains, this
is the inception of the area of Procedural Terrain Generation (PTG). Procedural gen-
eration refers to assets being automatically produced by a computer system, or with
limited human input. The goal is to save time and resources through automatization [1].

The aim of this review is to provide an updated general overview of the procedural
terrain generation area; without being too specific as in [2] where only evolutionary
algorithms are presented or [3] which is focused on noise based methods; or too ample
like in [4] and [5] where full videogames or virtual worlds are considered.
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As noted in [2] the evaluation of the terrains is difficult. Execution-time compar-
isons are not always reported and depend not only on hardware, but on the size of the
generated terrain and level of detail. Also, authors use different rendering algorithms,
some do not use textures and only present the geometrical features of the terrains.
Therefore, comparisons over quality cannot be objective. Hence, instead of a direct
comparison, a taxonomy focusing on the generative capabilities of the algorithms is
proposed.

In Sect. 2 the uses of the terrains, the generation methods and the taxonomy will be
presented. In Sect. 3 there will be a discussion about the uses the methods. Finally, in
Sect. 4 are the conclusions.

2 Terrain Classification

2.1 Uses of Terrains

Virtual terrains are used for videogames, simulations, movies and animations [6]. For
simulations, real-world accuracy is necessary in terms of positions and spatial relations
between features. If the simulation will be used for training, such as in self-driving cars,
the level of detail needs to be as high as possible. In the case of movies only a single
angle needs to be created, but it needs to look as realistic as possible. For animation, the
above is true, but instead of realism, the terrain should be able to adapt to a desired
aesthetic. In videogames the traversability is a desirable feature, this is that the players
are able to traverse the terrain [7]. This is true for most games as there should be at least
one route that the player can follow.

2.2 Generation Methods

There are four different families of generation techniques, they are the stochastic
methods, the simulation methods, leaning methods and sketch-based methods. As
shown in Table 1 each family comprises several methods.

Stochastic Methods. These methods use construction rules and parameters that try to
imitate natural randomness, these rules could be applied recursively to increase detail.
Control is exerted through these parameters and rules. Although these methods are very
fast, they lack enough control and features are generated at random positions.

Fractal Methods. Fractals are geometric figures where each one of its parts has the
same statistical character as the whole. These are created by repeating an instruction
over an initial figure. The work of Prusinkiewicz [8] is one of the earliest fractal
methods that could produce more than one type of landscape feature, it uses the mid-
point displacement algorithm for generating mountains and squig curves for rivers.
Chaotic fractals or noise can be used to create heightmaps that resemble natural ter-
rains. Approximations of Perlin noise and fractional Brownian motion (fBm) functions
are used in [9], and in [10] two approximations of pink noise are proposed.
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Grammar-Based Methods. Grammars are rules for creation of formal languages in
which growing sequences are applied to an initial state, in the work of Márak [11] these
rules are used for deforming terrains and thus imitating the actions of erosion.

Tiling. Tiling is a technique that improves terrains by dividing them into smaller areas.
One of them is the Voronoi diagrams which divide the surface in cell-like structures.
A different set of parameters can be used at each cell, in this way the monotony of noise
algorithms is broken and transition between areas look more natural. Tiling is only able
to make subdivision, for this reason it is used in combination with other methods [10].

Parametrization Methods. These techniques revolve around having building instruc-
tions which are controlled by the user, who adjusts their parameters. The variability of
the results is limited by the number of controllable parameters. In [12] a method based
on parametrization of tiles is presented. The authors present a terrain generator with
latitude and dispersion parameters. The former controls the type of generated biomes
and the later the size of the transition area between two biomes. Yin [13] proposes a
method for creating mountain ridges, parameters are altitude, slope and influence area.

Simulation Methods. These methods try to emulate natural occurrences that generate
terrains. There are three approaches: geomorphological simulations, ecosystem simu-
lations, and agent-based simulations.

