
Chapter 11
The Enrichment of Belgian Secondary
School Mathematics with Elements
of the Dutch Model of Realistic
Mathematics Education Since the 1980s

Dirk De Bock, Johan Deprez and Dirk Janssens

Abstract In search for alternatives for the failed NewMath movement of the 1960s
and 1970s, Belgian mathematics educators looked with great interest to the Dutch
model of Realistic Mathematics Education (RME), developed by Hans Freudenthal
(1905–1990) and his team at the University of Utrecht. In this chapter, we primarily
focus on how, from the mid 1980s until the mid 1990s, valuable elements of that
model were integrated in Belgian secondary school mathematics. At that time, the
influence ofDutchmathematics education onBelgian curriculawas quite substantial,
but some form of collaboration between the communities of mathematics teachers
in both countries already existed since the early 1950s. However, from the 1950s
until the 1970s, school mathematics in both countries evolved largely independent
of each other. In Belgium, the structural New Math approach, with Georges Papy
(1920–2011) as the main figurehead, became dominant in school mathematics, while
the modernisation of school mathematics in the Netherlands was strongly inspired
by Freudenthal’s RME model emphasising the role of applications and modelling.
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11.1 Papy and Freudenthal: Opposite Views
on Mathematics Education in Neighbouring Countries

With the creation of the International Commission for the Study and Improvement
of Mathematics Teaching (CIEAEM) in the early 1950s, international, or at least
Western European, collaboration inmathematics educationwas launched. According
to Caleb Gattegno (1911–1988), the founder of the CIEAEM, national organisations
ofmathematics teachers had to take a leading role in international exchange.Gattegno
stimulated the creation of such organisations and set a good example by creating the
Association for Teaching Aids in Mathematics, now the Association of Teachers of
Mathematics (ATM) in the United Kingdom in 1952. Following Gattegno’s call, the
Société Belge de Professeurs de Mathématiques (SBPM)/Belgische Vereniging van
Wiskundeleraren (BVW)was founded in 1953 andWilly Servais (1913–1979), one of
themain CIEAEMpersonalities of the time, became its first president (Miewis, 2003;
Vanpaemel, DeBock,&Verschaffel, 2012). The SBPM/BVWbrought together a few
hundred mathematics teachers from both linguistic communities (Dutch and French)
and from all school networks (state schools and Catholic schools). It started its own
(also bilingual) professional journal Mathematica & Paedagogia (M&P) and in his
first editorial, Servais held a strong plea for international openness and exchange. He
wrote: “Mathematics as a truly universal language has, by its nature, an international
vocation; we will open the columns of our journal to colleagues in other countries”
(Servais, 1953, p. 4).1 Servais’ plea was received favourably by the international
mathematics and mathematics education communities of the time. Several famous
authors, most of them members of the CIEAEM, submitted contributions to M&P.
The Belgian journal rapidly became a forum for national and international exchange
in mathematics education (De Bock & Vanpaemel, 2015b).

This spirit of internationalisation was also present in the articles of the
SBPM/BVW, in which the establishment of relationships with foreign associations
of mathematics teachers and other international organisations sharing similar goals,
was included as an important objective. In M&P 1, Servais presented the interna-
tional network of the SBPM/BVW, including professional organisations of mathe-
matics teachers in France, United Kingdom, Switzerland, Italy and Germany. Later,
as communicated inM&P 5, this network was expanded through collaboration with
the National Council of Teachers of Mathematics in the United States and with
LIWENAGEL and WIMECOS, two associations of mathematics teachers in the
Netherlands at the time (see, e.g., Maassen, 2000). The collaboration with the Dutch
was realised in three ways: the associations exchanged and reviewed each other’s
journals and entrance exams (for future students of civil and military engineering),
board meetings were mutually attended and mathematics educators of both coun-
tries gave lectures at conferences of the fellow associations. We do not claim there
was a real interaction or mutual influence between Belgian and Dutch mathematics
education at that time, but at the professional organisations’ level, both communities

1 In this chapter, all translations into English are by the authors.
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of mathematics teachers were regularly informed about what happened in the other
country.

During the 1950s, several leading mathematics educators from the Netherlands
(Freudenthal, Van Hiele, Vredenduin, …) contributed toM&P. Of particular interest
was a contribution by Luke N. H. Bunt (1905–1984) who wrote about an interesting
development in the Netherlands. Bunt was invited at the SBPM/BVW conference
of 1959 to report about an introductory course on probability and statistics he had
developed with a team of six mathematics teachers and with which he had exper-
imented in the alpha streams of Dutch secondary schools (Bunt, 1959). Statistics
was a blind spot in Belgian mathematics education at that time and Bunt’s main
target group, future students in economics, psychology and other social sciences,
was mostly neglected. Bunt presented a pragmatic approach, which was also in con-
trast with the more systematic and rigorous approaches that were generally applied
in Belgium. He deliberately started with provisional definitions, definitions that are
incomplete from a scientific point of view. For example, he first defined the proba-
bility of an event as the ratio between the number of favourable and the total number
of outcomes in the case of equally likely events. Based on that definition, he proved
the main calculation rules for probabilities. Later on in his course, when the need
arose to cover more situations, Bunt presented a new definition, based on the limit of
relative frequencies and without further explanation, he stated that “for probabilities
based on this new definition, the previously proven calculation rules remain valid”
(Bunt, 1959, p. 38). As a consequence of his pragmatism, Bunt was able to arrive at
the basic ideas of hypotheses testing in a limited number of lessons.

By the end of the 1950s and in the 1960s, Belgian schoolmathematics was gripped
by NewMath or ‘modern mathematics’, a structural approach to mathematics teach-
ing that was officially launched at the Royaumont Seminar (1959) and then spread
worldwide (De Bock & Vanpaemel, 2015a). One of the main objectives was narrow-
ing the gap between school mathematics and mathematics as a scientific discipline.
New Math not only led to new mathematical content—sets, relations, logic, math-
ematical structures (groups, rings, …), linear algebra and topology—but also to a
modernisation of teaching aids, for example, the use of Venn diagrams, arrow-graphs
and colour conventions. Proper notations and symbols, the use of the right jargon
and theory development received a lot of attention. Barriers between mathematical
subdomains (algebra, geometry, trigonometry,…)were largely eliminated and geom-
etry education was redirected towards transformation and vector geometry. Themain
architect and uncontested leader of Belgian New Math was Georges Papy, professor
of mathematics at the Université libre de Bruxelles, who was, at that time, also influ-
ential at the international level, for example, as president of the CIEAEM in the 1960s
(Bernet & Jaquet, 1998). After some years of experimentation (Fig. 11.1), coordi-
nated by the Centre Belge de Pédagogie de la Mathématique/Belgisch Centrum voor
Methodiek van de Wiskunde, from 1968 on, New Math became compulsory in the
first year of all secondary schools in Belgium (and from then on gradually in the sub-
sequent years). It was one of the most drastic educational reforms that Belgium had
ever seen. A few years later, NewMath was also introduced at the primary level. For
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Fig. 11.1 Papy and one of
his students experimenting
with New Math, 1960

about 20 years New Math was the dominant paradigm for the teaching and learning
of mathematics in Belgium.

