Skip to main content

Hybrid Cooling Tower for a Solar Adsorption Cooling System: Comparative Study Between Dry and Wet Modes in Hot Working Conditions

  • Conference paper
  • First Online:
Environmentally-Benign Energy Solutions

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This study investigates the applicability of a hybrid cooling tower (HCT) of solar adsorption air-conditioning system in the hot working conditions of the region of Biskra, Algeria. A calculation method is presented to size the cooling tower and to define the main characteristics of the sprayed water. In addition, the effect of the ambient and humid temperatures on the heat transfer coefficients and the total heat transfer area were determined for both dry and wet modes. Results were compared with experimental measurement obtained from the literature, and good agreement was found. It has been concluded that the wet mode presents an effective solution for the region of Biskra. The ambient operating temperature limits of the cooling tower can be increased from 33 to 51 °C, respectively, for the dry and wet modes. Besides, it was found that the maximum mass flow rate of sprayed water is about 0.036 kg s−1 which is sufficient to operate the cooling tower and consequently the solar adsorption system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Total heat transfer area, m²

C f :

Factor of friction

Cp:

Heat capacity, J/kg K

D :

Diameter, m

F :

Correction factor

g :

Gravity, m/s²

h :

Convective heat transfer coefficient, W/m² K

H :

Enthalpy, kJ/kg

j :

Colburn factor

l :

Depth of the finned coil, m

L :

Height of the finned coil, m

L :

Latent heat, kJ

L t :

Length of the tube, m

\(\dot{m}\) :

Mass flow rate, kg/s

N :

Number of rows

Nu:

Nusselt number

P l :

Longitudinal pitch, m

Pr:

Prandtl number

P t :

Transverse pitch, m

\({\Re }\) :

Thermal resistance, W/K

Re:

Reynolds number

R ext :

Radius, m

S :

Surface per meter of length, m²/m

U :

Overall heat transfer coefficient, W/m² K

V :

Velocity, m/s

w :

Humidity, kg of water/kg dry air

ν :

Cinematic viscosity, m²/s

ϕ :

Heat flux, W

λ :

Themal conductivity, k s

μ :

Dynamic viscosity, Pa s

η :

Efficiency

ρ :

Density, kg/m3

a:

Air

pf:

Process fluid

f:

Fin

ai:

Air inlet

ao:

Air outlet

pfi:

Process fluid inlet

pfo:

Process fluid outlet

e:

External

h:

Hydraulic

i:

Internal

g:

Global

References

  1. Labed A, Rouag A, Benchabane A, Moummi N, Zerouali M (2015) Applicability of solar desiccant cooling systems in Algerian Sahara: experimental investigation of flat plate collectors. J Appl Eng Sci Technol 1(02):61–69

    Google Scholar 

  2. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes, 4th edn. Wiley, New York

    Book  Google Scholar 

  3. Citherlet S, Hildbrand C, Bony J, Kleijer A, Bunea M, Eicher S (2011) Analyse des performances de la climatisation solaire par adsorption et potentiel pour la Suisse. Rapport final, Projet SOLCOOL HEIG-VD, Office fédérale de l’énergie OFEN, 25 Janvier 2011

    Google Scholar 

  4. Lu Z, Wang R, Xia Z, Wu Q, Sun Y, Chen Z (2011) An analysis of the performance of a novel solar silica gel–water adsorption air conditioning. Appl Therm Eng 31(17–18):3636–3642

    Article  Google Scholar 

  5. Lu ZS, Wang RZ, Xia ZZ, Lu XR, Yang CB, Ma YC, Ma GB (2013) Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors. Renew Energy 50:299–306

    Article  Google Scholar 

  6. Liu YL, Wang RZ, Xia ZZ (2005) Experimental study on a continuous adsorption water chiller with novel design. Int J Refrig 28(2):218–230

    Article  Google Scholar 

  7. Jakob U, Mittelbach W (2008) Development and investigation of a compact silica gel/water adsorption chiller integrated in solar cooling systems. Presented at VII Minsk international seminar “heat pipes, heat pumps, refrigerators, power sources”, Minsk, Belarus, 8–11 Sept 2008

    Google Scholar 

  8. Rouag A, Benchabane A, Labed A, Belhadj K, Boultif N (2016) Applicability of a solar adsorption cooling machine in semiarid regions: proposal of supplementary cooler using earth-water heat exchanger. Int J Heat Technol 34(2):281–286

    Article  Google Scholar 

  9. Alkhedhair A, Gurgenci H, Jahn I, Guan Z, He S (2013) Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers. Appl Therm Eng 61(2):416–424

    Google Scholar 

  10. Dehaghani ST, Ahmadikia H (2017) Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet/dry approach. Appl Therm Eng 125:1002–1014

    Article  Google Scholar 

  11. Ghafoor A, Munir A (2015) Worldwide overview of solar thermal cooling technologies. Renew Sustain Energy Rev 43:763–774

    Article  Google Scholar 

  12. Ounis H, Benchabane A, Rouag A (2016) Accessoire à grille humidifiée pour l’amélioration de l’éfficacité des échangeurs à air: proposition d’un mécanisme pour les aéro-refroidisseurs et les condenseurs., 160057, 01/02/2016, Algeria

    Google Scholar 

  13. Rapin PJ, Jacquard P (1992) Installations frigorifiques: technologie, 6th edn. Ed. Pyc

    Google Scholar 

  14. Kern DQ (1951) Process heat transfer. McGraw-Hill, New York

    Google Scholar 

  15. Wang C-C, Chi K-Y, Chang C-J (2000) Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part II: correlation. Int J Heat Mass Transfer 43(15):2693–2700

    Article  Google Scholar 

  16. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16(2):359–368

    Google Scholar 

  17. Wylie EB (1984) Simulation of vaporous and gaseous cavitation. J Fluids Eng 106(3):307–311

    Article  Google Scholar 

  18. Boulet P, Tissot J, Trinquet F, Fournaison L (2013) Enhancement of heat exchanges on a condenser using an air flow containing water droplets. Appl Therm Eng 50(1):1164–1173

    Article  Google Scholar 

  19. INFO-CLIMAT (2019) www.infoclimat.fr/climatologie/annee/2014/biskra/valeurs/60525.html. Acceded 21 Apr 2019

  20. Khan J-U-R, Qureshi BA, Zubair SM (2004) A comprehensive design and performance evaluation study of counter flow wet cooling towers. Int J Refrig 27(8):914–923

    Article  Google Scholar 

  21. Qureshi BA, Zubair SM (2006) A complete model of wet cooling towers with fouling in fills. Appl Therm Eng 26(16):1982–1989

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Algerian Ministry of Higher Education and Scientific Research as a part of PRFU project A11N01UN070120180004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Abdelbassit Kheireddine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kheireddine, MA., Rouag, A., Benchabane, A., Boutif, N., Labed, A. (2020). Hybrid Cooling Tower for a Solar Adsorption Cooling System: Comparative Study Between Dry and Wet Modes in Hot Working Conditions. In: Dincer, I., Colpan, C., Ezan, M. (eds) Environmentally-Benign Energy Solutions. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-20637-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20637-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20636-9

  • Online ISBN: 978-3-030-20637-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics