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Abstract. A novel leak location approach for large-scale water distri-
bution networks (WDNs) is discussed in this paper. The location task is
formulated as a classification problem, and it is simplified by applying
a clustering strategy. Data from each class are formed by measurements
associated with leakages that occur within a specific zone of the WDN. A
zone is defined as a set of nodes that share similar topological properties.
Therefore, clustering is performed for network partitioning. Sensors are
then placed within the network for maximizing leak detection coverage,
and data of each class are generated by using the EPANET hydraulic
simulator. The robustness of the proposal is demonstrated for different
kinds of uncertainties and measurements’ noise. A real-life network is
used as case study with synthetically generated field data. The proposal
achieves an improved performance for the different scenarios in compar-
ison with the node location approach.
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1 Introduction

Water preservation is important for the future of humanity. Water distribution
networks are complex nonlinear dynamic systems continuously delivering drink-
ing water to different types of consumers. Leakages cause a significant loss in the
fluid transportation system as well as additional effects, such as low pressure, for
final consumers. Therefore, leakage monitoring has stimulated many researchers
in recent years [9,10,13,14].

Leak location approaches have been proposed by using analytic, data-driven
and mixed models. Leakages are located by analyzing the difference between
measurements and synthetic data generated through a model. Analytic models
of the network consider the main physical laws that describe the system’s oper-
ation. Data-driven models capture the network behavior from a representative
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sample of measurements obtained over varying conditions. Mixed approaches
are formalized by using an analytic model and a data-driven decision tool. The
latter has shown promising results recently [9].

Since it is usually considered that leaks occur in nodes, the goal of tradi-
tional location approaches is to find the leakage node [9]. Depending on the
number of sensors, there can be many indistinguishable leak signatures for dif-
ferent nodes because of uncertainties of the model and measurement noise. As
a consequence, the location problem may require many sensors for achieving
a satisfactory performance in large-scale networks. Researchers have proposed
as an alternative solution forming the classes by grouping nodes into zones of
the network [10,13,14]. The idea of locating leaks in predefined network zones
is appealing from a practical point of view because it allows the operators to
narrow down the leakage location to a bounded area. Therefore, leakage search
with specialized equipment is faster because there is certainty about the zone
where the leak is located.

Wachla et al. proposed a set of classifiers for locating leaks in sub areas [10].
In their work, flow meters are installed at different nodes, and areas are defined
by domain experts. Zhang et al. solved the zone location problem with sup-
port vector machines by considering pressure measurements [14]. Network zones
are defined according to the network variables’ response to leakages in different
nodes. Therefore, their results depend on the network operating conditions. A
similar approach was put forward by Xie et al., but linear classifiers are com-
bined with a sparse representation for improved results [13]. The latter research
explores the influence of uncertainty in the measurements and concludes that
selecting the sensors’ number depends on the measurement precision for a desired
location accuracy. In realistic conditions, there are several sources of uncertainty
associated with the hydraulic model parameters, consumers’ demand and mea-
surements’ noise. None of the previously mentioned works, however, explores the
impact of all these uncertainties in the location performance. Moreover, the zone
partitioning results depend on the network operating conditions and leakage sizes
simulated.

The main contribution of this paper is a novel leak location approach for
WDNs that combines a topological clustering strategy with classification tools.
Operational zones are defined by using the k-medoids method, which considers
the topological parameters of the network nodes. Pressure sensors are placed
for guaranteeing the detection of small leakages. Classification tools selected for
the leak location task are Random Forests (RFs) and Support Vector Machines
(SVMs). Both classifiers were selected because of their successful results in many
papers and their different working principles. The proposed approach allows
selecting a reliable and robust leak location by setting the trade-off among the
number of zones, the number of sensors and the location accuracy under realis-
tic conditions. A real large-scale network, the Modena WDN, is considered for
demonstrating the advantages of the proposal against different uncertainties in
comparison with recent node location approaches.
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The structure of the paper is the following. The modeling framework of the
WDN is introduced in Sect. 2. The zone clustering strategy is described in Sect. 3.
The classification approach is outlined in Sect. 4. For demonstrating the advan-
tages of the proposal, the Modena WDN is introduced, and the uncertain sce-
narios considered are detailed in Sect. 5. The results and discussion are presented
in Sect. 6. Finally, conclusions and directions for future work are proposed.