Also in the Netherlands, some mathematics educators fell for the charms of New
Math, among them the logician and Royaumont participant Piet Vredenduin (1909–
1996), who positively reported about Papy’s experiments in Euclides, the journal of
the Dutch associations of mathematics teachers (Vredenduin, 1967). But from the
outset, NewMathwas also strongly criticised. Freudenthal summarised his critique in
two words: “anti-didactic inversion” (Freudenthal, 1973, p. 103), expressing that an
end product of mathematical activity, the most recently composed structure of math-
ematics, is taken as a starting point for mathematics teaching (Fig. 11.2). Although
Freudenthal could not prevent that also in the Netherlands, a New Math inspired
curriculum for the secondary level was introduced in 1968, the implementation was
less radical and New Math only lasted for a few years. New Math was never intro-
duced in Dutch primary schools. In 1971, the IOWO (Institute for the Development
of Mathematics Education) was founded with Freudenthal as its first director. With
a staff of 37 people, Freudenthal put into practice his ideas about mathematics edu-
cation which resulted in Realistic Mathematics Education (RME), the Dutch answer
to New Math and to traditional, mechanistic approaches, both for the primary and
secondary level (La Bastide-van Gemert, 2015). The features of RME include the use
of rich contexts and realistic situations, that is, problem situations which students can
imagine, in order to develop mathematics, the use of students’ own productions as
well as researched activities encouraging students to move from informal to formal
representations, less emphasis on algorithms and more on sense-making and the use
of guided reinvention.
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Fig. 11.2 Papy and Freudenthal (caricatures by Léon Jesmanowicz, 1971)

11.2 Critique on New Math in Belgium and Search
for Alternatives

In 1974, the SBPM/BVW was restructured on a linguistic basis into the SBPMef
(Société Belge des Professeurs de Mathématiques d’expression française) and the
VVWL (Vlaamse Vereniging Wiskundeleraars), with respective journalsMathéma-
tique et Pédagogie andWiskunde en Onderwijs. The SBPMef did not continue some
form of cooperation with the community of Dutch mathematics teachers, but instead
started some networking with the French and later also with French speaking math-
ematics teachers in Switzerland. Hence, at least at the level of professional organisa-
tions, cooperation and even exchange of information between the French speaking
Belgian community and the Dutch stopped. For the purpose of this chapter, we will
further focus on the evolutions in Flanders.

Although at that time and until the late 1980s, the VVWL had become a fortress
of New Math proponents (including, e.g., De Bruyn, De Munter, Holvoet, Laforce,
Verhulst, Vermandel, Warrinnier), cooperation with the Dutch continued formally
and Vredenduin became the main contact (Holvoet, 1996). Except for a number of
articles by Vredenduin himself, mostly about logical issues,Wiskunde en Onderwijs
at that time rarely published articles by Dutch authors or contributions informing its
readership about ongoing evolutions in theNetherlands. Thework of Freudenthal and
his team was ignored by the official association of mathematics teachers in Flanders.

The stable position of NewMath in Belgium during the late 1960s and 1970s and
the absence of critique in official fora, does not imply that the whole mathematics
education community in Belgium was unconditionally in favour of Papy’s approach.
Instead, Papy’s method and its implementation at school had divided this community
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into two camps, the so-called ‘Papy’ists’ and ‘anti-Papy’ists’ (Colot, 1969), but that
latter group was not in power at that time and remained relatively silent in public
fora. This silence was broken on March 11, 1980, when Albert Pirard and Paul
Godfrind, professors at respectively the Université de Liège and the École Royale
Militaire, published an opinion article in La Libre Belgique, a main newspaper of
the French speaking Belgian community. The title of the article, “The Disasters of
ModernMathematics”, set the tone. Among other things, the authors stated: “We now
see in the entrance exam [for future students of engineering, added by the authors]
candidates who have almost never practiced geometry” (Pirard & Godfrind, 1980,
p. 15). They heckled the tough and abstract approach to geometry in the third year of
secondary school in which, for example, the length of a segment was defined as the
class of all congruent segments and an angle was briefly described as “a rotation that
has lost its centre” (ibid.). They further argued that modernmathematics is absolutely
useless and that a total aversion prevailed among students and science teachers.
They advised “urgently to leave the abstract language and aberrations of modern
mathematics and to return to a realistic, concrete and basic teaching of mathematics”
(ibid.). However, as far as we know, the impact of Pirard and Godfrind’s article in
Flanders was limited.

In Flanders, the public debate opened only a few years later, in 1982, when the
pedagogue and teacher educator Raf Feys published a virulent pamphlet “Moderne
Wiskunde: Een Vlag op een Modderschuit” (Feys, 1982), in which he firmly criti-
cised the fundamental principles of New Math and the way it was introduced at the
primary level. In his close contacts with schools, Feys did not see the appearance of
the promised fascinatingworld, but “artificial results in a fake reality” (ibid., p. 3) and
also little enthusiasm in children, but “more disgust, disorientation and desperation”
(ibid., p. 3). Feys not only criticised New Math, he also suggested how mathematics
education at the primary level should evolve and the model he had in mind was the
Dutch RME. Instead of taking the structure ofmathematics as a starting point, mathe-
matics education should start from and gradually develop, the intuitive, informal and
real-world knowledge and skills of the children. Feys’ pamphlet focused on primary
education and had most impact at that level, but thanks to media attention, it also
echoed at the secondary level.

