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Abstract. One of the big challenges in the recognition of biomedical
samples is the lack of large annotated datasets. Their relatively small
size, when compared to datasets like ImageNet, typically leads to prob-
lems with efficient training of current machine learning algorithms. How-
ever, the recent development of generative adversarial networks (GANs)
appears to be a step towards addressing this issue. In this study, we focus
on one instance of GANs, which is known as deep convolutio nal genera-
tive adversarial network (DCGAN). It gained a lot of attention recently
because of its stability in generating realistic artificial images. Our article
explores the possibilities of using DCGANs for generating HEp-2 images.
We trained multiple DCGANs and generated several datasets of HEp-2
images. Subsequently, we combined them with traditional augmentation
and evaluated over three different deep learning configurations. Our arti-
cle demonstrates high visual quality of generated images, which is also
supported by state-of-the-art classification results.

Keywords: Deep learning · Image recognition ·
HEp-2 image classification · GAN · CNN · GoogLeNet · VGG-16 ·
Inception-v3 · Transfer learning

1 Introduction

Human Epithelial (HEp-2) cells are commonly used in the Indirect Immunoflu-
orescence (IIF) tests to detect autoimmune diseases. Nowadays, the evaluation
of IIF test is done mostly by humans and therefore it is a subjective method
too dependent on the experience of the physician. Usually, two or three special-
ists need to analyze patients’ specimen images via fluorescence microscopes and
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vote to decide the staining patterns. Thus, computer-aided systems aim to assist
doctors with the diagnosis by automatic classification of HEp-2 images.

A number of automated methods addressing the problem of cell staining
pattern recognition have been proposed in the literature. Many of them are
the result of the HEp-2 cell classification contests [7,12,13], where datasets of
samples were made publicly available for method evaluation. While most of the
research groups at the time of these competitions still approached the problem
by using methods based on extracting so-called hand-crafted features for pattern
discrimination, nowadays the deep convolutional neural networks (also known
as CNNs) are used almost exclusively [2,9,16,21].

To train a successful deep neural network, a large amount of training images
is required. It is typically very difficult to collect and label biomedical images
due to the lack of experts’ time and the cost of imaging devices. It is therefore
common to increase the number of training samples by various methods of image
augmentation. For HEp-2 images, the flipping operation and the rotation around
the central image point are the most common approaches [2,9,16,21].

Our paper investigates an alternative method for data augmentation by uti-
lizing Generative Adversarial Network (GAN). This method has been demon-
strated to be a powerful technique to perform an unsupervised generation of new
synthetic images with the visual appearance of the real ones. We have employed
deep convolutional GAN (DCGAN) [19] for this particular purpose. Our moti-
vation is supported with the fact that the original DCGAN architecture was
demonstrated to be stable for images of size 64 × 64, which is very close to the
average size of HEp-2 cells images. The comparison of different augmentation
techniques is done using the transfer learning framework. We compare the per-
formances of fine-tuned GoogLeNet, VGG-16, and Inception-v3 with augmented
data obtained by traditional methods and by utilization of DCGAN.

The next section of the article presents the current state-of-the-art in HEp-
2 image recognition and development of GANs. Subsequently, we describe the
dataset used in this article and our methods of preprocessing and augmentation
of the images. The last sections are dedicated to evaluation together with pre-
sentation and discussion of experiments and results, where we demonstrate the
effectiveness of our solution.

2 Related Work

The recent progress of pattern recognition techniques for IIF image analysis has
been covered by a special issue of Pattern Recognition Letters [11]. Novel tech-
niques, including those examining the role of Gaussian Scale Space theory as
a pre-processing approach [18], a superpixel based classification method calcu-
lating the sparse codes of image patches [6], a multi-process system based on
ensemble of 15 support vector machines [4], and many others, were introduced.

Even more recently, Gao et al. [9] analyzed the impact of hyper-parameter
settings of proposed fully-connected CNN on the classification accuracy. The
influence of several preprocessing techniques on HEp-2 image classification has
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been studied by Bayramoglu et al. [2]. Shen et al. were focusing on a very deep
residual network for HEp-2 pattern classification [21] and some authors tried
simultaneous cell segmentation and classification by utilizing proposed residual
network [16]. All of these papers are focusing on very specific problems but none
of them deals with comparison of various augmentation methods, which is the
main focus of our paper.