2 Water Distribution Networks

Water networks are formed by n1 junctions and n2 nodes spatially distributed
across a geographical area. Two main physical laws that govern the behavior of
demand-driven WDNs are as follows: (1) the net inflow must be equal to the net
outflow for any node of the network, and (2) the sum of pressure heads around
any loop of the network is equal to zero. In general, leakages are considered as
extra demands that occur at existing nodes according to the following equation

Ni∑

ni=1

qni(t) = di(t) + li(t); li(t) = Cehi(t)γ (1)

where hi(t) is the pressure head, li is the leakage outflow, di is the total demand,
Ni is the number of branches connected to the node i, qni(t) denotes the flow of
the branch ni, Ce is the emitter coefficient size and γ = 0.5 [7]. To distinguish a
leak from a demand deviation, some properties for the demand must be known.
Therefore, leakage location is generally performed by monitoring flows or pres-
sure heads during minimum night flow conditions because the demand behavior
is easy to characterize.

3 Zone Clustering

The zone partitioning for WDNs is performed for many purposes. In particular, it
is commonly formulated to establish district metered areas (DMAs). Clustering
is usually applied to define the shape and dimension of network zones. Given
a data set of topological parameters D = {c}n

i=1 of n nodes with c ∈ �m, the
clustering task can be formulated as finding the z clusters of nodes Gz

j=1 =
c1, ..., cnj

that maximize/minimize an optimization function. The three main
variables considered for the c vector are the geographical coordinates (X,Y) and
the topological height of each node. Different methods have been applied for zone
division in WDNs [5]. Since uniformity is the main concern within the scope of
this paper, the k-medoids clustering algorithm will be used. The optimization
problem is the following

min(SSE(G)) =
z∑

i=1

nj∑

j=1

‖cnj
− c∗

i‖2 (2)
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where c∗
i is the vector of parameters of a specific node and

∑z
j=1 |Gj | = n.

Partitioning around medoids is the algorithm used in this paper for solving this
optimization problem. Further details can be found in [4].

Network partitioning can be performed by using hydraulic and topological
indicators to form the c vector. Hydraulic indicators require a hydraulic model
of the network [5]. Topological indicators are normally easy for computation
and use. Moreover, the shape of the network partitions obtained by employing
topological indicators does not depend on the simulated network operating con-
ditions. Therefore, the topological parameters considered for each node are its
coordinates and elevation. Hence, nodes are grouped together according to their
geographical locations. There are many indicators used for assessing the quality
of network partitioning algorithms. Nonetheless, the criterion considered in this
paper is the uniformity: a similar number of nodes throughout all the clusters. In
addition, it is recommended to visually evaluate the results since the partitioning
and the linkage among clusters can be analyzed intuitively [6].

4 Classification Tools

A mixed model/data-driven leak location strategy is described next. The esti-
mated consumer demands x̃ = d̃ ∈ �N are used for generating the system’s
response ỹ ∈ �p by using the nominal analytic hydraulic model. The measured
variables from the real network can be flows q ∈ �n1 in n1 pipes and pressure
h ∈ �n2 at n2 nodes such that y = [q,h] ∈ �p=n1+n2 . It is considered that sin-
gle leaks Ω = {l1, l2, ..., lz} can occur at any of the z network nodes. Thus, a
residual vector r ∈ �p (with p as the number of sensors installed in the network)
provides a leakage signature according to the leakage location. From a pattern
recognition point of view, the classification task consists of mapping the feature
space (r) onto a set of z classes (leak location l̃i) by using a decision function:
g(r):�p → Ω. The parameters of g(r) are then estimated off-line by sampling
from the classes population according to the learning from examples paradigm
[3]. Two classification tools selected in this paper are described next.

4.1 Random Forests

Random forests is a machine learning method used for classification and regres-
sion [1]. In the former task, an ensemble of decision trees is used for making the
class decision. A single decision tree is a recursive and partition-based classifier.
This classifier splits the data space into regions by using axis-parallel hyperplanes

g(r) = wT r + b (3)

where w and b (bias) are used to define the hyperplane position; and r ∈ R
p

denotes a measurement vector. The value of w is restricted a priori to one of the
standard basis vectors e1, ..., ep, where e1 ∈ R

p has a 1 for the j dimension and
0 for the others. A hyperplane specifies a decision or split point. The selection of
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split points is made in this work by minimizing the measure known as the Gini
diversity index.

