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Abstract. We prove, for various important classes of Mealy automata,
that almost all generated groups have an element of infinite order. In cer-
tain cases, we also prove that some other properties, such as exponential
growth, are generic.

1 Introduction

The class of groups generated by Mealy automata presents a considerable vari-
ety of behaviours and has been widely used since the eighties as a powerful
source of interesting groups [5,14,15,26]. It seems natural to try to produce
new examples of groups to be studied by picking a random Mealy automaton
and considering the group it generates, or to try to get an interesting distribu-
tion over some class of groups starting from a distribution over some class of
Mealy automata [12]. This approach also raises a natural question: “what does
a typical automaton group look like?”. In this paper, we tackle this problem and
give partial answers for several important and well-studied classes, by proving
that automata belonging to the class of reversible, reset, or polynomial activity
automata generate with great probability a group having at least one element of
infinite order. In particular, it means that these groups are generically infinite
and not Burnside.

Another motivation for this paper is that the Order Problem—how to decide
whether an element generates an infinite group—was recently proven undecid-
able among automaton groups [4,11], while the Finiteness Problem–how to
decide whether the whole group is infinite—is known to be undecidable for
automaton semigroups but remains open for automaton groups [7,10]. On the
other hand, some classes of automaton (semi)groups are known to have decid-
able Order Problem [3,6]. Our results provide probabilistic answers for these
problems.

Depending on the class, we also get stronger or additional statements, among
others, the groups generated by reversible or reset Mealy automata have gener-
ically exponential growth.
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The proposed proofs vary strongly with the considered class and rely on the
structural properties of the automata. In particular, the case of general invertible
Mealy automata remains open.

In order to simplify the statements, we will use the informal “let A be a
random automaton in C” instead of the formal “let A be a random variable
uniformly distributed over the set C”. All probabilistic statements should be
understood accordingly.

2 Automaton Groups

We recall that the order of an element g of a group G is the least (strictly
positive) integer α such that gα = 1. If such an integer does not exist, we
say that g has infinite order. Equivalently, the order of g is the cardinal of the
subgroup it generates, hence having an element of infinite order implies the
infiniteness of the whole group.

If X is a finite set then Xk denotes the set of words of length k, and X∗

(resp. X+) the set of words of arbitrary (resp. positive) length. We take as a
convention that elements of X�, � > 1 are represented with a bold font.

2.1 Mealy Automata and Automaton (Semi)Groups

A Mealy automaton is a 4-tuple A = (Q,Σ, δ, ρ) where Q and Σ are finite sets,
called the stateset and the alphabet respectively, δ = {δx : Q → Q}x∈Σ is a set
of functions called transition functions, and ρ = {ρq : Σ → Σ}q∈Q is a set of
functions called production functions. Examples of such automata are presented
on Fig. 1, and we refer the reader to [17] for a more complete introduction.

The map ρq extends to a length-preserving map on words ρq : Σ∗ → Σ∗ by
the recursive definition:

∀i ∈ Σ, ∀s ∈ Σ∗, ρq(is) = ρq(i)ρδi(q)(s) .
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Fig. 1. The automaton generating the Grigorchuk group (left) and the adding machine,
generating Z (right). The Grigorchuk automaton has stateset {a, b, c, d,1} and the
adding machine {p,1}. Both automata have alphabet {0, 1}
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We can also extend the set of maps ρ to words of states u ∈ Q∗ by composing
the production functions associated with the letters of u:

∀q ∈ Q, ∀u ∈ Q∗, ρqu = ρu ◦ ρq .

Likewise, we extend the functions δ to words of state and words via

∀i ∈ Σ, ∀s ∈ Σ∗, ∀q ∈ Q, ∀u ∈ Q∗, δi(qu) = δi(q)δρq(i)(u) and δis = δi ◦ δs .

x

q δx(q)
ρq(x)

For each automaton transition q
x|ρq(x)−−−−→

δx(q), we associate the cross-transition depicted
in (cross):

The production functions ρq : Σ∗ → Σ∗ of
an automaton A generate a semigroup 〈A〉+ = {ρu : Σ∗ → Σ∗|u ∈ Q+}.

A Mealy automaton is invertible when the functions ρ are permutations of Σ.
When a Mealy automaton is invertible one can define its inverse A−1 by

p
x|y−−→ q ∈ A ⇔ p−1 y|x−−→ q−1 ∈ A−1 .

Whenever a Mealy automaton is invertible we can consider the group 〈A〉 it
generates:

〈A〉 = 〈ρq | q ∈ Q〉 =
{
ρ±1
u | u ∈ Q∗} .