GANs, a class of neural networks, were introduced in 2014 [10]. They typi-
cally consist of two CNNs - the generator and the discriminator, which compete
with each other in a zero-sum game. The role of the generator is to produce
random samples that look like real images, while the role of the discriminator
is to correctly classify and recognize these generated images. GANs have been
successfully used for biomedical imaging tasks including the image synthesis and
classification [25], and also for medical segmentation [3].

In the context of automated analysis of HEp-2 images, GANs were used only
for segmentation task [15], while for the HEp-2 images classification there are
no peer-reviewed publications focusing on exploring the possibilities. Our article
aims at filling this gap with an extensive comparison over three different network
configurations.

3 Dataset

In this article, we are using publicly available dataset of HEp-2 images, which was
also previously used for benchmarking [13]. The entire dataset contains 13,596
pre-segmented and annotated cell images with their ground truth classes. It
utilizes 419 unique positive sera extracted from 419 randomly selected patients.
The specimens, one for each patient serum, were automatically photographed
using a monochrome high dynamic range cooled microscopy camera. The image
dataset is divided into six categories: Centromere (Ce), Golgi (Go), Homogeneous
(Ho), Nucleolar (Nu), Nuclear Membrane (Nm), and Speckled (Sp). See the top
most part of Fig. 1 for illustration.

Since there are no official independent publicly available test samples, some
researchers opt for N-fold cross-validation over the all available images to evalu-
ate the performance of their algorithms. However, this approach is criticized from
statistical point of view [1] and it leads to biased results, where the performance
tends to drop significantly when the algorithm is applied on new, previously
unseen data. Therefore, we use a holdout validation approach on the available
part of the dataset. We randomly partitioned the dataset into 70% for training,
10% for validation, and 20% for testing. The validation part is used to evalu-
ate the performance during the training of deep learning, whereas independent
testing part is used at the very end to report the final performance. The total
number of images in each class, before any form of augmentation, is summarized
in Table 1.
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4 Proposed Method

When we look at the entire dataset, the average size of an image is 68.75 ×
68.73 pixels with a standard deviation of 6.32 and 6.19 pixels, respectively. For
comparison purposes, all images were resized to the same size of 64 × 64 pixels
using bicubic interpolation. Since the brightness and contrast of the images vary
a lot, we employed normalization of image intensities. The intensity adjustment
was performed by linear stretching, where 1% of the pixels are saturated at low
and at high end of the intensity range in order to maximize the contrast. The
following two subsections describe the two forms of augmentation employed for
the training images in this study. The version of training dataset without any
form of augmentation is further referred to as original.

Table 1. The division of images before augmentation of the training part of the dataset.

Ce Go Ho Nu Nm Sp Total

Training 1, 918 506 1, 745 1, 819 1, 546 1, 981 9, 515

Validation 274 72 249 259 220 283 1, 357

Testing 549 146 500 520 442 567 2, 724

Total 2, 741 724 2, 494 2, 598 2, 208 2, 831 13, 596

4.1 Augmentation by Rotation and Flipping

There are multiple different forms of augmentation, where their usability is typi-
cally subject to the nature of the data. Since we are working with pre-segmented
cell images that were acquired using the same microscope settings, the samples
are centered and have the same resolution. Therefore, augmentation by shifting
or zooming is not appropriate here. On the other hand, the most common and
natural technique to augment these biomedical datasets is to use image rotation
around the image center. We rotated each image by 90◦, 180◦, and 270◦, which,
together with the flipping operation, results in seven unique images generated
out of each original input.

The original dataset is unbalanced, with one class (Golgi) having 3–4× lower
number of images than the remaining five classes (see Table 1). We therefore
additionally rotated each Golgi image by angles of size 23◦×i, where i ∈ {1, 2, 3}.
After adding three more rotations, Golgi class reached similar number of images
(4 × 506) as the remaining classes. In this augmentation step, rotated images
are first cropped to the size of the largest rectangle within the input image and
later resized back to the size of 64 × 64. The bicubic interpolation is used in
both cases. The training part of the dataset derived by this sequence of steps is
further referred to as rotated. The problem of unbalanced classes is addressed
in literature by different approaches, e.g., by using RUSBoost [20] approach to
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alleviating class imbalance. These methods, however, usually follow the strategy
of under-sampling the majority class or classes, which is not optimal in this
study, where we have one minority class.

