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Abstract. We recognize the wheel graphs with different kinds of centers
or axle faces as the basic pattern forming a planar graph. We focus on
the analysis of the vertex-coloring for these graphic patterns, and identify
cases for the 3 or 4 colorability of the wheels. We also consider different
compositions among wheels and analyze its colorability process.

If a valid 3-coloring exists for the union of wheels G, then our proposal
determines the constraints that a set of symbolic variables must hold.
These constraints are expressed by a conjunctive normal form FG. We
show that the satisfiability of FG implies the existence of a valid 3-
coloring for G. Otherwise, it is necessary to use 4 colors in order to
properly color G. The revision of the satisfiability of FG can be done in
polynomial time by applying unit resolution and general properties from
equalities and inequalities between symbolic variables.

Keywords: Wheel graphs · Polyhedral wheel graphs ·
Planar graphs · Vertex coloring

1 Introduction

By a proper coloring (o just a coloring) of a graph G, we refer to an assignment
of colors (elements of a set) to the vertices of G, one color to each vertex, such
that adjacent vertices are colored differently. The smallest number of colors in
any coloring of G is called the chromatic number of G and is denoted by χ(G).
When it is possible to color G from a set of k colors, then G is said to be k-
colorable, while such coloring is called a k-coloring. If χ(G) = k, then G is said
to be k-chromatic, and every k-coloring is a minimum coloring of G.

The computation of the chromatic number χ(G) is polynomial computable
if G is k-colorable with k ≤ 2, but in other case the problem becomes NP-
complete [4]. As a consequence, there are many unanswered questions related to
the colouring of a graph.

Graph vertex colouring problem is an active field of research with many inter-
esting subproblems and applications in areas like frequency allocation,planning,
computer vision,scheduling, image processing, etc [2,7]. In this context, pla-
nar graphs play an important role in the graph theory area and complexity
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theory since it involves the frontier between efficient and intractable computa-
tional procedures. In fact, planar graphs have several interesting properties: are
four-colorables, scattered, and their inner structure is described elegantly and
succinctly [1].

In the case of the vertex coloring problem, the 2-colorability is solvable in
polynomial time. It has also been solved in polynomial time the 3-colorability
for some graph topologies such as AT-free graphs and perfect graphs. Also the
determination of χ(G) for some classes of graphs, for example: comparability
graphs [10], chordal graphs, and interval graphs has been solved efficiently. In
all those cases, special structures (patterns) have been found to characterize the
classes of graphs that are colorable in polynomial time complexity.

In this article, we introduce for the first time what we believe are the basic
graph patterns, that we have called polyhedral wheels, to form any planar graph.
We have determined logical specification written as constraints that a set of sym-
bolic variables must hold in order to recognize a valid 3-coloring for a polyhedral
wheel. We consider different compositions among polyhedral wheels and analyze
its chromatic number, in order to design a novel method for the recognition
between 3 or 4-colorable polyhedral wheels.

2 Preliminaries

Let G = (V,E) be an undirected simple graph (i.e. finite, loop-less and without
multiple edges) with vertex set V (or V (G)) and set of edges E(orE(G)). We
assume the reader is familiar with standar terminology and notation concerning
graph theory and planar graphs in particular, see e.g. [8] for standard concepts
in graph theory. Here we present only some notations that we will use.

If there is an edge {v, w} ∈ E joining two different vertices then we say that v
and w are adjacents. The Neighborhood of x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E}
and its closed neighborhood, denoted by N [x], is N(x) ∪ {x}. The cardinality of
a set A is denoted by |A|. The degree of a vertex x ∈ V is |N(x)|, and it will be
denoted by δ(x),

We say that G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊂ V and E′ ⊂ E.
If V ′ = V then G′ is called a spanning subgraph of G. If G′ contains all the edges
of G that join two vertices in V ′ then G′ is said to be induced by V ′. In this
way, G − V ′ is the induced subgraph from V − V ′. Similarly if E′ ⊂ E then
G−E′ = (V,E −E′). If V ′ = {v} and e = {u, v} then this notation is simplified
to G − v and G − e, respectively.