A follow-up event and important step towards a broad and open societal debate in
Flanders was initiated by the Foundation Lodewijk de Raet, which on April 30, 1983
organised a colloquium in Brussels titled What Kind of Mathematics for 5–15 Year
Olds? (Stichting-Lodewijk de Raet, 1983). Nearly 150 people participated, including
representatives of mathematics education from primary to university level, teacher
educators, members of the Inspectorate of Education and of mathematics curriculum
committees. In a lecture by Freudenthal, participants were confronted with devel-
opments abroad (including the decision of some German states to prohibit by law
set theory at school because “it made children mentally ill” (Stichting-Lodewijk de
Raet, 1983, p. 4) and they learned about the Dutch alternative, illustrated by plenty
of IOWO materials. On the opposite side, Roger Holvoet (1938–1998), professor
of mathematics at the University of Leuven and fervent Papy-ist, minimised ele-
mentary school students’ difficulties with typical NewMath elements and confirmed
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his confidence in the current update and innovation of mathematics education for
the primary level. Another speaker at the colloquium, Jan Vermeylen, mathematics
teacher at a Flemish secondary school and board member of the VVWL, showed
himself more critical of the ongoing modernisation: “Little has been realised from
the beautiful dream, finding an easy way to learn mathematics” (Stichting-Lodewijk
de Raet, 1983, p. 12). He argued that, in most study streams, we should teach math-
ematics being as useful as possible, based on students’ experiences and interests. He
further stated that, for this purpose, set theory is not strictly prohibited, but in most
cases, unnecessary and even harmful. Clearly, the colloquium revealed diverging
points of view. But more importantly, it definitely made it clear that an adjustment
of NewMath had to take place and that “the learning materials of the IOWO and the
new Dutch textbooks inspired by the RME approach, could no longer be neglected”
(Stichting-Lodewijk de Raet, 1983, p. 2).

At the secondary level in Flanders, another development took place. In 1983,
Dirk Janssens, recently appointed as professor in mathematics education at the
University of Leuven, launched the idea to start a new journal for mathematics
teachers. A group of his former students and newly started mathematics teachers
(Deprez, Eggermont, Gyssels, Kesselaers, Remels, Roelens and Roels) responded
positively and started the journal entitledUitwiskeling (Fig. 11.3), with the first issue
being published in 1984. Uitwiskeling is an untranslatable neologism connecting
‘wiskunde’ (the Dutch word for mathematics) with ‘uitwisselen’ (the Dutch word
for ‘to exchange’). The nameof the journal refers to the idea of creating a forumwhere
mathematics teachers can exchange ideas and discuss questions related to the practice
of mathematics education. So, the action of Uitwiskeling was basically a construc-
tive one: not directly criticising New Math, but searching for and sharing teaching
resources that motivate pupils and stimulate their active participation in the learn-
ing process. Uitwiskeling had some fixed columns, the most important ones being
“Cobweb”, intended for questions and answers, hints, ideas, suggestions, reports of
lessons and other short contributions from the readership; “Under the Magnifying
Glass”, a larger article in which members of the editorial board scrutinised and elab-
orated a part of the curriculum or an aspect of mathematics education; and “Guide
to the Library”, in which articles and books (in most cases from abroad) that were
considered useful for classroom practice were identified, summarised and discussed.
Soon, Uitwiskeling reached a large audience of Flemish mathematics teachers and
became a channel through which these teachers learned about the new developments
in mathematics education in other countries. Special attention was paid to devel-
opments in the Netherlands, Germany, and the French speaking part of Belgium, in
which at that time Nicolas Rouche (1925–2008), professor of mathematics education
at the Université catholique de Louvain and his Groupe d’Enseignement Mathéma-
tique (GEM), founded in 1978, became very influential. The journal Uitwiskeling
still exists (www.uitwiskeling.be)—currently, that is, 2019, the 35th volume is run-
ning—and the angle of incidence remained unchanged: the practice of mathematics
education and the confrontation of that practice with new ideas from didactics of
mathematics.

http://www.uitwiskeling.be
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Fig. 11.3 Cover
Uitwiskeling, November
1987 (design: Abdon Van
Bogaert)

11.3 How During the Middle 1980s and 1990s New
Developments in Neighbouring Countries Reached
the Community of Flemish Mathematics Teachers

11.3.1 Rounding off the Rough Edges of New Math

During the middle 1980s, the call for change became ever louder in Flanders and an
official response was therefore inevitable. A first modification of the curricula for
the secondary level started in 1983 and lasted until 1988. It was a modest reform that
mainly rounded off the rough edges of NewMath (Roels, 1995). We briefly describe
some new accents in the programmes for the catholic schools (which is the largest
network of schools in Flanders). Changes in the other networks ran more or less in
parallel. For the first two years, amore intuitive approach to arithmetic was proposed:
the different types of numbers and number operations were no longer defined in a
set-theoretic environment and many proofs were eliminated. So, it became permitted
again to introduce negative numbers with reference to temperatures below zero or to
profit and loss and, for the rational numbers, teacherswere allowedagain to refer to the
fractions that pupils had learned at the primary level. The time saved on theoretical
issues was spent on practicing the operations and on solving equations and word
problems. The plane geometry of the first two years, which was affine, remained
unchanged, but the curriculum committee chose a radically different approach for
metric plane geometry, which is part of the programme from the third year on.
The length of a segment and the measure of an angle were accepted as primitive
concepts (such as, e.g., points or straight lines) in combination with a few intuitively
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Fig. 11.4 Papy’s (1967) version of the Pythagorean theorem (‘Hoofdstelling’ = Main theorem;
‘Als’ = If; ‘dan’ = then)

accessible axioms, and thus the need to define them fell away. Partly because of
that, the extensive study of isometries (reflections, translations, rotations, …) was
shortened so that more time and attention could be spent on the classical plane figures
(triangles, quadrilaterals, circles,…) and their properties. The Pythagorean theorem,
reduced to a special case of the formula for the norm of a sum of vectors during
the New Math period (Papy, 1967) (Fig. 11.4), regained its central position of the
past. Finally, in analytic geometry, the equation of a straight line could again be
introduced without relying on vector spaces. The introduction of this new geometry
programme for the third year was accompanied by a large-scale action of in-service
teacher education (Janssens & Roels, 1985).