In addition, we also wanted to examine the effect of even stronger augmen-
tation by adding more image rotations. Therefore, we created another version of
training dataset, where each image from the rotated dataset is further rotated
by 45◦. This leads to doubling the number of training samples. Also here, the
images are cropped and resized in the same fashion as previously described for
Golgi class. This version of training dataset is further referred to as rotated+45◦ .
The exact sizes of both rotated and rotated+45◦ datasets are specified in Table 3.

4.2 Augmentation by Generative Adversarial Networks

As aforementioned, we use the DCGAN [19] to generate more HEp-2 samples for
increasing the size of the training dataset. The authors of DCGAN introduced
several techniques for successful learning: converting the max-pooling layers to
convolution layers, converting the fully connected layers to global average pool-
ing layers in the discriminator, using batch normalization layers in the gener-
ator and the discriminator, and using leaky ReLU activation functions in the
discriminator. In their configuration, a 100 dimensional uniform distribution is
projected to a small spatial extent convolutional representation. Subsequently,
the series of four fractionally-strided convolutions convert the representation into
a 64×64 pixel image. For more details about the network configuration, we refer
the reader to the original paper introducing DCGAN [19].

For application of this approach to the HEp-2 images, we train individual
DCGAN for each of the six classes. In total, two different training scenarios are
followed. In the first one, we use the original dataset to train the DCGANs, while
in the second one, we use the rotated dataset. To distinguish between images
generated from GANs trained on original dataset and those generated from
GANs trained on rotated dataset, we use the subscript rot for the latter version,
i.e., we refer to these datasets as generated and generatedrot, respectively. The
motivation is to test the influence of larger and already pre-augmented dataset
by rotation and flipping on the quality of generated images via DCGANs. All our
models are trained with mini-batch stochastic gradient descent with a mini-batch
size of 128. All weights are initialized from a zero-centered normal distribution
with standard deviation 0.02. The learning rate is set to 0.0002 and we train all
models for 300 epochs. Figure 1 illustrates both versions of generated datasets.

Since there is no limit in the number of derived images using DCGANs,
we use this fact to create also the perfectly balanced classes. In this scenario,
we start from the rotated set, however, we did not use the additional rotation
of Golgi class, where bicubic interpolation and resizing was needed. Therefore,
each image from original set is only rotated by 90◦, 180◦, and 270◦ and flipped,
which leads to higher unbalance between classes than in previous scenarios. We
subsequently use generated images to fill up those classes having lower number
of samples than the most populated class, the Speckled class. The new datasets
created using this approach are further referred to as balanced and balancedrot.
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Fig. 1. Examples of original HEp-2 images (first three rows), images generated
by DCGAN from original dataset (three middle rows), and images generated by
DCGAN from rotated dataset (last three rows). Each column represents a different
image class, in order: Ce, Go, Ho, Nu, Nm, Sp.
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Lastly, we create two more datasets that match the number of images in
rotated+45◦ . We start with rotated dataset here and instead of employing addi-
tional rotations that were used to create rotated+45◦ set, we utilize images gen-
erated from GANs to match the number of samples in rotated+45◦ . These new
datasets are referred as rotated&generated and rotated&generatedrot, depend-
ing on the type of images used to train GANs. The overview of all created
training datasets is in Table 2 and the summary of their exact size is in Table 3.

Table 2. The brief overview of all created training datasets. In balanced and
balancedrot datasets, we eliminated the additional rotation of Golgi class.

Description

original original data, no augmentation

rotated each image flipped and rotated, additional rotation for Golgi class

generated GANs trained on original, equal output size as rotated

generatedrot GANs trained on rotated, equal output size as rotated

balanced rotated dataset perfectly balanced using GANs trained on original

balancedrot rotated dataset perfectly balanced using GANs trained on rotated

rotated+45◦ rotated dataset plus additional rotation by 45◦

rotated&generated rotated dataset plus generated dataset

rotated&generatedrot rotated dataset plus generatedrot dataset

Table 3. The total number of images in different versions of the training dataset after
various forms of augmentation. In balanced and balancedrot datasets, we eliminated
the additional rotation of Golgi class. Therefore, balanced classes have lower number
of samples than the maximum of rotated dataset.

