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Abstract. The fourth industrial revolution is characterized by the introduction
of the Internet of Things (IoT) into manufacturing, which enables smart factories
with vertically and horizontally integrated production systems. The key issue of
any design and system development in the context of Industry 4.0 is the proper
implementation of Reference Architectural Model Industrie (RAMI) 4.0 in
various manufacturing operations and the definition of appropriate sub-models
for individual aspects and processes according to the technical background of
Industry 4.0. Since maintenance is increasingly considered a strategic business
function which contributes to overall reliability and profitability, predictive
maintenance, as a novel lever of maintenance management, has been evolved.
Predictive maintenance is a significant enabler towards Industry 4.0. In this
paper, we design a predictive maintenance architecture according to RAMI 4.0.
On this basis, we develop a unified predictive maintenance platform and we
apply it to a real manufacturing scenario from the steel industry.
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1 Introduction

The fourth industrial revolution is characterized by the introduction of the Internet of
Things (IoT) into manufacturing, which enables smart factories with vertically and
horizontally integrated production systems [1]. The physical and virtual worlds grow
together and objects including machines are equipped with sensors and actuators [1].
The key issue of any design and system development in the context of Industry 4.0 is
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the proper implementation of Reference Architectural Model Industrie (RAMI) 4.0 in
various manufacturing operations and the definition of appropriate sub-models for
individual aspects and processes according to the technical background of Industry 4.0
[2, 3]. To do this, several aspects should be taken into consideration, such as inter-
operability of devices and software components, cloud computing technologies, big
data analytics and artificial intelligence [4].

Predictive maintenance has gathered a lot of attention by manufacturing firms and
thus, several industrial and research works have focused on its implementation with
sensory technologies, software systems and appropriate systematic methodologies.
However, the scarcity of pilot cases in predictive maintenance, capable of proving its
benefits, has led to the lack of implementation of predictive maintenance initiatives
extensively in industry [5]. The systematic representation of a predictive maintenance
solution enables the reusability and knowledge transfer, an aspect of outmost impor-
tance in Industry 4.0 platforms [6]. In this paper, we examine how RAMI 4.0 can be
applied in the design of a software architecture for predictive maintenance. Moreover,
we illustrate how the architecture can be used to develop a platform which covers all
the aspects of predictive maintenance. The predictive maintenance platform is applied
to a case from steel industry.

The rest of the paper is organized as follows: Sect. 2 presents a literature review
about Industry 4.0 and predictive maintenance. Section 3 describes a predictive
maintenance architecture as an instantiation of RAMI 4.0, while Sect. 4 presents its
implementation to a platform. Section 5 describes an application of the predictive
maintenance platform in a case from the steel industry. Section 6 concludes the paper
and presents our plans for future work.

2 Literature Review

2.1 Industry 4.0

Industry 4.0 is defined as “the flexibility that exists in value-creating networks is
increased by the application of Cyber Physical Systems (CPS). This enables machines
and plants to adapt their behavior to changing orders and operating conditions through
self-optimization and reconfiguration” [7]. Moreover, perceiving information and
extracting business insights from the huge amounts of heterogeneous data is a key
technological challenge in Industry 4.0 [6, 8, 9]. Industry 4.0 brings changes in the
architecture of the classical control pyramid of production complexes as well as
technological processes. The RAMI 4.0 is a three-dimensional model representing
different interconnected features of the technical – economical properties and showing
how to approach the issue of Industry 4.0 in a structured manner. It consists of three
axes: (i) the hierarchy levels; (ii) the architecture layers; and, (iii) the lifecycle value
stream.

Hierarchy Levels. The Industry 4.0 architecture at hierarchical level shows a func-
tional assignment of components [3]. This axis within an enterprise or factory follows
the IEC 62264 and IEC 61512 standards. The level over and below the IEC standards
area represents steps further and describes also groups of factories, collaboration within
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external engineering firms, component suppliers and customers. Therefore, the hier-
archy levels are: product, field device, control device, station, work center, enterprise,
and connected world.

Architecture Layers. The architecture layers include the following: Asset Layer,
Integration Layer, Communication Layer, Information Layer, Functional Layer,
Business Layer. They enable the development of Industry 4.0 software solutions in a
consistent way so that different and mutually dependent manufacturing operations are
interconnected taking into account the physical and the digital world.