Geomorphological Simulation. Erosion is one of the main drivers of terrain formation
and these approaches focus on its simulation for creating realistic and natural shapes.
These methods are posterior to fractal ones [14]. In [15] the authors propose to use a
layered representation which has information on the type of terrain. Upper layers
provide material to lower ones, this simulates erosion of flowing water, and this is
repeated until a slope threshold is reached. Erosion creates cliffs and canyons, while
deposition generates plains. In the case of [16] tectonic uplift is also taken into con-
sideration. This process elevates the whole terrain over time and thus can create higher
mountain ranges.

Ecosystem Simulation. Two terrains with the same geomorphological formations can
look very different by introducing vegetation and climate. Ecosystem simulation
methods alter existing terrains. A layered model that includes vegetation is presented in
[17]. There are four types of layers: bedrock, granular material, vegetation and dead
vegetation. Elevation is determined by the sum of the first two layers. Vegetation is
controlled by moisture and sun exposure. There are trees and shrubs, which have

Table 1. Techniques for terrain generation.

Families Stochastic Simulation Learning Sketches

Techniques Fractals Geomorphological Example-based 2D sketch
Grammars Ecosystem Search-based 3D sketch
Tiling Agent-based Inverse procedural generation
Parametrization
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density, height and age; and grass which only has density. In [18] the focus is over the
accuracy of vegetation distribution. It needs two types of data: a heightmap and a
biomass map. The later shows were vegetations is present and the former is the base
terrain. Plants have the following data: species, spacing, relative size, closeness and
coverage.

Agent-Based Simulation. These methods are considered separately as the agents do not
base their actions on geomorphological events, usually they are divided into con-
structive and destructive. Doran and Parberry [19] define five types of agents: coastline
agents which create initial landmass; smoothing agents that create plains; beach agents
that flatten coastal areas; mountain generation agents; and river creation agents.
Creation and smoothening are done randomly. Flattening and the creation of mountains
are random but also include rules for certain control. The river agents connect a point in
mountain areas with another in the coast following the lowest uphill gradient.

Learning Methods. Learning methods use real-world data, mostly in the form of
images and digital elevation models (DEM) and try to imitate how real terrains look.

Example Methods. Terrain features are extracted from a set of examples. Zhou [20]
proposes a method where small patches of mountains and canyons, extracted from real-
world heightmaps, are copied and pasted over a sketch. Then, splines are used to create
continuity between patches. In [21] extracted features and generated ones are combined
to form full terrains. The construction of terrains is represented as a tree, where the
leaves generated terrain parts and nodes are combination operators. When going further
on the three, the level of detail increases, and these parts come from real-world images.
In [22] Argudo creates a dictionary of atoms. The dictionary includes information on
elevation, vegetation, light and water flow. To obtain an atom the terrain is divided into
patches which are decomposed using sparse representation. When decomposing a new
patch, if no combination of the existing atoms can recreate it a new atom is added to the
dictionary. New terrains are created by combining the atoms.

Search-Based Methods. Most works are based on evolutionary algorithms (EAs),
which rely on a set of examples that are evaluated using a fitness function. There are
open problems with EAs: codification of terrains into chromosomes, fitness function
design and improving variation of terrains. In the work of Frade [7] terrains are
automatically evaluated by accessibility and obstacle length, but resulting terrains are
too plain in comparison to real ones. On the other hand, Walsh [23] proposes a method
where the user selects the parents for recombination, in this case the problem is the user
fatigue.

Inverse Procedural Generation. This method recovers the idea of parameters, in here
the system learns the parameters from examples. Emilien [24] proposes learning the
distribution of objects such as trees. The number of objects in a radius will be reflected
in a density function and stored in a brush, when this brush is used in another part of
the map it will create a distribution of trees with the same density.
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Sketch Methods. These methods improve the control over the generated terrains by
giving the user the ability to place terrain features with painting-like interfaces. The
disadvantage is that there is less realism in comparison with other methods.

2D Sketch. The method proposed in [13] the user draws a sketch map. Plains,
mountains, canyons, rivers and lakes have color codes, and a skeleton is built upon a
standard height that depends on the feature type. In [25] prevents the user draws a map
that represents the altitude of areas, the system will then select adequate features. These
features have areas of influence defined through Voronoi diagrams. Other works like
[26] use sketches in the Y-axis, this allows to make changes in the terrain from a
camera perspective that allows to see the horizon. The user draws silhouettes of the
mountain features they want to make visible from that camera angle.