Given a graph G = (V,E), S ⊆ V is an independent set in G if for whatever
two vertices v1, v2 in S, {v1, v2} /∈ E. Let I(G) be the set of all independent sets
of G. An independent set S ∈ I(G) is maximal, abbreviated as MIS, if it is not
a subset of any larger independent set and, it is maximum if it has the largest
size among all independent sets in I(G).

A graph in which every pair of distinct vertices are adjacent is called a com-
plete graph. The complete graph on n vertices is denoted by Kn.

By a proper coloring (o just a coloring) of a graph G, we refer to an assign-
ment of colors (elements of a set) to the vertices of G, one color to each vertex,
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such that adjacent vertices are colored differently. The smallest number of colors
in any coloring of G is called the chromatic number of G and is denoted by
χ(G). When it is possible to color G from a set of k colors, then G is said to be
k-colorable, while such coloring is called a k-coloring. Thus, every k-coloring is
a minimum coloring of G.

If the vertices V of a graph G = (V,E) can be partitioned into two disjoint
sets U1 and U2 (called partite sets), which makes every edge of G join a vertex of
U1 to a vertex of U2, then G is said to be a bipartite graph. If G is a k-chromatic
graph, then it is possible to partition V into k independent sets V1, V2, ..., Vk

(the color classes), but it is not possible to partition V into k − 1 independent
sets.

3 Planar Graphs

A drawing Γ of a graph G maps each vertex v to a distinct point Γ (v) of the plane
and each edge {u, v} to a simple open Jordan curve Γ (u, v), with endpoints Γ (u)
and Γ (v). A drawing is planar if it can be embedded (or it has an embedding)
in the space in a way that no two edges intersect except at an endvertex in
common. A graph G is planar if G admits an embedding in the plane. A planar
drawing partitions the plane into connected regions called faces. The unbounded
face is usually called outer face or external face.

In general, a planar graph has many embeddings in the plane. Two embed-
dings of a planar graph are equivalent when the boundary of a face in one
embedding always corresponds to the boundary of a face in the other. A planar
embedding is an equivalent class of planar drawings and it is described by the
clockwise circular order of the edges incident to each vertex. A maximal planar
graph is one to which no edge can be added without losing planarity. Thus, in
any embedding of a maximal planar graph G with n ≥ 3, the boundary of every
face of G is a triangle.

One of the most outstanding results is Kuratowski’s theorem [5], which gives
a criterion for a graph to be planar in the case that it contains no subgraph that
is a subdivision of K5 or K3,3, where K5 is the complete graph of order 5 and
K3,3 is the complete bipartite graph with 3 vertices in each of the sets of the
partition, then the graph is planar. Similarly, the theorem of Wagner [11] states
that a graph G is planar if and only if it does not have K5 or K3,3 as minor.
However, both characterizations are different since a graph may admit K5 as
minor without having a subgraph that is a subdivision of K5.

The famous Four-Color Theorem (4CT) says that every planar graph is vertex
4-colorable. Robertson et al. [9] describes an O(n2) 4-coloring algorithm. This
seems to be very hard to improve, since it would probably require a new proof of
the 4CT. On the other hand, to decide if a planar graph requires only three colors
is a NP-hard problem. However, the Grötzsch theorem [3] guarantees that every
triangle-free planar graph is 3-colorable. Then, the hard part in the coloring of
planar graphs is to decide if an unrestricted planar graph is 3 or 4 colorable.

Not all graphs are planar. However planar graphs arise quite naturally in
real-world applications, such as road or railway maps, electric printed circuits,
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chemical molecules, etc. Planar graphs play an important role in these problems,
partly due to the fact that some practical problems can be efficiently solved for
planar graphs even if they are intractable for general graphs [8]. In recent years,
planar graphs have attracted computer scientists’ interest, and a lot of interesting
algorithms and complexity results have been obtained from planar graphs.

3.1 The Internal-Face Graph of a Planar Graph

A planar graph G has a set of closed non-intersected regions F (G) = {f1, . . . , fk}
called faces. Each face fi ∈ F (G) is represented by the set of edges that bound
its inside area. All edge {u, v} in G, that is not the border of some face from G,
is called an acyclic edge.

