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Abstract. In this work, the classification of pain intensity based on
recorded breathing sounds is addressed. A classification approach is pro-
posed and assessed, based on hand-crafted features and spectrograms
extracted from the audio recordings. The goal is to use a combination of
feature learning (based on deep neural networks) and feature engineering
(based on expert knowledge) in order to improve the performance of the
classification system. The assessment is performed on the SenseEmotion
Database and the experimental results point to the relevance of such a
classification approach.
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1 Introduction

Most recently, the affective computing research community [9,10,14,28] has been
very active in the domain of pain intensity classification [15,25]. Several datasets
[2,20,30] relevant to this area of research have been made available lately and
countless studies have investigated approaches to improve the robustness and
the performance of automatic pain intensity classification systems [6,13,15,31].
However, these studies mostly focus on video and bio-physiological modalities.
Therefore, the following work assesses the audio modality as a potentially cheap
and relevant channel for pain intensity classification. The assessment consists
of a combination of classical hand-crafted features (e.g. MFCCs) with learned
representations extracted via deep neural networks. Approaches involving deep
features have been already used in the domain of speech emotion recognition
[4,18,19], and facial emotion recognition [17,23,32], with very promising results.
Therefore, the current work aims at improving the performance as well as the
robustness of a pain intensity classification system based on recorded breathing
sounds by combining both hand-crafted and deep features.

The remainder of this work is organised as follows. In Sect. 2, a description
of the proposed approach is provided. Section 3 consists of the description of the
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dataset, as well as the undertaken experiments and the corresponding results.
Finally, the work is concluded in Sect. 4 with a short discussion about the pre-
sented results and planed future works.

2 Method Description

In the following section, a description of the proposed pain intensity classification
approach based on audio recordings of breathing sounds is provided.

The proposed approach aims at using the complementarity of information
encoded in both hand-crafted features and spectral representations of audio sig-
nals in order to improve the robustness as well as the performance of a pain inten-
sity classification system. Therefore, feature learning consisting of a recurrent
convolution neural network which uses spectrograms as visual representations of
audio signals is performed. The resulting deep features are further combined with
hand-crafted features in order to perform the classification of breathing sounds,
in order to distinguish between breathing patterns in response to painful or pain
free stimuli.

Spectrograms. A spectrogram is a 2-dimensional (time-frequency) visual rep-
resentation of a signal, depicting the change in energy in a specific set of fre-
quency bands over time. The abscissa of the visual representation usually cor-
responds to the temporal axis, while the ordinate corresponds to the frequency
bands. The third dimension consisting of the energy in each frequency band over
time is encoded in the brightness of the colors of the representation, with low
energies represented by dark colors and high energies represented by brighter
colors (see Fig. 1).

(a) (b)

Fig. 1. (a) Raw audio signal. (b) Mel-scaled STFT Spectrogram. The darker
the color, the lower the energy in the corresponding frequency band.

In the current work, Mel-scaled short-time Fourier transform spectrograms
are used as visual representations of the audio signals. They are computed by
first applying a short-time Fourier transform (STFT) to the raw audio signals,
and subsequently mapping the resulting spectrogram onto the Mel scale. The
spectrograms are extracted using the audio signals analysis tool librosa [21].
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Convolutional Neural Networks. Convolutional neural networks (CNNs)
correspond to a category of biologically inspired neural networks, consisting of a
stack of different layers, which sequentially process some input data and exploit
the feedback stemming from the expected output (ground-truth) in order to
extract relevant information that can be used to solve a specific classification
or regression task. The basic layers involved in CNNs are convolutional layers,
pooling layers and fully-connected (FC) layers. Convolutional layers represent
a set of filters which are automatically learned during the training process of
CNNs. These layers extract relevant information in the form of feature maps,
that are obtained by convolving the input data using the corresponding set of
filters. These feature maps are subsequently used as input for the next layer in the
architecture of the designed CNN. Pooling layers reduce the spatial resolution as
well as the dimensionality of the feature maps while retaining the most relevant
information in relation to the task at hand. The fully-connected layers are similar
to multi-layer perceptrons (MLPs), and act as the classifier.