Lifecycle Value Stream. The lifecycle value stream axis is divided to Type and
Instance. The Type is divided to Development and Maintenance/Usage, while the
Instance is divided to Production and Maintenance/Usage [7]. A type represents the
initial idea, while each manufactured product represents an instance of that type [7].
The value stream in the totally digitized production can be viewed in conjunction with
value-adding processes, since it enables linking of purchasing, production planning,
logistics, quality, customers and suppliers [7].

2.2 Predictive Maintenance

Manufacturing companies are increasingly considering turning to predictive mainte-
nance by utilizing the capabilities of condition monitoring. The emergence of the
Internet of Things (IoT) paves the way for enhancing the monitoring capabilities of
enterprises by means of extensive use of physical and virtual sensors enabling them to
decide and act ahead of time [10], i.e., to resolve problems before they appear (e.g. to
avoid or mitigate the impact of a future failure). To this end, predictive maintenance
has been evolved as a novel lever of maintenance management. However, predictive
maintenance and associated information systems have received several criticisms due
to their complexity and to their challenges for practical implementation [5], since they
handle massive information, changing on time, and with complex relationships among
them. For example, structuring the information sustainably and interrelating properly
the consisting software services is a significant challenge in the complex and dynamic
manufacturing environment [5, 11].

Several conceptual frameworks for predictive maintenance have been proposed in
the literature [5, 11–15]. The most recent approach proposes a unified predictive
maintenance framework covering the whole information processing lifecycle [15]:
Signal Processing, Feature Extraction, Diagnosis, Prognosis, Decision Making &
Actions Planning. These (near) real-time steps are fed by the Failure Mode, Effects and
Criticality Analysis (FMECA) model and Historical Data Analytics, while the user
interaction is facilitated with configuration and visualization capabilities.

3 A RAMI 4.0 View of Predictive Maintenance

The motivation for using RAMI 4.0 to scope and design a predictive maintenance
architecture is the need to frame developed concepts and technologies in a common
model that leverages further collaboration and integration with other industrial

A RAMI 4.0 View of Predictive Maintenance 97



architectures and systems in the frame of Industry 4.0. This is a challenging task since
the Industry 4.0 paradigm is still evolving with limited past experience of successful
implementations. Our approach focuses on instantiating RAMI 4.0 to maintenance
operations and examining how a unified predictive maintenance platform can be
developed based on RAMI 4.0 – compliant architecture. Designing a unified predictive
maintenance conceptual architecture in the context of RAMI 4.0 enables the integration
of the maintenance process with the other operations and processes of the manufac-
turing enterprise based upon the Industry 4.0 paradigm. The following sub-sections
describe the three axes of RAMI 4.0 in the context of predictive maintenance.

3.1 Hierarchy Levels

The predictive maintenance architecture in the frame of RAMI 4.0 is applicable at
component, machine or production process level. In this sense, it can be implemented
in flexible smart systems and machines capable of interacting and communicating
across the hierarchy levels through a network. The implementation of the architecture
in a “Connected World” (i.e. connected factories with integrated predictive mainte-
nance processes) would require its use by all of them in order to create synergies (e.g.
between a factory and its supplier of maintenance spare parts).

3.2 Architecture Layers

Figure 1 shows the predictive maintenance architecture in the frame of the RAMI 4.0
architecture layers. The individual layers and their interrelationships are described below.

Asset Layer: Since this layer represents the reality (“physical things in the real
world”), production equipment and users are part of it. Predictive maintenance is
implemented on the Production Equipment with the involvement of the platform Users.
The production equipment can be further analyzed to “System”, “Equipment Unit” and
“Maintainable Item” according to the Industry Standard Solution for Plant Maintenance
(ISPM)1, which is based upon and extends the ISO 15926-2 [16] and the ISO
14224:2006 taxonomy [17].

Integration Layer: This layer makes provision of information on the assets in a form
which is available for computer processing by connecting elements as well as people
with IT. The integration of the information sources is critical for ensuring the reliability
of the information and controlling the performance of the monitoring system [18]. This
layer involves the equipment-installed Sensors and the Legacy Systems (MES, ERP,
etc.). It also includes the Human Machine Interfaces of the legacy data systems (e.g.
ERP GUI) and of the predictive maintenance platform (GUI for configuration) through
which the users insert data.