Two faces fi, fj ∈ F (G) are adjacent if they have common edges, this is,
(E(fi) ∩ E(fj)) 	= ∅. Otherwise, they are independent faces. Notice that two
independent faces can have common vertices but they do not have common
edges. A set of faces is independent if each pair of them are independent.

An acyclic edge is adjacent to a face if they have just one common vertex.
Two acyclic edges are adjacent if they share a common endpoint. We build an
internal-face graph Gf = (X,E(Gf )) from G, in the following way:

1. Each face fi has attached a node x ∈ V (Gf ).
2. Each acyclic edge from G has attached a vertex of Gf labeled by the label of

its vertices.
3. There is an edge {u, v} ∈ E(Gf ) joining two adjacent vertices of Gf , when

its corresponding faces (or acyclic edges) are adjacent in G.

Gf is the internal-face graph of a planar graph G. We must emphasize that
Gf is not the dual graph of G since in the construction of Gf the external face is
not considered. Notice that Gf is also a planar graph with vertices representing
faces or edges from G (as we can see in Fig. 2). The internal-face graph Gf of
G provides a mapping of the relation among the faces of G that is useful in the
search for the 3-coloring pattern graphs.

A basic pattern in planar graphs is a wheel graph that is a single vertex
(called the center vertex of the wheel) adjacent to vertices forming a cycle. Each
face (called an axle of the wheel) is a triangle. There are two classes of vertices in
a wheel; the center vertex and the vertices forming the cycle. Note that a wheel
of a planar graph G is represented as a cycle in its internal-face Gf . Wheels
with a number of even triangles are 3-colorable. Meanwhile any planar graph,
containing K4 or odd wheels, will request four colors in order to properly color
those graphs. However, those topologies are not the unique 4-colorable cases.

We extend the class of wheels by considering any polygon as an axle face of
the wheel. Such type of wheel is called a polyhedral wheel. This means that there
are vertices in the cycle surrounding the center vertex which are not adjacent to
the center. The center vertex is a common vertex to all axle face of the polyhedral
wheel.

We differentiate the cycle’s vertices in a polyhedral wheel as axle vertices
if they are adjacent to the center vertex; and as extra-axle, when they are not
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Fig. 1. Graph G with faces identified
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Fig. 2. The internal-face graph Gf of G

adjacent to the center. In the case of the edges in a polyhedral wheel, we have
the edges of the cycle and the edges incident to the center, which are called
spoke edges. For example, in Fig. 1, a polyhedral wheel is formed by the edges:
10-6-7-8-9-10, whose center vertex is 11. All axle of this wheel is triangular with
the exception of the face 1. The spoke edges are: {6, 11}, {10, 11}, {9, 11}, {8, 11}.

A polyhedral wheel of a planar graph G is represented as a cycle in its
internal-face graph Gf . However, a cycle in Gf can also codify other kind of
wheel of G. A wheel of G where the center is a polygon instead of a single vertex
is called a polyhedral subgraph. For example, in Fig. 2 there are 5 polyhedral
wheels whose centers are labeled by the single center vertex of the wheel. There
is also a polyhedral subgraph whose center is the polygon formed by the set
of vertices {6, 7, 8, 9, 10}. Any of these wheels is an odd wheel if it has an odd
number of axle faces, otherwise, it is an even wheel.

4 Coloring Planar Graphs

It is easy (in linear-time on the size of the graph) to recognize if an input graph is
2-colorable, since it involves the recognition of only even cycles in the graph. Sim-
ilarly, it is known by Grotszch’s theorem [3] that any planar graph triangle-free
is 3-colorable. However, the recognition of the 3-coloring of a planar graph is a
classical NP-Complete problem [4]. It becomes difficult to recognize between the
three or four coloring of a planar graph when it contains triangles, because there
is not (at least until now) a sufficient condition to recognize the 3-colorability of
a planar graph.