At the upper secondary level, the curriculum change was more radical. In solid
geometry, in Flanders a topic traditionally reserved for study streams with a strong
mathematics package (6 to 8 h per week), the synthetic perspective was revalued. The
curriculum stated that solid geometry should be seen as an extension of plane geom-
etry and no longer as a part or application of linear algebra. The synthetic approach,
meant for developing students’ spatial skills, had to precede the analytic treatment.
Special attention had to go to the sketching and understanding of planar representa-
tions of spatial situations. It was further recommended to also include problems about
area and volume of solids. But a new curriculum cannot succeed without new and
appropriate teaching materials. An attempt to provide such materials was undertaken
by Uitwiskeling (Deprez, Roelens, & Roels, 1987b) and developed in more detail
in an in-service teacher education course (Deprez, Eggermont, Janssens, & Roe-
lens, 1987a). One of the sources of inspiration was the work of the Dutch HEWET
team (led by De Lange and Kindt) who had developed teaching materials, in line
with the RME philosophy, on various mathematical topics for pre-university educa-
tion (for an overview, see, e.g., De Lange, 1987). This work was realised under the
umbrella of OW&OC (Mathematics Education Research and Educational Computer
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Centre), the successor of the IOWO since 1981. Uitwiskeling was also influenced
by publications of the GEM (Groupe d’Enseignement Mathématique) and of the
French IREMs (Instituts de Recherche sur l’Enseignement des Mathématiques). A
pragmatic-eclectic approach to solid geometry was presented, starting intuitively
with a phase of exploration and investigation. In that phase, it was suggested, stu-
dents had to work in groups on problems that are challenging, but easy to understand
and imagine, such as, for example, “What types of plane figures can occur when one
intersects a cube and a plane?” This phase should then result in a series of statements
about possible mutual positions of straight lines and planes, of which students have
to check the correctness. Next, the correct statements could be accepted as starting
points—axioms—for the further development of solid geometry. Later on, based on
the results of that synthetic phase and on what students have learned in the fourth
year in their lessons on plane geometry (e.g., about the scalar product), space coordi-
nates and vectors could be introduced and analytic descriptions of straight lines and
planes could be deduced. Finally, a number of richer problems about solids should
be investigated, using both synthetic and analytic tools.

Another important change at the upper secondary level related to the approach
of analysis (calculus) in study streams with 2–4 hours of mathematics per week.
This new approach was not a mere weakening of the corresponding curriculum part
for study streams with 6–8 hours of mathematics per week, but tried to meet the
specific needs of students who had, for some reason, chosen a limited package of
mathematics in their final years of secondary school. The idea was to opt for a
less formal approach by skipping the topological foundation and by introducing the
concepts of continuity and limit in an intuitive-graphical way. The time saved had
to be spent to derivatives and integrals and to applications of these basic concepts
of calculus. Because the meaning(s) of these latter concepts was central, calculation
techniques were limited to polynomial and rational functions. Another novelty was
a change in the order of integral calculus for these study streams: to allow a more
insightful and motivating approach, the definite integral was introduced first, as
the (oriented) area under the graph of a function, before the concept of primitive
function (or indefinite integral). Initially, for this important curriculum change, little
or no didactical support was provided for the teachers involved, but quite soon,
Uitwiskeling spent an issue on this new approach (Deprez, Gyssels, & Roels, 1985)
and later, this was further developed in an in-service educational course for teachers
(De Bock et al., 1986). This course presented a quite radical interpretation of the new
curriculum: the authors immediately started with derivatives, continuity was omitted
and limitswere, to some extent, integrated into the section on derivatives. That section
onderivativeswas largely inspired by twoDutchHEWETcahiers (Kindt&DeLange,
1984, 1985) inwhich the derivativewas distilled fromdifferent real-world contexts in
which (rate of) change had to bemeasured. The idea of ‘conceptualmathematisation’,
that is, mathematisation as a way to introduce mathematical concepts (De Lange,
1987), was quite innovative in Flanders at that time.
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11.3.2 A Second Wave of Changes

The curriculum changes of the middle 1980s were positively welcomed by most
of the Flemish mathematics teachers. The conviction grew that priority in school
mathematics should be shifted from mathematics as a static, rigorous deductive sys-
tem to a meaningful and useful activity related to the broader world and society.
Of course, parts of the curriculum that had remained unchanged in the first curric-
ular modification were now assessed more critically by the teachers. Therefore, a
second adjustment became inevitable. The introduction of a new structure for Flem-
ish secondary education in 1989 provided the opportunity for this second wave of
curriculum changes. In terms of content, changes were in line with the foregoing:
typical New Math elements, such as sets and relations, were further reduced, math-
ematical structures were no longer explicitly addressed and the ambition to set up
a global deductive system was abandoned. The treatment of geometry in the early
years of secondary school became metric from the start and the notion of area and
corresponding calculations were no longer neglected. Another important innovation
was the extension of combinatorics and probability to statistics, now also including
descriptive statistics (data analysis) and the testing of hypotheses as a preview of the
application of statistics in practice (Carbonez & Veraverbeke, 1994; Kesselaers &
Roelens, 1992). Finally, the modernisation of analysis that had started with the first
curricular modification in study streams with a limited package of mathematics was
now added to the study streams with a strong mathematical component. The idea
was to start with sequences as a basis for a mathematically rigorous, but at the same
time more intuitive and dynamic approach to the concepts of continuity and limit
(De Bock et al., 1992). In these study streams the time spent on continuity and limits
was also diminished: derivatives and integrals were considered the core concepts of
secondary school analysis and had to receive maximum attention.

This second wave of programme changes was not limited to the content of sec-
ondary school mathematics, but also brought a number of didactical innovations.
First, andperhapsmost importantly, therewas the role given tomodelling and applica-
tions. In contrast with the previous period in which mathematics was basically taught
as an autonomous discipline, the applicability of mathematics in other domains was
now strongly emphasised. These domains did not only include the traditional areas
of application (such as physics), but also biology, economics and other social sci-
ences. Once again, inspiration was found in the Dutch RME materials, in particular
in the HEWET cahiers. In contrast to the classical role of applications in math-
ematics education (i.e., applying a pre-designed mathematical method in another
domain), also the idea of conceptual mathematisation (as explained above) enjoyed
increasing attention in Flanders: mathematical ideas that are developed from diverse
contexts, get a richer meaning and may subsequently be applied more easily in new
domains (De Lange, 1987). Emphasising the applied side of mathematics also fit-
ted with the belief that it is motivating for students to realise that mathematics is
closely related to their own living environment. Second, more attention was given
to (guided) self-discovery and active learning processes in the teaching and learning
of mathematics. Contemporary research in educational psychology had shown that
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effective learning is based on constructive processes, mediated and guided by ade-
quate and supportive intervention strategies (De Corte, 1996). Applied to mathe-
matics education, it means that students should not only be confronted with ‘end
products’ of mathematical activity (i.e., ‘finished’ mathematical texts), but should
also have the opportunity to go through the process of mathematical discovery and to
authentically (re-)build pieces ofmathematics themselves. Third, the growing impor-
tance of graphing calculators and computers was recognised, not only as powerful
calculation tools, but also as means for authentic mathematical exploration, discov-
ery and simulation (Cleve, De Bock, & Roelens, 1993). These new technological
tools made a more graphical approach to mathematics—and even an approach based
onmultiple representations—achievable inmathematics classrooms at the secondary
level.