Communication Layer: Since this layer provides standardization of communication
by means of uniform data format and deals with the physical support of information
processing (mainly according to the ISO 13374 standard [19] as implemented by

1 https://reliabilitydynamics.com/Industry-Standard-Solution-for-Plant-Maintenance.
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MIMOSA OSA-CBM [20]), it includes the IoT Gateway, the Legacy Data Uplifting and
the Event Broker. In this way, a predictive maintenance platform gathers the data from
the information sources for further processing in the subsequent Information Layer.

Information Layer: This layer provides pre-processing of events and execution of
event-related rules by enabling their formal description for the interpretation of the
information. It also manages data persistence, ensures consistent data integrity and
transformation for feeding into the Functional Layer. Therefore, it includes sensor and
legacy data pre-processing while feeding into the Stream Processing and the Batch
Processing environment respectively. To this end, this layer also includes the pre-
dictive maintenance platform’s DB and the Time-Series DB for the real-time sensor
measurements. In this way, the required data are extracted and combined accordingly in
order to be available by the functions of the next layer. This process is also in
accordance to Data Acquisition and Data Manipulation of the ISO 13374 standard as
implemented by MIMOSA OSA-CBM.

Functional Layer: This layer enables the formal description of functions and creates
the platform for horizontal integration of various functions. It contains the run time and
modelling environment for services supporting the business processes and a run time
environment for applications and technical functionalities. In this layer, the following
functions, which are executed on the basis of data integrity of the previous layer, take
place:

• System Definition: The definition of all aspects regarding the manufacturing system
including failure causes, failure modes and effects along with appropriate reactive
and proactive actions, as well as the specification of the failure concepts and
instances that affect the monitored systems. It is derived from FMECA.

• Risk Assessment: The criticality of the manufacturing system’s assets and the
indication of the most critical ones. The outcome is a risk matrix which highlights
the most critical parts of the system. This is also derived from FMECA.

• Batch Data Analytics: Advanced data analytics algorithms based on legacy and
operational data related to the maintenance activity. It generates offline models and
rules that are used by Stream Data Analytics and Decision Making functions.

• Stream Data Analytics: Descriptive and predictive analytics on the basis of data
streams generated by sensors. Descriptive analytics includes algorithms for real-
time anomaly detection (diagnosis), while predictive analytics includes algorithms
for real-time failure predictions (prognosis) for various failure modes according to
the system definition. These functionalities are in accordance with ISO 13374 as
implemented by MIMOSA OSA-CBM (in the sense that diagnosis refers to State
Detection and Health Assessment, while prognosis refers to Prognostics Assess-
ment) as well as with ISO 13379 [21], ISO 17359 [22] and EN 13306 [23].

• Decision Making: Prescriptive analytics on the basis of real-time failure predictions.
It includes algorithms for proactive decision making (e.g. about the optimal actions
and their optimal times) and the formulation of the maintenance plan including both
preventive and proactive actions, upon user approval. This functionality is in
accordance with ISO 13374, as implemented by MIMOSA OSA-CBM in the sense
that it refers to Advisory Generation, as well as with EN 17007 [24].
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Business Layer: This layer ensures the integrity of functions in the value stream and
enables mapping business models and the outcomes of the overall process. It takes into
account the policies, rules and constraints according to which the system operates
through the interrelationships of predictive maintenance to other manufacturing oper-
ations. It also creates a link among different business processes, i.e. other interrelated
Manufacturing Operations (e.g. logistics management, quality management, produc-
tion planning), through the exposure of appropriate information to the user. In this
sense, this layer involves the User Interaction with the predictive maintenance platform
(e.g. configuration, feedback, etc.), the Real-time Monitoring and the Visualization
functionalities.

3.3 Lifecycle Value Stream

The lifecycle value stream of predictive maintenance has both managerial and technical
implications. As far as the managerial perspective is concerned, the type includes the
idea as well as the development and validation of a predictive maintenance strategy.
After successful validation, the new consulting service is released. Each instantiation of
the predictive maintenance strategy to a specific production process or industry rep-
resents an instance of that type. As far as the technical perspective is concerned, the
type includes the idea as well as the development and testing of a unified information
system for predictive maintenance which sets the basis for serial production. Each
instantiation of the predictive maintenance information system to a specific equipment,
production process or industry, and to a specific legacy data system or installed sensor
represents an instance of that type.