Let Three = {1, 2, 3} be the set that contains three different colors. Given a
planar graph G, let xv,c be the logical variable denoting that the vertex v has
the color c ∈ {1, 2, 3, 4}. For each vertex v ∈ V (G) a Tabu(v) set is associated.
Tabu(v) indicates the prohibited colors for the vertex v. In fact, Tabu(v) contains
the variables associated to the vertices in N(v) that have been already colored,
i.e. Tabu(v) = {c : (xu,c), and {u, v} ∈ E(G)}.

We introduce a typical coloring for a wheel, where its center vertex is assigned
the first color. The colors 2,3 are assigned in alternating way to the cycle’s
vertices. This coloring begins in any triangle face of the wheel, and follows an
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opposite clockwise direction from the cycle’s vertices. Only when the last vertex
of the cycle is visted, it is determined if a fourth color is necessary.

In this section, we start our analysis for searching basic graphic patterns,
and analyzing if it is possible to determine if they are 3 or 4 colorable. We start
considering the coloring of simple wheels, because the wheels are basic pattern
to form planar graphs,

Lemma 1. The union of even simple wheels, where its center vertices are inde-
pendent, is 3-colorable.

Proof. When all center vertices of the wheels form an independent set on the
graph then the first color can be assigned to those vertices. Common edges
between wheels are only given by the cycle’s edges of the wheels. If the center
vertices are removed of the graph, since they were already colored, the remaining
subgraph is bipartite because it has only the cycle’s edges. As only even cycles
remain in the subgraph, then the subgraph is 2-colorable. We obtain a 3-coloring
for this kind of planar graphs by using different colors between the center vertices
and the cycle’s vertices.

The lemmas to be developed in the next section guarantee the correctness of
our proposal. We denote the function Color(v) that assigns a unique color from
Three to the vertex v.

Lemma 2. An acyclic component is 3-colorable if all of its vertices have at most
one color as a restriction.

Proof. The acyclic component is considered as a tree rooted in vr. A pre-order
coloring is made from vr, where Color(vr) = MIN{Three − Tabu(vr)}. If we
advance in pre-order for each new level to be colored, all vertex y in the new
level will have at most two restricted colors from its parent node and the color
that could exist in Tabu(y). Thus, a color has always been available of the three
possible from Three. When all nodes of the tree had been visited in pre-order,
our proposal has already colored all vertex.

Lemma 3. Let A = {f1, f2, . . . , fn} be a set of n non-adjacent faces where each
face has at least one vertex that does not restrict color 3, then A is 3-colorable.

Proof. As A = {f1, f2, . . . , fn} is a set of non-adjacent faces, then some faces in
A could share a common vertex at the most. The proof is developed by induction
on the number of faces in A.

1. A single face is 3-colorable, since every cycle with at least one unrestricted
vertex is 3-colorable.

2. Suppose that the hypothesis on the sets up to n − 1 faces is held.
3. Let A be a set of n faces where each face has at least one vertex that does not

restrict color 3. If there is a face fa ∈ A that is independent (without common
edges nor common vertices) from all other faces of A, then fa is 3-colorable
(as in the case 1), and it can be removed from A. The remaining set in A has
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n − 1 faces, and the inductive hypothesis is held.
Otherwise, the n faces in A share a common vertex. Let x ∈ fi : ∀fi ∈ A be
the common vertex. If 3 /∈ Tabu(x), then by assigning the color 3 to x and
removing it from the graph, all the faces in A become open and they form an
acyclic graph, which is 3-colorable by Lemma 2.
Assuming Tabu(x) = 3, but ∀fi ∈ A, there is yi ∈ V (fi) such that Tabu(yi) =
∅, by hyphotesis. By assigning color 3 to each one of these y′

is, and eliminating
them from each V (fi), an acyclic component is formed and this component
is 3-colorable by Lemma 2.

When Gf is a tree, we say that G (its corresponding planar graph) is a
polygonal tree [6]. This means that, although G has cycles, all those cycles can
be arranged as a tree whose nodes are polygons instead of single vertices of G.
The following theorem show that it is enough an order to visit all faces from the
planar graph in order to obtain an efficient procedure for the 3-coloring of G.

Theorem 1. If the internal-face graph of a planar graph G has a tree topology,
then G is 3-colorable.