The above-mentioned curricular innovations were again supported by the large-
scale action of in-service teacher education Mathematics Taught By Applications
(De Bock, Janssens, Roelens, & Roels, 1994; Janssens, 1993; Roels et al., 1990).
The idea was to integrate the modelling perspective into the study of elementary
functions, matrices, derivatives and integrals. In line with the objective to activate
pupils during the mathematics classes, an active involvement of the participants was
promoted and therefore, the sessions were perceived as real working sessions. Dur-
ing these sessions, groups of upper secondary mathematics teachers were confronted
with real, and hence rather complex, modelling problems. In order to find appropriate
solutions, they had to go through the whole modelling cycle (see, e.g., Verschaffel,
Greer, & De Corte, 2000). An interesting case concerned the journey of the drilling
rig called ‘Yatzy’ on the river Scheldt near Antwerp. The passage of the Yatzy under
a high-voltage cable, taking into account the tides of the river, created considerable
tension—both on board the platform, and among the teachers who participated! This
authentic and large-scale modelling exercise, in which several mathematical models
were integrated, also caught the attention ofDutch colleagues: the casewas published
in Nieuwe Wiskrant (De Bock & Roelens, 1990) (Fig. 11.5), the mathematics edu-
cation journal published by OW&OC, which in 1991 was renamed as Freudenthal
Institute after its founder. By that time, Flemish mathematics educators had become
very familiar with the design principles of Dutch realistic mathematics education,
and therefore exchange was no longer one-way traffic!

11.3.3 Consolidation

History continued and soon a new development took place. In 1989, the Flemish
Government became responsible for educational matters. To promote and control
the quality of education, it was decided to develop attainment targets for mainstream
education at the primary and secondary level. The targets were designed as minimal
objectives, which the government considered necessary and attainable for school
children at these levels. These objectives referred either to knowledge, to skills or
to attitudes. The attainment targets were approved by the Flemish Parliament and
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gradually implemented as parts of the curricula of the different educational networks
(of Catholic and publicly run schools) from 1997 on; and they are still valid now. In
this third wave of curriculum changes, the innovations of the previous phases, such
as, e.g., the role of modelling and applications, the importance of a constructivist
vision on learning and a meaningful implementation of ICT tools, were consolidated
and continued. Remarkably, modern mathematics was no longer an issue and even
elementary set theory was definitively removed from the new curricula: none of
the attainment targets still referred to these icons of New Math! More importantly,
a number of vertical learning trajectories were identified in the attainment targets.
We briefly exemplify three such trajectories throughout students’ secondary school
careers.

A first vertical learning trajectory refers to statistics (Deprez, Roels, & Roelens,
1992). Nowadays, statistics starts in the first two years of secondary school with the
analysis, representation and interpretation of real data and with some basic elements
of probability related to fractions. Hence, a bridge with what students had learned
at the primary level is made. In the middle two years of secondary education, the
attainment targets state that students have to be able to select by themselves represen-
tations that are most appropriate in a given situation and should learn about different
measures for the central tendency and the spread of a set of data. In addition, stu-
dents learn to use probability trees to solve more complex probability problems. In
the final two years, all students study the normal distribution, and students in a study
stream with a strong mathematical component are introduced to confidence intervals
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or the testing of hypotheses, with a strong emphasis on conceptual understanding
over technical fluency (see above). This development is in line with those in many
countries, especially in the Netherlands, which played a pioneering role in statistics
education since the 1950s and which has served as a model for Flanders (Bunt, 1959;
Garst, 1990; Zwaneveld, 2000).

A second vertical learning trajectory refers to functions (Eggermont & Roels,
1997). While in the NewMath period, this topic immediately started with an abstract
and technically advanced definition (‘a special type of subset of the Cartesian product
of two sets’) in the first year in secondary school, now students first encounter tables,
graphs and formulas as representations of various types of meaningful relationships
(e.g., proportional and inverse proportional relationships). Gradually, more func-
tional skills are developed (e.g., transforming the graph of a function), the level of
abstraction is raised and several classes of functional relationships are studied, lead-
ing to the notion of a ‘real function of a real variable’. A more general and abstract
definition of the concept of function, treated as an independent mathematical object,
only occurs in the final years of secondary education. That way, students of differ-
ent ages learn about and work with different aspects of functions that are adapted
to their situation. This approach was closely related to the Dutch ‘TGF analysis’
(tables, graphs, formulas), promoted from the late 1980s on by the HAWEX team
(led byKindt, Roodhardt, Van derKooij andVanReeuwijk), but also to contemporary
developments in the United States (National Council of Teachers of Mathematics,
1989).

A third vertical learning trajectory refers to solid geometry (Deprez & Roels,
2000; Op de Beeck, Deprez, & Roels, 1997; Thaels, Eggermont, & Janssens, 2001).
The emphasis came to lie on gaining insight into spatial objects and their planar
representations. During the New Math period, this component of geometrical think-
ing was completely absent in the first four years of secondary education because
it did not fit with an axiomatic approach at these levels. Now in primary school,
pupils learn about solids by seeing and doing, most often in realistic contexts. They
gain insight in such objects on the basis of three-dimensional models or on the basis
of planar representations. This learning trajectory is continued in the first years of
secondary school. At that level, the (re)construction of situations in space starting
from a planar representation is developed further and some attention is already paid
to argumentation related to properties of solids. Area and volume of elementary
solids (cubes, cuboids and cylinders) are also part of the curriculum. In the middle
years of secondary school, students learn to build more precise arguments about
straight lines and planes in space, but this argumentation is always embedded in
concrete problem situations, for example, about planar sections of solids. In the final
two years of secondary school, for those students following a study stream with a
strong mathematical component, a more structured—analytical—approach to solid
geometry is developed. The development has a sound mathematical basis using a
modern axiom system based on points and vectors. But the system works only at
the background and can eventually be discussed at the end of the course. For some
students, this gives the opportunity to sketch the way to 4-dimensional geometry
(Deprez et al., 1987a, b). In the new view on solid geometry for the first four years of
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secondary school, the influence from scholars of the Freudenthal Institute (see, e.g.,
the HAWEX and HEWET materials) and from Nicolas Rouche and his team is also
very prominent.