A group (resp. a semigroup) is an automaton group (resp. semigroup) if it
can be generated by some Mealy automaton.

Given a Mealy automaton A = (Q,Σ, δ, ρ), its dual is the Mealy automa-
ton dA = (Σ,Q, ρ, δ) where the roles of the stateset and of the alphabet
are exchanged. Its �-th power is the automaton

(
Q�, Σ, δ, ρ

)
where the pro-

duction and transition functions have been naturally extended. We define also
the automaton �A =

(
Q,Σ�, δ, ρ

)
= d(dA)� acting on sequences of � letters

and remark that this operation does not change the generated semigroup, i.e.
〈�A〉+ = 〈A〉+.

An automaton is called minimal if each state induces a different element in
the generated group. Given an automaton A, one can algorithmically construct
its minimization mA, which generates the same group [2].

From an algebraic point of view, it is convenient to describe the elements of an
automaton group via the so-called wreath recursions. For any g in an automaton
group 〈A〉 on alphabet Σ = {1, . . . , k} and any word s ∈ Σ∗, let g·s denotes
the image of s by g, and g|s the unique h ∈ 〈A〉 satisfying g·(st) = (g·s)h·t for
all t ∈ Σ∗. The wreath recursion of g is:

g = (g|1, . . . , g|xk
)σg,

where σg ∈ Sk denotes the permutation on Σ induced by g.
In what follows, A will denote, if not explicited, an invertible Mealy automa-

ton (Q,Σ, δ, ρ).
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Fig. 2. A 3-letter 6-state invertible reversible non-bireversible Mealy automaton.

2.2 Classes of Mealy Automata

We now describe several important classes of (invertible) Mealy automata. Since
invertibility is required to generate a group, it will be assumed throughout the
paper.

An automaton A = (Q,Σ, δ, ρ) is called reversible when the functions δ are
permutations of Q. If an automaton is invertible then its dual is reversible. A
Mealy automaton is bireversible if both itself and its inverse are invertible and
reversible.

Another, somewhat opposite, restriction on the transition function leads to
the class of reset automata, studied e.g. in [7,24]. An automaton A is called reset
if there exists a function φ : Σ → Q such that ∀x,∀q, δx(q) = φ(x). In other
words, all the arrows labelled by an input letter x lead to the same state φ(x).
Up to renaming the states and pruning the automaton of its vertices without
ingoing edges (which does not change the finiteness of the generated group nor
the existence of element of infinite order), we may assume that all studied reset
automata are unfolded, i.e. that Q = Σ and φ = 1.

Another class of Mealy automata linked to the cycle structure is defined
in [23], via the activity. Assume that there is a unique state inducing the identity
in the group, denoted 1. The activity of an automorphism t ∈ 〈A〉 is defined as
the function

αt : � 	→ ∣
∣{x ∈ Σ�, t|x 
= 1

}∣
∣ .

It is known that the activity αt is polynomial if and only if there is not two non-
trivial simple cycles accessible one from another in the automaton A, and that in
this case the degree of the polynomial is the maximal number of nontrivial cycles
that can be reached along of a simple cycle minus one. For a fixed alphabet Σ, we
denote Pol (resp. Pol(d)) the set of all Mealy automata with polynomial activity
(resp. with activity bounded by a polynomial of degree d), and in particular we
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call bounded (resp. finitary) the set Pol(0) (resp. Pol(−1) = {t, αt(�) → 0}).
For instance both automata on Fig. 1 have bounded activity. Notice that every
finitary automaton generates a finite group [22].

In [6], a tool is defined to understand the orbits of elements of Σ∗ under
the action of an automorphism described by a Mealy automaton. Given A =
(Q,Σ, δ, ρ), t ∈ 〈A〉 and x ∈ Σ∗ define Orbt(x) = minα>0 {α | tα·x = x} the size
of the orbit of x under the action of t. The Orbit Signalizer is the graph Γt whose
vertices are the tOrbt(x)|x, x ∈ Σ∗ and edges from tOrbt(x)|x to tOrbt(xy)|xy,x ∈
Σ∗, y ∈ Σ with label OrbtOrbt(x)|x(y).

The Orbit signalizer is used in [3,6] to solve the Order Problem. Indeed
the order of t is the lowest common multiple of all labels along paths starting
from vertex t in Γt. In particular if the orbit signalizer is finite then the Order

Problem is decidable for t, as it reduces to checking if cycles have labels all 1.