Proof. Let Gf be the internal-face graph of a planar graph G. As a face of G is a
simple cycle then it is 3-colorable. Also, all acyclic edge of G is also 3-colorable,
because all acyclic graph is 2-colorable. A 3-coloring procedure for G can be
done by traversing the nodes of Gf in pre-order. The face of the father node of
Gf is colored first and after, the faces of its children nodes. In each current level,
the two adjacent faces (father and children in G) are considered. Both regions
have two common extremal vertices x, y in its common boundaries.

Those common vertices are colored first, and then, the remaining vertices
in both faces have two prohibited colors at the most. Notice that there is not
a pair of adjacent vertices u and v in any of the two faces, such that {u, v} ⊆
(N(x)∩N(y)). This happens because {x, y, u, v} form K4 and this subgraph can
not be part of any polygonal tree. Thus, for all remaining vertices in both faces
it is available at least one color of the three possible in Three. The 3-coloring
process ends when all the nodes of the tree Gf have been visited in pre-order.

If a planar graph G has not a polygonal tree topology, this means that there
are cycles in Gf and, therefore, wheels in G. For this kind of planar graphs, it
is possible to recognize 3-colorable graphic patterns.

Lemma 4. All polyhedral wheel is 3-colorable.

Proof. If rx is a polyhedral wheel, then there is an axle face that is not triangular.
Therefore, there is at least one vertex ve ∈ V (rx) that is not adjacent to the
center vertex vx of the wheel, otherwise all axle face would be triangular. The
graph R−ve

= (rx−ve) is a polygonal array, and then it is 3-colorable by Lemma3
and Theorem 1. Any typical 3-coloring for R−ve

can be extended to a 3-coloring
for rx if ve has the same color as vx, because in a typical coloring the color of
the center vertex is not used in the cycle’s vertices. Therefore, the center’s color
has not been used for the vertices in N(ve).
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The union of 3-colorable wheels is not necessarily 3-colorable. For example,
each individual wheel in the graph of the Fig. 4 is 3-colorable, when the common
face is assumed as part of each wheel. Therefore, each one of them is 3-colorable
by Lemma 4. However, the final graph (union of the wheels) is 4-colorable as we
will see in the following section.

4.1 Method for Determining the 3 or 4 Colorability of a Sequence
of Wheels

We propose a logical method for recognizing between three or four colors for
the colorabilty of the union of the wheels. Let G be a graph formed by the
union of simple wheels sharing common faces. Our proposal is based on the
construction of a propositional formula FG expressed in conjunctive normal form,
and whose satisfiability codify the three colorability of G. Otherwise, G would
be 4-colorable.

In order to present our proposal, let us consider first a pair of simple wheels
rx and ry sharing a common face that is denoted as (rx ∪f ry), where f =
(F (rx) ∩ F (ry)). The center vertices of the wheels are labeled by x for rx, and
a for ry, as it is illustrated in Fig. 3. A triplet of symbolic variables {x, y, z} is
associated to V (rx), while the triplet of symbolic variables {a, b, c} is associated
to V (ry) in the following way.

1. The variable x is associated to the center vertex of rx, while the variable a is
associated to the center vertex of ry.

2. The cycle’s vertices of rx are associated with the variables y and z in an
alternating way. It begins with a triangular face adjacent to the common face
f and follows the other triangular faces in rx until all cycle’s vertices are
covered.

3. The cycle’s vertices of ry are associated with the variables b and c in an
alternating way. It begins with a triangular face adjacent to the common face
f and follows the other triangular faces in ry until all cycle’s vertices are
covered.

The topology of (rx ∪f ry) defines the type of constrainsts forming FG, in the
following way.

(I) The vertices V (f), that are common vertices between V (rx)∩V (ry), deter-
mine equality constraints among its corresponding variables: (y ⊕ z) =
(a ⊕ b), where (⊕) denotes the logical xor operator. This means that the
vertices in V (rx) ∩ V (ry) define equal colors (variables with same values).

(II) An edge e ∈ E(G), with endpoints in V (rx) and V (ry), define an inequality
constraint between its corresponding variables: (y ⊕ z) 	= (a ⊕ b). This
means that adjacent vertices in V (f) define different colors (variables with
different values).