The ensemble is formed by a number of decision trees built by applying two
preprocessing operations on the original data set: bootstrapping and random
feature selection. The former consists of generating training sets by randomly
sampling with replacement from the original data set. The latter is randomly
selecting a limited number of features at each node when building the tree with-
out pruning. Once a large number of trees are built, new data are classified
by aggregating the outputs of all trees by applying a majority voting strategy.
While individual decision trees tend to overfit, random forests present a good
generalization performance thanks to the previous two operations. The number
of variables randomly selected for each tree in this work is the square root of the
number of variables.

4.2 Support Vector Machines

The objective behind the support vector machine method is defining the optimal
separating hyperplane that maximizes the margin w among the closest observa-
tions of two different classes that form a data set. These observations are called
support vectors [8]. The separating hyperplane g(r) of two classes is defined with
Eq. (3), but the values of w are not restricted as in decision trees. Conversely, w
and b are defined by solving the following dual optimization problem

max W (a) =

⎛

⎝
m∑

i=1

ai − 1
2

m∑

i,j=0

aiajgigj K(ri, rj)

⎞

⎠

subject to
∑

i

giai = 0; 0 ≤ ai ≤ C (4)

where C represents the error penalty, a ∈ �m are the Lagrange multipliers, m
is the number of training examples that form the data set X ∈ {ri,yi}m with
the label vector y ∈ {1,−1}, and K(ri, rj) is a kernel function that allows access
to spaces of higher dimensions. The Radial Basis Function kernel is selected in
this work because of its generality and successful results. The extension of this
method to multi-class classification problems is developed by applying discrimi-
nant strategies. The one-against-one approach is selected in this work.

5 Case Study: Modena Network

The Modena network is a reduced version of the WDN of the medium-sized
Italian city. It is formed by 317 pipes and 268 demand nodes with a required
minimum pressure head of 20 m. The network is gravity-fed by four reservoirs,
and it is completely looped as shown in Fig. 1. The pipe diameters are set accord-
ing to [11]. Pressure head sensors are used here because they are cheaper and
easier to install and maintain than flow meters. The location of the sensors is
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selected by maximizing the leak detection coverage. The Darwin Sampler tool
was used for placing a specific number of sensors [12]. Single leakage events are
generated by considering the minimum leak size that is desired to be located.
This occurs for an emitter coefficient at each node with a magnitude of 0.1. The
sensitivity selected for pressure head sensors is 0.01 m. The number of leakage
scenarios is selected as three times the number of network nodes (1000 leakage
scenarios) according to the software’s recommendation.

5.1 Uncertainty Simulation for Realistic Scenarios

A steady-state simulation of the network is performed with the package EPANET
[7] coupled with MATLAB c©. A sampling period of 15 min is considered, and
hourly average values of the measurements are used for leak location, which aims
to reduce the uncertainty effect [9]. A total of 120 samples (hourly averages) are
generated for each node by considering minimum night flow conditions, but the
final data set is formed by grouping the nodes’ data corresponding to each class
according to the zones’ distribution. The uncertainty effects are obtained by
using the following equation

θr = θt + θu (5)

where θr represents the uncertain parameter and θt and θu are the true and the
added uncertainty, respectively. All values of θu are generated from a uniformly
sampled distribution. The following unknown disturbances are all simulated for
resembling real conditions

1. Leak size variability. Uncertainty is related to the emitter coefficient size that
is considered within the range Ce ∈ [0.1, 2]. The outflow of leakages is between
0.5 lps and 12 lps (approximately 0.1% to 3% of the network’s total demand).

2. Measurements uncertainty. Measurements are corrupted with 5% noise ampli-
tude.

3. Pipe roughness uncertainty. Hazen-Williams coefficient (CHW ) uncertainty
is simulated for CHW ∈ [125, 130].

4. Estimated demand uncertainty. An uncertain demand is considered with 10%
amplitude around the nominal consumption of each node.