3 Reversible Mealy Automata

We show that groups generated by invertible reversible Mealy automata have an
element of infinite order with high probability. In fact we are going to prove a
stronger result by showing that almost all invertible reversible automata are not
bireversible, then using known results from [13], we obtain that the generated
semigroups are almost surely torsion-free.

Since a Mealy automaton is completely defined by its transition and pro-
duction functions, an invertible reversible Mealy automaton can be understood
as |Q| permutations in S|Σ| and |Σ| permutations in S|Q|, thus the uniform dis-
tribution on the set of invertible reversible Mealy automata with stateset Q and
alphabet Σ is the uniform distribution on S

|Σ|
|Q| × S

|Q|
|Σ|.

An invertible reversible automaton is bireversible if and only if each out-
put letter induces a permutation of the stateset. In particular, for bireversible
automata, we have that :

∀(p, i), (q, j) ∈ Q × Σ, (p, i) 
= (q, j), δi(p) = δj(q) ⇒ ρp(i) 
= ρq(j) .

Define, for r ∈ Q, the set Or =
{

j ∈ Σ,∃(p, i) ∈ Q × Σ, p
i|j−→ r ∈ A

}
of

output letters that lead to r. An invertible reversible automaton is bireversible
if and only if, for all states r, the set Or is the whole alphabet.

Example 3.1. Consider the automaton in Fig. 2. We have Oa = {1, 2, 3} = Oc

but Ob = {1, 3}, hence the automaton is not bireversible.

Proposition 3.2. The probability that a random invertible reversible automaton
with k letters and n states is bireversible is less than

max{ 1
nk−1

+
1
k

,
1

kn−1
+

1
n

}



96 T. Godin

Proof. Let A = (Q,Σ, δ, ρ). For r ∈ Q, we denote predr =|{p ∈ Q | ∃i ∈ Σ,
δi(p) = r}| the size of the set of predecessor of r, and BIR the set of bireversible
automata. Let us fix a state r. We have:

Pr(A ∈ BIR) = Pr(∀q ∈ Q,Oq = Σ)
≤ Pr(Or = Σ) .

From the law of total probability we get:

Pr(A ∈ BIR) ≤ Pr(Or = Σ | predr = 1)Pr(predr = 1)
+ Pr(Or = Σ | predr ≥ 2)Pr(predr ≥ 2)

≤ Pr(predr = 1) + Pr(Or = Σ | predr ≥ 2)

The probability that r has exactly one predecessor can be seen as fixing δ−1
i (r) for

some reference letter i ∈ Σ and requiring that the k−1 other δ−1
j (r), j ∈ Σ \{i}

are equal to δ−1
i (r), hence:

Pr(A ∈ BIR) ≤ 1
nk−1

+ Pr(Or = Σ | predr ≥ 2)

For the second term, let us consider a predecessor p of r and let λ be the
number of input letters leading from p to r. We have 1 ≤ λ ≤ k − 1. To
enforce bireversibility, we have to avoid that p outputs a letter that is already
leading to r (ρp(i) 
= ρq(j) for δp(i) = δq(j) = r). Assume that the set

O(p)
r =

{
j ∈ Σ | ∃q 
= p ∈ Q, q

i|j−→ r ∈ A
}

of output letters leading to r from a

state q different from p is of maximal size k − λ. Since ρp is random and inde-
pendent from the others ρq we can bound this probability from above: having
the letters leading from p to r produce the λ out of k required letters is

(
k
λ

)−1
.

Hence:

Pr(A ∈ BIR) ≤ 1
nk−1

+
(

k

λ

)−1

≤ 1
nk−1

+
1
k

.

Now, by applying the same reasoning to the dual automaton, which is invertible
and reversible on k states and n letters, we get the symmetric upper bound

Pr(A ∈ BIR) ≤ 1
kn−1

+
1
n

.

��
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It is proven in [13] that an invertible reversible Mealy automaton with-
out bireversible component generates a torsion-free semigroup1. Whence our
theorem:

Theorem 3.3. The probability that an invertible reversible Mealy automaton
taken uniformly at random generates a torsion-free semigroup goes to 1 as the
size of the alphabet grows. Moreover, the probability for the group to have an
element of infinite order also goes to 1 as the stateset or the alphabet grows.