11.4 Some Topics that Underwent a True Metamorphosis

In this section, we describe in some detail a number of topics that, compared to
New Math, have been drastically changed and in which the influence of the RME
approach is particularly clear. The first topic relates to exponential and logarithmic
functions. The treatment of exponential and logarithmic functions during the 1960s
and 1970s in Belgium was a textbook example of Freudenthal’s (1973) notion of
‘anti-didactical inversion’. In the sixth year of secondary education, first, the natural
logarithmic function was defined as an integral function of 1/x. Next, logarithmic
functions with other bases were introduced as multiples of the natural logarithmic
function and finally, the exponential functions were defined as the inverses of these
logarithmic functions with arbitrary base. At the end, an aha experience was evoked:
for rational exponents, the ‘new’ exponents coincide with the ones students had
previously met in the fourth year. Needless to argue that this approach, although
mathematically logical, hadmany educational disadvantages. TheRMEalternative is
to start with exponential functions as models for exponential (or cumulative) growth,
a context that gives a concrete meaning to the exponent (time) and proved to be very
useful to understand various problems situations related to this class of functions
(De Lange & Kindt, 1984a, 1986). The functions x → 2x and x → 0.5x (a model
for negative growth) serve as prototypes of, respectively, increasing and decreasing
exponential functions, and logarithmic functions are introduced as their inverses (and
thus no longer vice versa). The transition from rational to real exponents is handled
intuitively. The context of growth also proves to be very helpful for reasoning about
logarithms and their properties (e.g., the fundamental theorem of logarithms was
clarified as “time needed for doubling + time needed for tripling = time needed
for multiplication by six”). Furthermore, it is ‘proved’ that the slope function of an
exponential function is proportional to itself and the natural exponential function (and
the number e) is introduced as the exponential function for which the proportionality
factor equals 1 (hence, as the function that is equal to its derivative).A lot of additional
applications are given (logarithmic scales, drawing log-log graphs, the Carbon 14
dating method, …).

A second topic that underwent a thorough metamorphosis was trigonometry. In
fact, classical trigonometrywas not somuch influenced byNewMath—those reform-
ers generally showed little interest for this type of ‘applied mathematics’—and was
still taught in a rather mechanistic (pre-New Math) way, focusing on trigonometric
formulas and the (technical) solution of trigonometric equations and inequalities. The
new curricula separate the geometric part about angles and the solution of triangles,
taught in the third and fourth year, from the functional part—in which the arguments
of sine and cosine are real numbers—that is part of the fifth and sixth year curricu-
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lum. In the functional part, trigonometric functions are seen as models for periodic
phenomena, such as, for example, tides (De Lange & Kindt, 1984c, 1985). The ‘sine
model’ and its main characteristics (amplitude, period, and horizontal and vertical
translation) receive ample attention. These model characteristics are systematically
explained and graphs of generalised sine functions are drawn using a grid frame.
This system not only allows to approach some more complex modelling problems,
but also provide a framework for the graphical solution of trigonometric equations
and equalities.

Matrices are a third example. In theNewMath period, this topicwas part of a linear
algebra course. After some practicing of computational techniques, matrices were
studied in a very abstract way, with much emphasis on aspects related to properties
of operations leading to the identification of underlying algebraic structures. Also,
here, the HEWET materials provided an alternative for a more concrete point of
view, connecting matrices to graphs and different types of contexts, such as distance
and connectivity, population dynamics, consumer behaviour … (De Lange & Kindt,
1984b). In this vision, much attention is paid to the contextual interpretation of a
matrix, its square and its product with another matrix. The widespread availability of
ICT tools makes it also possible to perform calculations with big matrices that arose
from real contexts. That way, matrices become a powerful tool for modelling various
application problems in which blocks of numbers are involved. These problems
originate from different disciplines (biology, economics, other social sciences, …)
and proved to be a better introduction to abstract algebra than an immediate start
with abstract structures.

We conclude this sectionwith the fourth example: the new approach to differential
and integral calculus. In this domain, the versatility in meanings of the concept of
derivative and (definite) integral, that one cannot possibly understand based only on
a definition, was given a central place. Meaning depends on the context in which
these concepts occur, or, as Freudenthal (1973, p. 513) wrote: “What the differential
quotient and the integral of a function mean depends on what the function means,
and this can be many different things.” Basically, the derivative is meant for measur-
ing change (Kindt & De Lange, 1984, 1985). To arrive at a solid understanding of
the concept of derivative, conceptual mathematisation was promoted. On the basis
of different contexts in which change occurs and has slightly different meanings
(speed of an animal, population growth, marginal cost, …), the notions of average
and instantaneous change are explored and interpreted graphically as, respectively
an average slope (slope of a secant) and the slope in a point (slope of the tangent).
The transition from average to instantaneous change can be clarified on the basis of
an intuitive concept of limit. This pre-formal phase is meant to equip the derivative
with a rich and flexible meaning, and only at a later moment, a formal-analytical
quantification is presented (as, respectively, a difference quotient and a differential
quotient or derivative). In line with Poincaré’s (1908, p. 83) words that “mathematics
is the art of giving the same name to different things”, the derivative appears as a
common name for rate of change. The didactical track continues with the differen-
tiation rules, first deduced for polynomial functions, but gradually expanded when
other classes of functions are involved, and ending with various new applications,



11 The Enrichment of Belgian Secondary School Mathematics… 205

e.g., problems related to optimisation, in which, thanks to the rich pre-formal phase,
the derivative is now recognised and applied more easily.

Unfortunately, directly usable HEWET or other RME materials for the teaching
of integral calculus were not available, but it proved possible to design a course
in the same spirit, that is, giving a central place to the versatility of meaning of
the concept of (definite) integral (De Bock, 1990; De Bock et al., 1994; Roelens,
Roels, & Deprez, 1990). Inspiration was, among other sources, found in the work
of German mathematics educators (see, e.g., Kirsch, 1976). Although integrals are
defined geometrically—directly as the (oriented) area under the graph of a function or
bymeans of lower and/or upper sums—theirmeaning indifferent contexts and, hence,
the type of problems that can be solved using integrals, is emphasised. Three types
of such problems are identified. A first type is labelled ‘reconstruction problems’:
starting from the rate of change of a variable, the variable itself can be reconstructed.
So, for example, the area under a graph of flow rate of a river, velocity or marginal
costs enables to reconstruct, respectively, water volume passing, distance travelled or
total costs. A second type relates to summation. Integrals are not only approximated
by sums (the idea of ‘numerical integration’), but also vice versa: sums of a large
number of terms can be approximated or idealised by integrals. Sometimes, it is also
helpful to perceive a magnitude (e.g., a volume, a surface area or the length of an
arc) as a sum to discover how that magnitude can be calculated as the integral of
some function. Third, integral problems are also related to averaging continuously
changingmagnitudes. Definite integrals with variable upper limit lead to the concepts
of integral function and anti-derivative or indefinite integral. Finally, the link between
the concepts of (anti-)derivative and (definite) integral is established (leading to the
so-called ‘fundamental theorem of calculus’).