Fig. 1. Predictive maintenance architecture in the context of the RAMI 4.0 architecture layers.
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4 The UPTIME Software Architecture and Platform

The predictive maintenance architecture in the frame of RAMI 4.0 was implemented as
an e-maintenance platform in the context of the EU H2020 Unified PredicTIve
MaintenancE (UPTIME) project. Figure 2 depicts the technical architecture of the
UPTIME e-maintenance platform (in accordance with RAMI 4.0) which shows the
main interactions among the components through the definition of end-to-end inte-
gration and communication processes. The technical architecture consists of three tiers:
Presentation Tier, Logic Tier, and Data Tier.

Fig. 2. The technical architecture of the UPTIME e-maintenance platform.
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Presentation Tier: The Presentation Tier is implemented through a Graphical User
Interface (GUI) which includes a menu consisting of the following items: Overview,
Stream Data Analytics, Batch Data Analytics, Decision Making, Risk Assessment,
System Definition. The main screen is shown in Fig. 3. Each one of these items is used
for configuration, real-time monitoring and visualization of the results. Figure 3 pro-
vides an indicative depiction of the Overview screen of the UPTIME GUI. It includes
aggregated information, easily accessible by the user, by incorporating advanced
visualization capabilities with the use of Elasticsearch2.

Logic Tier: The Logic Tier is implemented by integrating the core functionalities for
predictive maintenance in Industry 4.0 (i.e. from the Functional Layer of RAMI 4.0).
The System Definition and the Risk Assessment is initialized based on expert’s input,
while the Batch Data Analytics is fed by the legacy data. The sensor data are inter-
linked with those persisted in the UPTIME database in order to ensure the proper
mapping among the sensor data and the instances that derived from the system defi-
nition. Kafka3 orchestrates the whole end-to-end integration process. For the Stream
Data Analytics and Decision Making functionalities, Kafka is the actual message
broker where components can subscribe to, in order to consume data that are produced
asynchronously and delegated among the various components.

Data Tier: The Data Tier of the UPTIME platform consists of two main parts: On the
one hand, the UPTIME solution provides data harmonization in terms of manipulating
streaming data from sensors. On this basis, the InfluxDB time-series database has been
installed. On the other hand, the common UPTIME database, which is represented by a

Fig. 3. The Overview screen of the UPTIME platform.

2 https://www.elastic.co/.
3 https://kafka.apache.org/.
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MySQL database handling the operations of the UPTIME platform, ensures consistency
during the lifecycle of the platform. The UPTIME platform uses also the data that are
stored in the legacy systems.

5 Application in the Steel Industry:
The M. J. Maillis S.A. Case

The steel sector has been getting pressure from all sides in recent years as raw materials
have become more expensive or difficult to source and growth has slowed to a crawl.
The steel industry is strategic in the EU economy. With an average production of 170
million tons of steel per year at more than 500 steel production sites across 24 EU
member states and with its close integration to Europe’s manufacturing and con-
struction industries, the steel sector is crucial for development, growth and employment
in Europe [25]. Steel-making is a complex industrial process and defects introduced in
early stages have an economic impact in posterior transformation.

The case under examination is the cold rolling process of M. J. Maillis S.A. Cold
rolling is a process of reduction of the cross-sectional area or shaping a metal piece
through the deformation caused by a pair of rotating in opposite directions metal rolls.
Cold rolling occurs with the metal below its recrystallization temperature. In cold
rolling mill production lines, M. J. Maillis S.A. uses cold rolling mills to produce
rolling products with the closest possible thickness tolerances and an excellent surface
finish. Given an entry steel coil of 4 tons weight and thickness of 2 mm, it produces
steel strips over the whole thickness spectrum until 0.4 mm. The most important
components of the milling station are summarized below:

• The work rollers. This pair of rollers is responsible for the actual milling; the
material is passed through the gap between them and in a sequence of passes is
milled to the desired width.

• The backup rollers. This pair of rollers (one backup roller for each working roller)
transmits motion to the working roller.

• The motor unit, which is responsible for rotating the backup rollers.