Proof. It is known that, with great probability, two random permutations on
a large set generate a transitive group [8]: more precisely, he proved that two
random permutations of Sk generate a transitive group with probability 1 −
1/k + O(1/k2) . In terms of a graph, it means that a typical reversible Mealy
automaton on a large alphabet is (strongly) connected, and is not bireversible
by Proposition 3.2 whence the first part of the result. The second part is from
Proposition 3.2 and [13]. ��

From [9], where it is shown that having an element of infinite order implies
exponential growth among groups generated by invertible reversible automata,
we obtain:

Theorem 3.4. The probability that an invertible reversible Mealy automaton
taken uniformly at random generates a group with exponential growth goes to 1
as the size of the stateset or of the alphabet grows.

Remark 3.5. Notice that Theorem 3.3 is not a priori a consequence of Theo-
rem 3.4: there exists infinite Burnside group with exponential growth ([1]). How-
ever, no example of such a group is known within the class of automaton groups.

It is worthwhile noting that it is unknown whether the Order Problem

is decidable within the class of (semi)groups generated by reversible Mealy
automata.

4 Reset Mealy Automata

The class of reset automata is of particular interest since it is linked to one-
way cellular automata, and was used by Gillibert to prove the undecidability
of the Order Problem for automaton semigroups [10]. For groups generated by
(invertible) reset Mealy automata the Order Problem remains open [7].

As the transition function is trivial in a (unfolded) reset Mealy automaton,
the uniform distribution on the set of unfolded invertible reset Mealy automata
with stateset Q and alphabet Σ is the uniform distribution on S

|Q|
|Σ|.

We are going to use a result from [20]:
1 Notice that an invertible Mealy automaton might generates a torsion-free semi-
groups but a group which is not torsion free. For instance the classical lamp-
lighter group generated by a bireversible automaton which generates a torsion-free
semigroup [13,16].
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Theorem 4.1 ([20, Theorem 1.20]). Let A be a reset automaton and πA be
the transformation defined by πA : q 	→ ρ−1

q (q) for all q ∈ Q.. If πA is not a
permutation then the group generated by A has an element of infinite order.

We give the proof for the sake of completeness.

Proof. If πA is not a permutation, then there exists x0 which does not belong
to any cycle of πA and such that πA(x0) = x1 belongs to a cycle x1 −→ · · · −→
x� −→ x1 of πA. Computing the orbit of x0(x1 · · · x�)α under the action of any
given state q ∈ Q gives:

x0 x1 x2 · · · x� x1 · · ·
q x0 x1 x2 · · · x�−1 x� x1

y1 x0 x1 · · · x�−1 x�

q y1 x0 · · · x�−2 x�−1 x�

y′
1 y′

2 x0 · · · x�−2 x�−1

...
...

...
...

...
...

Since x1 = ρ−1
x0

(x0) = ρ−1
x�

(x�). So qαi·x0(x1 · · · x�)α = ux0(x1 · · · x�)(α−i), for
some u ∈ Qiα, hence q has infinite order. ��
Theorem 4.2. The probability that a random (unfolded) reset automaton on k
letters has an element of infinite order is at least 1 − e

√
ke−k.

Proof. Since the ρq, q ∈ Σ are random permutations, the function q 	→ ρ−1
q (q)

can be considered as a random mapping from Σ to Σ, and the number of per-
mutations among mappings is k!

kk . We conclude using Stirling’s approximation
and more precisely [21]: k! <

√
2πk(k

e )ke
1

12k < e
√

kkke−k as soon as k > 1. ��
Using [19], where Olukoya proves that groups generated by reset automata are
either finite or have exponential growth, we get (see also Remark 3.5):

Theorem 4.3. The probability that a random (unfolded) reset automaton on k
letters has exponential growth is at least 1 − e

√
ke−k.

From Delacourt and Ollinger [7, Proposition 1], our result also means that
permutive one-way cellular automata are generically aperiodic.

Remark 4.4. An unfolded reset automaton is minimal ([2]) if and only if each
state induces a different permutation on letters. By the birthday problem, we can
extend our result a bit: a random minimal unfolded reset automaton generically
generates a group with exponential growth and elements of infinite order.
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Fig. 3. The normal form 3G of the (invertible) automaton G of bounded activity gen-
erating the Grigorchuk group. A simple path contains at most one nontrivial loop.

5 Mealy Automata with Polynomial Activity

The class of Mealy automata with polynomial activity is interesting as the Order
Problem is decidable for (semi)groups generated by automata with bounded
activity but remains open for the higher levels of the hierarchy [6].