Given a large set of annotated samples, CNNs are known to be very effec-
tive in finding abstract representations of input data, that are suitable for the
corresponding classification tasks and are able, in many cases, to significantly
outperform well established hand-crafted (engineered) features.

Long Short-Term Memory Networks. Long short-term memory (LSTM)
networks [12] correspond to a category of recurrent neural networks (RNNs)
capable of learning long-term dependencies in sequential data, while addressing
the vanishing (resp. exploding) gradient problem of standard RNNs [11]. This
is achieved throughout the use of the so called memory cells, which are a key
characteristic of LSTMs. The amount of information flowing through a LSTM
network is regulated by the cell state throughout the use of three principal gates:
forget gate, input gate and output gate. These gates are basically sigmoid layers
with a point-wise multiplication operation. In this way, since the output of a
layer is in the range [0, 1], the gates control the amount of information that
flows throughout the cell state. Keras [5] and TensorFlow [1] are used for the
implementation of both CNNs and LSTMs in the current work.

Proposed Approach. An overview of the proposed approach is depicted in
Fig. 2. The goal is to combine hand-crafted features based on expert knowledge
and learned features based on deep neural networks in order to improve the per-
formance of a classification system. Therefore, spectrograms are generated from
the raw audio signals and segmented into non-overlapping windows. Further-
more, a spatio-temporal feature representation is learned from the segmented
spectrograms, using a combination of time-distributed CNN and bidirectional
LSTM. The spatial representation learned by the CNN is fed to the bidirec-
tional LSTM, which in turn learns the temporal dependency between subse-
quent spectrogram windows in order to generate an adequate spatio-temporal
representation of the input data.



52 P. Thiam and F. Schwenker

CNN

CNN

CNN

CNN

CNN

LSTM

LSTM

LSTM

LSTM

LSTM

Hand-crafted
Features de

ns
e

de
ns
e

Fig. 2. Fusion architecture.

Meanwhile, hand-crafted features (e.g. MFCCs) are extracted from the audio
signal and fed into a dense architecture consisting of several fully-connected
layers. The resulting abstract representation is further concatenated with the
learned features and fed to another dense architecture, which performs the clas-
sification. The whole architecture is subsequently trained end-to-end via back-
propagation. Once the architecture has been trained, it can be use as a feature
extraction network and the final dense layer can be replaced by a more con-
ventional classifier (e.g. SVM). In the current work, we assess both approaches
(once with a dense layer as classifier and once by replacing the dense layer of
the pre-trained model by a conventional classifier) and replace the final dense
layer with a random forest classifier [3]. The whole assessment is performed using
Scikit-learn [22].

3 Experiments and Results

In the following section, a short description of the dataset, upon which the
current work is built, is provided. Furthermore, the undertaken experiments are
illustrated, followed by the description of the yielded results.

3.1 Dataset Description

The current work is based on the SenseEmotion Database (the reader is referred
to [29], for more details about this specific dataset). It consists of 45 participants,
each subjected to a series of artificially induced pain stimuli through temper-
ature elevation (heat stimuli). Several modalities were synchronously recorded
during the conducted experiments including audio streams, high resolution video
streams, respiration, electromyography, electrocardiography, and electrodermal
activity.

The experiments were conducted in two sessions with the heat stimuli induced
during each session on one specific forearm (once left and once right). Each
session lasted approximately 40 min and consisted of randomized temperature
elevation between three individually pre-calibrated and gradually increasing
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temperatures (T1: threshold temperature, T2: intermediate temperature; T3: tol-
erance temperature). A baseline temperature (T0) was set for all participants
to 32 ◦C and corresponds to a pain free level of stimulation. Each of the four
temperatures were randomly induced 30 times following the scheme depicted in
Fig. 3.

T1

T3

T2

T0

2 s 4 s 8− 12 s 2 s 4 s

Audio Window

4.5 s

4.5 s

Fig. 3. Artificially induced pain stimuli through temperature elevation. T0:
baseline temperature (32 ◦C); T1: threshold temperature; T2: intermediate temperature;
T3: tolerance temperature. The spectrogram and hand-crafted features are extracted
from a window of length 4.5 s with a temporal shift of 4 s from the stimuli onsets.