3D Sketch. Instead of making 2D strokes that will be later transformed into 3D fea-
tures, some authors propose working with vectors that are 3D from the beginning. In
the case of [27] curves are used. Once these curves are placed, the system will proceed
to the voxelization, which is transforming the vectors into discrete approximations.
Emilien [28] uses these 3D vectors to allow users to create river networks. Angle,
position and length is decided by the user. If angles are too steep waterfalls are
generated. The type of river depends on water flow and slope.

2.3 Taxonomy

A direct comparison between generation methods is difficult, generation speed and
quality of generated terrains are not always reported or are subjective. This usually
leads to comparisons that do not tell the potential uses of the generative methods, for
this reason, the proposed taxonomy focuses on the generative capabilities of the
algorithms and their needed inputs. As presented in Table 2, the taxonomy is composed
of 7 categories that have mutually exclusive options.

Needed Input. There are algorithms that need pre-existing terrains to work on them,
they can erode an existing terrain [11, 14, 29], can add vegetation or ecological
behaviors [17, 18, 24], or can add volumetric features to terrains that did not have them
[27, 30]. When a previous terrain is not needed, the user may input a map [25, 31], or a
sketch [13, 20, 21, 32]. There may be a database which is used to create terrains [22,
33, 34], or the algorithm may create a terrain from nothing more than parameters input
by the user [8, 10, 12, 16, 35–37].

Terrain Representation. The most used representations in literature are the height-
maps, sometimes referred as heightfields or digital elevation maps, these are grayscales
images where the white color represent the highest altitude while the black is the
lowest. This representation is compact but has the inability to show volumetric features,
such as caves or overhangs. It also represents relative altitude relations and not absolute
heights. In the opposite way, there are methods that represent the terrain differently,
like multilayers that allow to represent materials [15, 29]; vegetation and water pres-
ence [22]; graphs [34]; volumetric pixels, or voxels, [30] and 3D curves [27].
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Controllability. Earlier works, and those that are focused on a fast generation do not
allow the user to control the position where the terrain features would be placed,
positioning is random. These methods may be used to generate base terrains that would
be used as input for other methods [8, 14, 29, 38], or when the terrains would be used
as backgrounds and further editing is not needed [10, 18]. Suggested control is when
the methods allow a certain degree of control over the positioning of the features. This
may be achieved by subdividing the terrain in tiles and having inputs for each indi-
vidual tile [12], by selecting examples for evolutive algorithms [7, 31]; by giving the
system examples from real-world terrains [21, 22, 33]; by adjusting agents [19];
simulation parameters [12, 17]; or by adding constraints [37]. Finally, methods that
provide a precise control over the position of the generated features are those that use
sketches [13, 20, 26, 32, 39]; that allow for a three dimensional positioning of the
features [27, 28, 30]; or that use brushes [24].

Terrain Evaluation. There are few proposals that aim to do an automatic evaluation
of the terrains such as [7] where the terrains are evaluated according the distribution of
ledges and the connectivity of the plain spaces. This is still a challenge in the area, as
evaluation is done by users and is subjective.

Number of Features. There are algorithms that only allow to generate a single terrain
feature, being the most common the generation of mountains [26, 29, 31, 33], others
generate features such as caves [30] or vegetation that covers terrains [24]. It is noted
that the mountain algorithms often flood areas below an altitude threshold, but these
methods are not considered to be specialized in the generation of water bodies. On the
other hand there are methods that are able to generate multiple types of terrain features,
combining mountains with rivers [16, 34, 40], canyons [20], arches and overhangs [27],

Table 2. Taxonomy of terrain generation methods

Category Options

Needed input Pre-existing terrain [11, 14, 17,
18, 24, 27, 29, 30]

No terrain needed [8, 10, 12, 13, 16,
20–22, 32–37]

Terrain
representation

Heightmap [8–14, 16–21, 23–26,
28, 30–40]

Other representation [15, 22, 27, 29,
34]

Controllability Random [8, 10, 14, 18, 29, 38] Suggested control
[7, 12, 17, 19, 21,
22, 31, 33, 37]