(III) FG also considers that any pair of adjacent vertices must have different
colors. This is codified as: (x 	= y) ∧ (x 	= z) ∧ (z 	= y) ∧ (a 	= b) ∧ (b 	=
c) ∧ (c 	= a).
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(IV) In FG is also added the constraints defining that all vertice in (V (rx) ∪
V (ry)) has to have one of the three possible colors, and this is codified as:
((x = a)∨ (x = b)∨ (x = c))∧ ((y = a)∨ (y = b)∨ (y = c))∧ ((z = a)∨ (z =
b) ∨ (z = c)).

Notice that constraints type I and II are unitary clauses, and that any
inequality can be considered as the negation of an equality constraint. Fur-
thermore, a pair of contradictory unitary clauses implies the unsatisfiability of
FG. The satisfiability of FG determines that (rx ∪f ry) is 3-colorable. Other-
wise, (rx ∪f ry) is 4-colorable. When FG is satisfiable, then a bijective function
fR : {x, y, z} → {a, b, c} exists. This determines the existence of a valid 3-coloring
for the vertices in the pair of wheels.

The Figs. 3 and 4 illustrate the two different cases for the values of FG. For
the graph in Fig. 3, the constraints type II define that (b 	= y) ∧ (a 	= y), and
then (c = y) is inferred due to the constraints type IV, as it is validated by
the unique constraint type I. Since there are no more constraints type II, then
the formula FG can be satisfied by the assignments ((a = x) ∧ (b = z)), or
((a = z) ∧ (b = x)). Thus, the graph is Fig. 3 is 3-colorable. A valid 3-coloring
is, for example, (c = y) ∧ (a = x) ∧ (b = z), where {a, b, c} represents any
permutation of the values {1, 2, 3}.

Our proposal for reviewing the 3-colorabilty of a sequence of wheels works
even when the centers of the wheels are not independent, or when the graph is
formed by the union of two or more wheels.

For example, let us consider the graph in Fig. 4. In this case, we recognize
three wheels and, therefore, the triplets {x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3} are
associated to V (r1), V (r2), and V (r3), respectively. The constraints type I deter-
mine the equalities: (y3 = z1)∧ (z3 = y2)∧ (z3 = y1). Meanwhile, the constraints
type II determine the inequality: (y1 	= y2). It is not hard to infer (y1 = y2) from
the conditions: (z3 = y2) ∧ (z3 = y1). However, this inferred equality contradicts
the inequality type II: (y1 	= y2). Therefore, FG is unsatisfiable. As FG is unsat-
isfiable, then the planar graph is not 3-colorable and thus, it is necessary to use
a fourth color to properly color the graph according to 4CT Theorem.
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Notice that the revision of the satisfiability of FG can be done in polynomial-
time on the size of the graph G. This is possible, since it consists in the applica-
tion of unit resolution of the constraints Type I and Type II versus all constraints
in FG, as well as the application of the transitivity of the equality constraints.
If there is a contradiction in FG, then it will be generated during the process of
the unit resolution, implying that it is necessary 4 colors to color G.

5 Conclusion

We recognize the polyhedral wheels as the basic pattern graphs to form planar
graphs. We analyze for these polyhedral wheels the possibility of determining its
3 or 4 colorability. We also consider different compositions among wheels, and
we analyze its colorability process. We propose an efficient method based on the
construction of a conjunctive normal form FG, which is formed by the equalities
and inequalities constraints defined by the relations of the vertices in a sequence
of wheels of G.

Our method determines the conditions that a set of symbolic variables must
hold when a valid 3-coloring exists for G. Thus, we show that the satisfiability
of FG implies the existence of a valid 3-coloring for G. Otherwise, it is necessary
to use 4 colors to properly color G.
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3. Grötzsch, H.: Ein Dreifarbensatz fr dreikreisfreie Netze auf der Kugel, Wiss. Z.
Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, vol. 8, pp. 109–120
(1959)

4. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6,
434–451 (1985)

5. Kuratowski, K.: Sur le probleme des courbes gauches en topologie. Fund. Math.
15, 271–283 (1930)
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