Recall that 1 denotes the identity state in the automaton, which is supposed
to be unique. We are going to define a normal form: let A = (Q,Σ, δ, ρ) be an
automaton with polynomial activity and let � be the lowest common multiple
of the sizes of the (simple) cycles. Since an automaton with polynomial growth
has no entangled cycles, we have that �A has all cycles of length one. Now put d
the maximal length of an (oriented) path between a state and a self-loop in �A.
Then the normal form of the automaton A is the automaton d�A and it looks
as follows: it is a directed acyclic graph whose leaf induces the identity 1, and
where each state either has a self-loop or leads to a state with a self-loop. For
instance the normal form 3G of the (invertible) Grigorchuk automaton G (which
has bounded activity) Fig. 1 (left) is depicted Fig. 3.

To the best of our knowledge, and even among automata under normal form,
there is no easy description of the uniform distribution on the set of (invertible)
Mealy automata with polynomial activity, even if one fixes the degree of the
activity. To bypass this difficulty, we show that automata with finitary activity
are rare even among automata with bounded activity, and use the fact that once
the transition functions are fixed, the choice of production functions does not
change the activity.

The next proposition is a simple yet useful observation:
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Fig. 4. Computation of the orbit of 1j under the action of t in a bounded automaton.

Proposition 5.1. Let A = (Q,Σ, δ, ρ) be a Mealy automaton with bounded
activity under normal form. If there is some t ∈ Q with δi(t) = t and ρt(i) 
= i,
then ρt has infinite order.

Proof. Up to renaming, we can assume that i = 1 and ρt(1) = 2. We use the orbit
signalizer of t to prove that ρt has infinite order (see Fig. 4): put αj =

∣
∣Orbt(1j)

∣
∣.

Since the activity is bounded, the set
{

t|Orbt(1
j)||1j

}

j
is finite, so there is a self-

loop tαi |1i = tαi+j |1i+j . By putting tαi |1i = tsα we get that (tsi)β
|1j = tsi for

some integer β =
∣
∣Orbtsi

(1j)
∣
∣. Suppose that the size of the orbit is 1. We obtain:

1j

t t

2j

si si

1j

but

1
t t

2
si 1

1

so si = 1 and

1
t t

2
1 1

1
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Hence 2 = 1, contradiction. The size of the orbit of ρt increases strictly
through the cycle 1β , whence the order of ρt–the lowest common multiple of the
paths in the orbit signalizer of t ([6])–is infinite. ��

From this result, we get:

Theorem 5.2. The probability that the group generated by an automaton with
polynomial activity has an element of infinite order goes to 1 as the size of the
alphabet goes to infinity.

Proof. We first prove that groups generated by automata with polynomial non
finitary activity generically have an element of infinite order: let A = (Q,Σ, δ, ρ)
be an automaton in Pol(d) \ Pol(−1) and let t be a state with bounded activity
on a nontrivial cycle. Since the activity does not depend on the choice of the
production functions (except for the trivial state), we can consider the set CA of
automata in Pol(d) \ Pol(−1) with same transition functions and trivial state.
Among CA, we have ρt(i) 
= i with probability 1 − 1/k, so, in the normal form, t
is on a cycle labelled by ix ∈ Σ� with ρt(ix) 
= ix. We can apply Proposition 5.1.

Now we show that the set Pol(−1) has measure 0 in the set Pol(d), d ≥ 0. If
an automaton A has polynomial activity, then there is at least one state t sat-
isfying δi(t) = 1 for all i. Given A ∈ Pol(−1), we can build k automata Ai with
bounded but not finitary activity by changing for exactly one letter δi(t) = 1
to δi(t) = t. If we consistently chose t to be, e.g. , the minimal among acceptable
states, we can uniquely reconstruct A from these Ai, whence the result.
We conclude using the law of total probability: the probability that an automaton
in Pol(d) has an element of infinite order is equal to the probability that it has an
element of infinite order given it belongs to Pol(d)\Pol(−1) times the probability
of the later; we showed that both go to one, the result follows. ��
From the proof we extract the following:

Proposition 5.3. The probability that the group generated by an automaton
in Pol(0) on an alphabet of size k has an element of infinite order is at least k−1

k+1 .

6 Conclusion and Future Work

In this work, we proved, for various important classes of Mealy automata, that
the generated groups have generically an element of infinite order, thus are infi-
nite. It is natural to wonder whether other properties, such as non-amenability,
are generic and to extend these results to the full class of automaton groups.

One interesting direction is to determine if generating a free or an infinitely
presented group is generic in a class. These properties are mutually exclu-
sive. Automata with polynomial activity cannot generate free groups [18], while
reversible ones can [25]; infinitely presented groups can be found in both classes.
It would be striking to find two classes and a group property which is nontrivial
in both classes yet generically true in one and generically false in the other.
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