Precise control
[13, 20, 24, 26–
28, 32, 34, 39]

Terrain
evaluation

User evaluated [8–40] Automatic [7]

Number of
features

Single feature [24, 26, 29–31,
33]

Multiple features [16, 17, 19, 20, 25,
27, 28, 34, 40]

Vegetation
presence

Yes [12, 17, 18, 22, 24] None/Texture only [7–11, 13–16, 19–
21, 23, 25–40]

Water
presence

None/Flooding [7, 9–15, 17, 18,
22–27, 29–31, 33, 35–39]

Rivers [8, 16, 19–
21, 32, 34, 40]

Others [19, 28]
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vegetation [17] and plateaus [25]. There is also a specialization in the multiple features
that a river network has including waterfalls [28]. And finally those that generate many
features such as mountains, plains, plateaus, rivers and coastal plains [19].

Vegetation Presence. The presence of vegetation is important, because terrains would
look very different depending on the plant types or if there is no vegetation at all. Many
methods only include green textures that only work when looking at the terrains from
afar, but when making a close-up they rapidly lose realism. Vegetation can be gen-
erated over an existing terrain [18, 24], or along with the terrain generation [12, 17, 22].

Water Presence. Other important feature are water bodies, these include rivers, lakes
and shores. It is noticeable that most works that generate water bodies only generate
rivers [8, 16, 19, 32, 34, 40] and canyons generated by those rivers [20, 21]. Those that
generate other types of water bodies are not as common, in [28] waterfalls are gen-
erated, and in [19] shorelines are created using agents. Many works only flood lower
areas, but there are no algorithms for specifically creating water bodies.

3 Discussion and Evaluation

Terrain generation methods have evolved in many ways during the last 30 years.
Stochastic methods are the oldest ones and they produce terrains with basic features
which are placed randomly. They are used for quickly generating base terrains that are
altered using other methods or when trying to achieve real-time generation. By using
GPUs, it is possible to create very big terrains during execution time with these
methods.

When terrains need high geomorphological realism the simulation methods are the
best ones, even if they are slow, the generated terrains are accurate. The most simulated
event is erosion, specially water erosion. For this reason, the simulation of rivers and is
common in the literature. Methods that use patches from real-world heightmaps and
evolutive methods have proven to be close in terms of realism, but this depends on the
used databases, which need to be big for improving results.

For videogames, the placement of assets or the use of pre-made maps is important,
sketch methods perform the best to achieve this, as they allow to control the placing of
the terrain features. Also, methods that can generate realistic water bodies and vege-
tation are preferred when using them for videogames because the player will traverse
the terrain. The exception is flight simulators where the stochastic methods are enough
because the terrain only serves as background.

When generating a terrain, the heightmap is the most common form of represen-
tation because of its low dimensionality which uses little memory, although it lacks the
capability of representing hollow formations they can be later added with other
algorithms.

Nowadays a highly competitive generator is one that would allow for high precision
in the position of generated features; that allows to create several terrain features and that
is capable to generate vegetation and water bodies. Automatic evaluation of terrains
would be ideal as this would save more time to users, but this is still a problem that needs
more attention because the proposals are limited to specific uses of the terrain.
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4 Conclusion

In this paper the generation techniques and uses of the procedurally generated terrains
were presented, and a taxonomy based on generative capabilities was proposed.

There are still many open research challenges in the area, such as the automati-
zation of the evaluation methods, which has only been applied as a fitness function for
evolutive methods. This is part of a bigger issue in the area: there is no standardized
way of reporting results. Important data such as execution times or size of terrains is
often missing. Also, the chosen render makes terrains look with different quality and
geometrical characteristics are thus not properly evaluated, as a result, evaluations are
subjective. Finding a way of making an objective comparison between generation
methods is of interest in the area.

There are features that research has neglected such as coastal environments, cliffs,
lakes, river deltas, wetlands, swamps, glaciers and glacial eroded terrains such as
fjords. As research has advanced, the focus is now on adding more detail to the terrain
through the simulation of ecological and weather processes, in the same way vegetation
and water became important features of the terrains instead of just add-ons, it is
possible that future research would require these simulations as an integral part of
terrains.
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