11.5 Conclusion

The Dutch RME model enriched Flemish mathematics education in secondary
schools during the 1980s and 1990s and its positive influence is generally recognised.
However, this does not mean that mathematics education in Flanders nowadays is
a copy of that Dutch RME model (as embodied in, e.g., the HEWET and HAWEX
materials). Elements of the more traditional approach, focusing on calculation drill
and algebraic techniques, as well as more structural elements, focusing on a logical
organisation of content and on proof and argumentation, are still essential parts of
Flemish mathematics curricula and of classroom practice, although their importance
has decreased. In our view, this has resulted in a more or less balanced approach to
mathematics education in Flanders. This specificity of Flemish mathematics educa-
tion, which was the result of multiple influences, is probably one of the reasons why
an orthodox version of the RME model could never be implemented. For example, a
project in the late 1980s inwhich some of theHEWETcahierswere ‘translated’ to the
Flemish context, proved to be unsuccessful, likely because Flemish teachers missed
a clear structure, the provided modelling problems were sometimes too open and
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computational skills received insufficient attention. It may also be one of the reasons
why the Math Wars, that originated in the 1990s in the United States, have had very
limited impact in Flanders (while they have been an important educational-political
issue in the Netherlands).

References

Bernet, T.,& Jaquet, F. (1998).LaCIEAEMau travers de ses 50 premières rencontres [TheCIEAEM
through its first 50 meetings]. Neuchâtel, Switzerland: CIEAEM.

Bunt, L. N. H. (1959). L’enseignement de la statistique dans les écoles secondaires des Pays-Bas
[The teaching of statistics in Dutch secondary schools].Mathematica & Paedagogia, 17, 35–48.

Carbonez, A., & Veraverbeke, N. (1994). Eindige kansmodellen en toetsen van hypothesen [Finite
probability models and testing of hypotheses]. Leuven/Amersfoort, Belgium/the Netherlands:
Acco.

Cleve,M., De Bock, D., &Roelens,M. (1993). Onder de loep genomen: De grafische rekenmachine
in de wiskundeles [Under the magnifying glass: The graphing calculator in the mathematics
lesson]. Uitwiskeling, 9(4), 15–50.

Colot, L. (1969). Lettre d’un professeur de mathématique à un collègue [Letter of a mathematics
teacher to a colleague]. Mathematica & Paedagogia, 38, 34–40.

De Bock, D. (1990). Een driesporige benadering van het integraalbegrip [A three-track approach
to the concept of integral].Wiskunde & Onderwijs, 62, 141–159.

De Bock, D., Deprez, J., Eggermont, H., Janssens, D., Kesselaers, G., Op de Beeck, R., et al. (1992).
Onder de loep genomen: Analyse [Under the magnifying glass: Analysis]. Uitwiskeling, 8(4),
15–53.

De Bock, D., Deprez, J., Gyssels, S., Eggermont, H., Janssens, D., Kesselaers, G., et al. (1986).
Analyse: Een intuïtieve kennismaking [Analysis: An intuitive introduction]. Leuven, Belgium:
Acco.

De Bock, D., Janssens, D., Roelens, M., & Roels, J. (1994). Afgeleiden en integralen [Derivatives
and integrals]. Leuven, Belgium: Acco.

De Bock, D., & Roelens, M. (1990). De reis van de Yatzy [The journey of the Yatzy]. Nieuwe
Wiskrant, 10(2), 21–26.

De Bock, D., &Vanpaemel, G. (2015a). Modern mathematics at the 1959 OEEC Seminar at Royau-
mont. In K. Bjarnadóttir, F. Furinghetti, J. Prytz, & G. Schubring (Eds.), “Dig where you stand”
3. Proceedings of the Third International Conference on the History of Mathematics Education
(pp. 151–168). Uppsala, Sweden: Uppsala University, Department of Education.

De Bock, D., & Vanpaemel, G. (2015b). The Belgian journal Mathematica & Paedagogia (1953–
1974): A forum for the national and international scene inmathematics education. In E. Barbin, U.
T. Jankvist, & T. H. Kjeldsen (Eds.), Proceedings of the Seventh European Summer University on
the History and Epistemology in Mathematics Education (pp. 723–734). Copenhagen, Denmark:
Aarhus University, Danish School of Education.

De Corte, E. (1996). Actief leren binnen krachtige onderwijsleeromgevingen [Active learning in
powerful teaching-learning environments]. Impuls, 26, 145–156.

De Lange, J. (1987). Mathematics, insight and meaning. Utrecht, the Netherlands: OW&OC.
De Lange, J., & Kindt, M. (1984a). Exponenten en logaritmen [Exponents and logarithms]. Culem-
borg, the Netherlands: Educaboek.

De Lange, J., & Kindt, M. (1984b).Matrices [Matrices]. Culemborg, the Netherlands: Educaboek.
De Lange, J., & Kindt, M. (1984c). Sinus [Sine]. Culemborg, the Netherlands: Educaboek.
DeLange, J., &Kindt,M. (1985).Periodieke functions [Periodic functions]. Culemborg, theNether-
lands: Educaboek.

De Lange, J., & Kindt, M. (1986). Groei [Growth]. Culemborg, the Netherlands: Educaboek.



11 The Enrichment of Belgian Secondary School Mathematics… 207

Deprez, J., Eggermont, H., Janssens, D., & Roelens, M. (1987a). Ruimtemeetkunde [Solid geome-
try]. Leuven, Belgium: Acco.

Deprez, J., Gyssels, S., & Roels, J. (1985). Onder de loep genomen: Analyse [Under the magnifying
glass: Analysis]. Uitwiskeling, 2(1), 16–47.

Deprez, J., Roelens, M., & Roels, J. (1987b). Onder de loep genomen: Ruimtemeetkunde [Under
the magnifying glass: Solid geometry]. Uitwiskeling, 3(3), 10–40.

Deprez, J., & Roels, J. (2000). Onder de loep genomen: Ruimtemeetkunde in de tweede graad
[Under the magnifying glass: Solid geometry in the second grade]. Uitwiskeling, 16(4), 12–38.

Deprez, J., Roels, J., & Roelens, M. (1992). Onder de loep genomen: Kansen van 1 tot 6 [Under
the magnifying glass: Probabilities from 1 to 6]. Uitwiskeling, 8(2), 20–58.

Eggermont, H., & Roels, J. (1997). Onder de loep genomen: Het functiebegrip [Under the magni-
fying glass: The concept of function]. Uitwiskeling, 14(1), 11–33.

Feys, R. (1982). Moderne wiskunde: een vlag op een modderschuit [Modern mathematics: a flag
on a mud barge]. Onderwijskrant, 24, 3–37.