Because of missing and erroneous data, 5 participants are excluded from the
current assessment. Moreover, the current work focuses uniquely on the recorded
audio streams (for some assessment including the other modalities, the reader
is referred to [16,26,27]). Furthermore, the assessment performed consists of the
classification task T0 vs. T3 (no pain vs. pain). Therefore, each dataset specific to
the forearm on which the stimuli were elicited (left and right forearms) consists
of approximately 2×30×40 = 2400 recordings of breathing sounds, each record-
ing consisting of a 4.5 s window extracted 4 s after the temperature elicitation
onset (see Fig. 3) as proposed in [26], with its label corresponding to the level of
heat stimulation. During the conducted experiments, three audio streams were
synchronously recorded at a fixed sample rate of 48 kHz, using a digital wireless
headset microphone, a directional microphone and the integrated microphone of
the Microsoft Kinect v2. The recorded data consists uniquely of breathing and
sporadic moaning sounds, since there were no verbal interaction involved in the
experiments. The current work is based on the audio streams recorded by the
wireless headset, since it was able to capture the emitted breathing an moaning
sounds at a satisfactory extent.

3.2 Feature Extraction

The extracted hand-crafted features consist of a set of commonly used low level
descriptors, extracted using the openSMILE feature extraction toolkit [8]. The
features were extracted from 25 ms frames with a 10 ms shift between consec-
utive frames and comprise 13 Mel Frequency Cepstral Coefficients (MFCCs),
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each combined with its first and second order temporal derivatives, 6 Relative
Spectral Perceptual Linear Predictive (RASTA-PLP) coefficients, each in com-
bination with its first and second temporal derivatives, and 13 descriptors from
the temporal domain (root mean square signal energy, logarithmic signal energy,
each in combination with its first and second order temporal derivatives, loud-
ness contour, zero crossing rate, mean crossing rate, maximum absolute sample
value, maximum and minimum sample value, and arithmetic mean of the sample
values).

Global descriptors for the whole window of 4.5 s are subsequently generated
by applying the following set of 14 statistical functions to the extracted set of fea-
tures: mean, median, standard deviation, maximum, minimum, range, skewness,
kurtosis, first and second quartiles, interquartile, 1%-percentile, 99%-percentile,
range from 1%- to 99%-percentile. The resulting hand-crafted features, with a
total dimensionality of 980, are subsequently standardised using the z-score.

As described in Sect. 2, spectrograms are extracted from the raw audio signal
and fed to the designed deep learning architecture. Similar to the hand-crafted
features, spectrograms are generated from frames of length 25 ms with a shift of
10 ms between consecutive frames. Subsequently, the resulting STFT spectra are
first converted to a logarithmic scale (decibels) and mapped into the Mel scale
using 128 Mel bands. The resulting 2 dimensional representation is segmented
into a total of 5 non-overlapping windows. The windows are scaled into RGB
images with the fixed dimensionality 100×100 and normalised in the range [0, 1].
Therefore, the deep architecture has an input consisting of segments with the
dimensionality 5 × 100 × 100 × 3 (since we are dealing with RGB images).

3.3 Network Settings

The designed architecture is assessed by comparing its performance with a dense
architecture based uniquely on the hand-crafted features, a deep architecture
based uniquely on the spectrograms and a late fusion of both architectures using
a basic average score pooling. In each case, since the amount of data is very lim-
ited, the dropout [24] regularisation technique is applied to reduce over-fitting.
Each architecture is trained using the Adam [7] optimisation algorithm, in com-
bination with the binary cross-entropy loss function and a fixed batch size of 32.

The dense architecture for the classification based uniquely on the hand-
crafted features comprises three fully-connected layers consisting of 300, 150
and 1 neurons respectively. The first two layers use rectified linear units (ReLU)
as activation functions while the last layer uses a sigmoid activation function.
Each of the first two layers is followed by a dropout layer with a dropout ratio
of 50%. The whole architecture is trained for a total of 100 epoches with a fixed
learning rate of 10−5.

The deep architecture based on the spectrograms comprises a time-
distributed CNN combined with a single layer bidirectional LSTM. The time-
distributed CNN consists of two convolutional layers, with respectively 32 and 64
filters. An identical kernel size of 5×5, with the stride 2×2 is used in both layers,
and similarly to the previous architecture, ReLU is used as activation function in
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both layers. Each convolutional layer is subsequently followed by a max pooling
layer of size 2 × 2 and stride 2 × 2, and a dropout layer with a dropout ratio of
50%. The resulting spatial representation is fed to a bidirectional LSTM with
32 nodes. The resulting spatio-temporal representation is subsequently fed to a
dense architecture consisting of a single fully-connected layer with 1 neuron and
a sigmoid activation function. The whole architecture is trained for 150 epoches
with a fixed learning rate of 10−4.

Finally, the proposed architecture is designed by combining the spatio-
temporal representation generated by the LSTM layer in the previous model
with the features generated by the second fully-connected layer of the hand-
crafted classification architecture, which results in a feature vector with the
dimensionality 64 + 150 = 214. The resulting representation is fed to a single
fully-connected layer consisting of 1 neuron with a sigmoid activation function
and trained end-to-end, with a fixed learning rate of 10−5 for 150 epoches. Fur-
thermore, the architecture is also used as a feature extraction network and a
random forest classifier is trained to perform the classification, instead of the
final fully-connected layer.

3.4 Classification Results

The results of the conducted classification experiments are summarised in Table 1
and Fig. 4. The architecture based uniquely on the spectrograms in combination
with the deep learning architecture is outperformed by the other architectures in
both experiments (left and right forearm). This can be explained by the limited
size of the training data. The designed architecture is therefore not able to
generate competitive discriminative features for the classification task, limiting
its performance to 60.32% and 61.04%, for the left and right forearm respectively.

Table 1. Leave One User Out (LOUO) Cross Validation Evaluation
(Mean(in %) ± Standard Deviation). The best performance is depicted in bold.

Forearm Deep features Hand-crafted
features

Late fusion
(Average
Pooling)

Proposed
approach
(Dense)

Proposed
approach
(Random
Forest)

Left 60.32 ± 11.87 61.33 ± 14.13 62.19 ± 13.85 63.15± 14.79 62.81 ± 15.49

Right 61.04 ± 14.58 64.16 ± 15.07 63.81 ± 15.93 64.65 ± 13.84 65.63± 13.62

Meanwhile, the proposed architecture outperforms the other classification
architectures and is able to improve the performance of the system to a classi-
fication rate of 63.15% and 65.63% for the left and right forearm respectively.
Since it also outperforms the late fusion approach, the network is able to exploit
the information embedded in both spectrograms and hand-crafted features by
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training the whole architecture end-to-end, thus improving the classification per-
formance. However, the limited amount of training samples hinders the generali-
sation ability of the deep architecture. It is believed that the performance of the
proposed approach can be boosted by using more training data and optimising
the regularisation approaches.
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Fig. 4. Audio based Pain Intensity Classification Results (leave one user out
cross validation evaluation). (a): Left Forearm. (b): Right Forearm. The mean and
median classification accuracy across all 40 participants are depicted respectively with
a dot and a horizontal line within each box plot.

4 Conclusion and Future Work

In this work, several combination approaches of hand-crafted features and deep
features for pain classification based on breathing recordings have been assessed.
This task has proven to be very challenging, since the experimental settings for
the data acquisition did not include any type of verbal interaction, and the result-
ing training material consists of breathing and sporadic moaning sounds. The
proposed classification approach, which consists of the combination of abstract
representations generated by fully-connected layers with spatio-temporal rep-
resentations generated by combined time-distributed CNN and bidirectional
LSTM, has been able to outperform the other classification architectures. Still,
the limited size of the training material hinders the overall performance of the
deep learning architecture. Therefore, data augmentation methods and transfer
learning approaches will be addressed in future iterations of the current work,
in order to improve the performance as well as the robustness of the designed
classification approach.
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