6 Results and Discussion

Performance measures for classification problems are usually calculated by using
a confusion matrix A = [A(i, j)]. The element (i, j) of A represents the obser-
vations with the true class label i, which are classified as class j. Location per-
formance is estimated by considering the identification of leaky nodes within
the specific predefined zone where they belong. Thus, the percentage of data
that has been correctly classified determines the overall accuracy (Ac). Given z
zones, Ac is computed according to Ac = 1

m

∑z
i=1 A(i, i) where m is the number

of observations.
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The parameters of the classifiers are set by using 10-fold cross validation. The
accuracy displayed in the figures is estimated by using the test data that have
not been used for adjusting the parameters. For the RFs classifier, the number
of trees is adjusted to 100 by analyzing the out-of-bag error improvement. This
large number of trees may take a long time to prepare off-line, but the classifier
will not overfit [1]. For the SVM classifier, the parameters {C, σ} were adjusted
for each scenario by using a grid search for the interval C ∈ 2η, η ∈ [−2, 5] and
γ ∈ 2η, η ∈ [−5, 3]. The LIBSVM library was used for this purpose [2]. Since
minimum night flow (MNF) conditions usually last for six hours (12 a.m. to 6
a.m.), the Bayes rule can be applied to the probable leak locations throughout
a time window of up to six observations to obtain the leak location decision [9].

Zone clustering results for 5 and 25 zones are presented in Fig. 1. As it is
observed, the network partitioning is reasonable from a practical point of view.
The number of nodes per zone for the clustering of 5 and 25 zones is observed
in Fig. 2. When the number of zones increases, the uniformity of the node dis-
tribution improves. The performance of the proposed approach depends on two
elements: the number of pressure sensors and the number of zones. The desired
result is a satisfactory accuracy of over 90% to guarantee the reliability of the
location method for the network operators. It is useless to implement a method
with poor performance because operators will ignore its results in the long term.
There is a trade-off among the sensors, zones and accuracy that is shown in
Fig. 3.

Reservoir Reservoir

Fig. 1. Zone clustering results with topological parameters and the k-medoids method
for 5 (left) and 25 zones (right)

Leak location performance degrades depending on the number of pressure
sensors available. When 5 sensors are placed, only 5 leakage zones can be dis-
tinguished with a satisfactory performance by using both classifiers. When the
number of sensors increases to 10, up to 15 leakage zones can then be isolated
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Fig. 2. Node uniformity with respect to the number of zones
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Fig. 3. Leak location performance for different configurations of sensors and zones with
a time horizon of three observations (three hours)

with an overall testing accuracy of 90%. Such results confirm the assumption
that clustering the nodes into multiple zones simplifies the classification prob-
lem when the number of classes is elevated.

To compare the results obtained by using the proposal presented in this
paper with the node location approach proposed in [9], some simulations are
developed by employing the SVM classifier. The leak location results are shown
in Fig. 4. For 5 sensors only 58% accuracy can be achieved by considering a time
horizon of 24 observations. Even for 25 sensors, the top performance is 83% for
24 observations. This implies requiring data from four days (considering that
minimum night flow conditions last six hours in the best case) for making a
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decision. With the proposal only 10 sensors are required for making a decision
with 90% location accuracy. Therefore, it presents a superior reliability and lower
cost. Moreover, since only data from one day are required, the location decision
is performed in less time than with the node location approach where data from
four days are necessary.
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Fig. 4. Leak node location performance for a varying time horizon under MNF condi-
tions by using the SVM classifier with the approach proposed in [9]

7 Conclusions

In this paper, a novel leak location method based on network zones is presented.
The proposal uses a topological clustering strategy to divide the WDN in log-
ical zones from a practical point of view and combines this clustering strategy
with classification tools for obtaining a satisfactory performance in the leak loca-
tion against uncertainties. The proposal allows establishing an adequate relation
between the number of zones and the number of sensors to be used in the leak
location assessment. The simulated experiments with a real network demonstrate
that it is possible to obtain a reliable leak location with fewer sensors and within
a shorter time horizon than other recently proposed leak location methods. The
latter represents superior reliability and lower costs in the leak location task.
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