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, the Netherlands: Reidel.
Garst, S. (1990). Wiskunde en onderwijs in Nederland IV: Statistiek en kansrekening [Mathematics
and education in the Netherlands IV: Statistics and probability]. Wiskunde en Onderwijs, 62,
241–244.

Holvoet, R. (1996). Piet Vredenduin (1909–1996), geziene gast in Vlaanderen [Piet Vredenduin,
respected guest in Flanders]. Wiskunde en Onderwijs, 87, 374–376.

Janssens, D. (1993). Implementation of teaching of mathematics by applications. In J. de Lange, C.
Keitel, I. Huntley, &M.Niss (Eds.), Innovation inmaths education bymodelling and applications
(pp. 203–210). New York, NY: Ellis Horwood.

Janssens, D., & Roels, G. (1985). Meetkunde voor het derde jaar secundair onderwijs [Geometry
for the third year of secondary education]. Leuven, Belgium: Acco.

Kesselaers, G., & Roelens, M. (1992). Onder de loep genomen: Stochastiek [Under the magnifying
glass: Statistics]. Uitwiskeling, 9(1), 9–55.

Kindt, M., &De Lange, J. (1984).Differentiëren 1 [To differentiate 1]. Culemborg, the Netherlands:
Educaboek.

Kindt, M., &De Lange, J. (1985).Differentiëren 2 [To differentiate 2]. Culemborg, the Netherlands:
Educaboek.

Kirsch, A. (1976). Eine “intellektuell ehrliche” Einführung des Integralbegriffs in Grundkursen
[An “intellectually honest” introduction to the concept of integral in basic courses]. Didaktik der
Mathematik, 4, 87–105.

La Bastide-van Gemert, S. (2015). All positive action starts with criticism. Hans Freudenthal and
the didactics of mathematics. New York, NY: Springer.

Maassen, J. (2000). De vereniging en het tijdschrift [The society and the journal]. In F. Gof-
free, M. van Hoorn, & B. Zwaneveld (Eds.), Honderd jaar wiskundeonderwijs [Hundred years
of mathematics teaching] (pp. 43–56). Leusden, the Netherlands: Nederlandse Vereniging van
Wiskundeleraren.

Miewis, J. (2003). Mathematica et Paedagogia… 1953–1974. Mathématique et Pédagogie, 142,
5–22.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Op de Beeck, R., Deprez, J., & Roels, J. (1997). Onder de loep genomen: Meetkunde in de eerste
graad, ook in de ruimte [Under the magnifying glass: Geometry in the first grade, also in space].
Uitwiskeling, 13(2), 18–49.

Papy, G. (1967). Mathématique moderne 3. Voici Euclide [Modern mathematics 3. Euclid now].
Bruxelles: Didier.

Pirard, A., & Godfrind, P. (1980, March 11). Les désastres de la mathématique moderne [The
disasters of modern mathematics]. La Libre Belgique, p. 15.



208 D. De Bock et al.

Poincaré, H. (1908). The future of mathematics [English version translated fromRevueGénérale des
Sciences Pures et Appliquées, 19th Year, No. 23, Paris]. Available at: https://archive.org/stream/
monist09instgoog#page/n86/mode/2up.

Roelens, M., Roels, J., & Deprez, J. (1990). Onder de loep genomen: Integralen [Under the mag-
nifying glass: Integrals]. Uitwiskeling, 6(4), 9–54.

Roels, G. (1995). Tien jaar evolutie van het wiskundeonderwijs in Vlaanderen. Een schets uit de
praktijk [Ten year of evolution in mathematics education in Flandres. A sketch from practice].
Uitwiskeling, 11(3), 2–13.

Roels, J., De Bock, D., Deprez, J., Janssens, D., Kesselaers, G., Op de Beeck, R., et al. (1990).
Wiskunde vanuit toepassingen [Mathematics taught by applications]. Leuven, Belgium: Aggre-
gatie HSO Wiskunde – K.U. Leuven.

Servais, W. (1953). Éditorial [Editorial]. Mathematica & Paedagogia, 1, 2–4.
Stichting-Lodewijk de Raet. (1983). Verslagboek van het colloquium “Welke Wiskunde voor 5-
tot 15-Jarigen?” [Proceedings of the colloquium “What Kind of Mathematics for 5 to 15 Year
Olds?”]. Onderwijskrant, 32, 2–30.

Thaels, K., Eggermont, H., & Janssens, D. (2001). Van ruimtelijk inzicht naar ruimtemeekunde
[From insight in space to solid geometry]. Deurne, Belgium: Wolters Plantyn.

Vanpaemel, G., DeBock,D.,&Verschaffel, L. (2012). Definingmodernmathematics:Willy Servais
(1913–1979) andmathematical curriculum reform inBelgium. InK.Bjarnadóttir, F. Furinghetti, J.
Matos, &G. Schubring (Eds.), “Dig where you stand” 2. Proceedings of the Second International
Conference on the History of Mathematics Education (pp. 485–505). Lisbon, Portugal: New
University of Lisbon.

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, the
Netherlands: Swets and Zeitlinger.

Vredenduin, P. J. G. (1967). Het experiment Papy [The experiment Papy].Euclides, 42(6), 167–172.
Zwaneveld, B. (2000). Kansrekening en statistiek [Probability and statistics]. In F. Goffree, M. van
Hoorn, &B. Zwaneveld (Eds.),Honderd jaar wiskundeonderwijs [Hundred years of mathematics
teaching] (pp. 239–251). Leusden, the Netherlands: Nederlandse Vereniging van Wiskundeler-
aren.

Open AccessThis chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

https://archive.org/stream/monist09instgoog\#page/n86/mode/2up
https://archive.org/stream/monist09instgoog#page/n86/mode/2up
http://creativecommons.org/licenses/by/4.0/

	11 The Enrichment of Belgian Secondary School Mathematics with Elements of the Dutch Model of Realistic Mathematics Education Since the 1980s
	11.1 Papy and Freudenthal: Opposite Views on Mathematics Education in Neighbouring Countries3pc
	11.2 Critique on New Math in Belgium and Search for Alternatives3pc
	11.3 How During the Middle 1980s and 1990s New Developments in Neighbouring Countries Reached the Community of Flemish Mathematics Teachers3pc
	11.3.1 Rounding off the Rough Edges of New Math3pc
	11.3.2 A Second Wave of Changes3pc
	11.3.3 Consolidation3pc

	11.4 Some Topics that Underwent a True Metamorphosis3pc
	11.5 Conclusion3pc
	References