Figure 4a depicts the milling station; Fig. 4b represents the manufacturing process
of the milling station; while Fig. 4c shows the work and the backup rollers and sensors’
positions. During the operation, the whole contents are enclosed and all the rollers are
continuously being sprayed by soap oil in order to reduce heat and friction.

Themain sensor infrastructure setup, which is used for data acquisition, is depicted in
Fig. 5. All sensors are collected in an MVX which are then transmitted via Modbus TCP
to a Siemens S7-1500 PLC. The values are exposed from the PLC to the DB port and can
thus be collected external modules that have access to the PLC via network. An adapter
samples the DB Port every 5 ms–5 s. The sampling rate can be configured and they
generally depend on the variable. The data are then processed via a Storm-Kafka pipeline.
This pipeline is responsible for performing normalization procedures. Normalization is
also configurable and can be adjusted by attaching new Storm Bolts. 10 Accelerometers
collect data relevant to vibrations, while one tachometer measures the speed of the motor
and one current sensor measures the current of the motor. Accelerometers measure a set
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of four variables for vibration-related data (overall acceleration, overall velocity, sock
finder and overall bearing defect), tachometer measures in rpm units, while the current
sensor measures in Ampere.

The UPTIME platform is connected to the sensor infrastructure so that the gen-
erated data along with the data collected from the legacy and operational systems are
processed accordingly. Below, we describe an illustrative predictive maintenance
scenario covered by the UPTIME platform for the M. J. Maillis S.A. milling station.

At design time, the user configures the platform through the System Definition and
the initial Risk Assessment according to the assets, the failure causes, the failure modes
and effects, i.e. taking into account the FMECA modelling of the manufacturing sys-
tem. Other parameters, such as the costs of failure modes, the costs of maintenance
actions, the failure thresholds, etc., are retrieved from legacy data uplifting and are
updated dynamically, on a batch mode, as soon as new data is added. The latter is
executed through Batch Data Analytics which implements machine learning and data

Fig. 4. The M. J. Maillis S.A. milling station: (a) an overview; (b) a representation of the
manufacturing process; (c) the rollers when the main casing is open.

Fig. 5. Infrastructure setup for sensor data collection.
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mining algorithms such as Self-Organizing Maps (SOMs), k-means clustering, decision
trees and association rule mining.

At runtime, the UPTIME platform provides real-time monitoring of the measured
parameters (e.g. vibration) and ensures that the gathered data at the on-site PLC are
transmitted through the communication channel. The acquired data feed into the
Stream Data Analytics functionalities which subsequently perform feature extraction
and anomalies detection (diagnosis), with algorithms such as Long Short-Term
Memory (LSTM), as well as failure predictions (prognosis) (e.g. Remaining Useful
Life, time-to-failure or failure Probability Density Function), with algorithms such as
curve fitting, neural networks and Hidden Markov Models (HMM). The prediction
about the roll break feeds into the Decision Making functionality which recommends
the optimal proactive actions (e.g. lower the speed, increase the soap oil flow or
perform full maintenance) along with their optimal times. To do this, it implements
decision methods such as Markov Decision Process (MDP). Upon user approval
through the GUI, the recommended actions are inserted in the maintenance plan. The
models used in Stream Data Analytics and Decision Making functionalities are updated
on the basis of the Batch Data Analytics outcomes as soon as new data is collected.

6 Conclusions and Future Work

A key issue of any design and system development in the context of Industry 4.0 is the
proper implementation of RAMI 4.0 and the definition of appropriate sub-models for
individual manufacturing operations [2, 3]. Predictive maintenance is a significant
enabler towards Industry 4.0. However, up to now, it has not been considered in the
frame of RAMI 4.0 in order to result in a unified predictive maintenance platform. In
this paper, we designed a predictive maintenance software architecture according to
RAMI 4.0. On this basis, we developed the UPTIME platform and we applied it to a
real manufacturing scenario from the steel industry. Regarding future work, we aim to
further develop advanced algorithms for all the aforementioned steps of predictive
maintenance. Moreover, we will evaluate the results in three manufacturing scenarios
from the steel industry, the home appliances industry and the aviation industry.

Acknowledgements. This work is partly funded by the European Commission project
H2020 UPTIME “Unified Predictive Maintenance System” (768634).
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