Ce Go Ho Nu Nm Sp

original 1, 918 506 1, 745 1, 819 1, 546 1, 981

rotated, generated,
generatedrot

15, 344 16, 192 13, 960 14, 552 12, 368 15, 848

balanced, balancedrot 15, 848 15, 848 15, 848 15, 848 15, 848 15, 848

rotated+45◦ ,

rotated&generated, 30, 688 32, 384 27, 920 29, 104 24, 726 31, 696

rotated&generatedrot

5 Evaluation

In the experimental part, we are using three different pretrained convolutional
neural networks, namely GoogLeNet [23], VGG-16 [22], and Inception-v3 [24].
All three networks were pretrained on ImageNet [5]; we perform fine-tuning, also
known as the transfer learning [26], to adjust them for HEp-2 image recognition.
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Fig. 2. Accuracy (left) and loss (right) for VGG-16 network during its training on
generated dataset. The number of iterations is displayed on the x-axis.

This implies that, for all three networks, we replace their last three layers with a
fully-connected layer, a softmax layer, and a classification layer, which classifies
images directly to the six categories of HEp-2 images.

For this fine-tuning, we utilize stochastic gradient descent with momentum
optimizer, initial learning rate of 0.001, and a mini-batch size of 32 images. All
the networks are trained for 50 epochs, to be sure that the training is stabilized
(see the stable curves in Fig. 2 with almost no fluctuations at the end). Images
are resized to appropriate input size for each network separately. All tests are
performed using Matlab R2018b. During the training, we validate the perfor-
mance using an independent validation dataset and at the end, the final version
of each model is evaluated using the test dataset. For illustration of the develop-
ment of training process, Fig. 2 depicts accuracy and loss for VGG-16 network
trained on generated dataset.

Evaluation of classification performance is performed using two different met-
rics. The first one is the overall accuracy (OA), defined as the overall correct
classification rate of all images. In some previous works on HEp-2 image recog-
nition, this metric is also known as the average classification accuracy (ACA).
The second one, the mean class accuracy (MCA), is defined as

MCA =
1
K

K∑

k=1

CCRk (1)

where CCRk is the classification accuracy of a particular cell class k and K is
the number of cell classes.

6 Results and Discussion

The comparison of all tested variants is summarized in Table 4 and the overall
accuracy is also plotted in Fig. 3. From the results we can see that already the
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performance on the original dataset is relatively high, which confirms the quality
of our preprocessing and the appropriate choices of deep learning techniques. The
performance on the generated and generatedrot datasets is lower, when com-
pared to corresponding rotated dataset (see also Table 5 for confusion matrices
of generated and rotated versions). Despite of the very good visual appearance
of generated images (see Fig. 1), their standalone classification performance is
not as convincing.

Table 4. The comparison of performances of all three network configurations on
all derived training datasets for both tested metrics. In the table, G-net stands for
GoogLeNet, V-net stands for VGG-16, and I-net stands for Inception-v3. Presented
values are in %.

OA MCA

G-net V-net I-net G-net V-net I-net

original 96.84 96.26 95.99 97.10 96.45 96.04

generated 95.96 96.33 96.48 95.94 96.49 96.39

generatedrot 96.33 96.62 96.26 96.40 96.68 96.07

balanced 97.98 98.13 98.20 98.17 98.31 98.17

balancedrot 98.31 98.24 98.49 98.44 98.22 98.53

rotated&generated 98.27 97.91 98.38 98.41 97.94 98.36

rotated&generatedrot 98.35 98.27 98.60 98.47 98.34 98.55

rotated+45◦ 98.60 97.72 98.42 98.61 97.76 98.38

rotated 98.60 98.13 98.49 98.71 98.30 98.62

Table 5. GoogLeNet confusion matrices for generated and rotated versions of training
dataset. Presented values are in %.

Generated version
Ce Go Ho Nu Nm Sp

Ce 98.00 0.36 0.00 0.36 0.18 1.10
Go 0.00 95.22 0.68 2.74 0.68 0.68
Ho 0.60 0.60 95.00 0.20 0.60 3.00
Nu 0.96 0.96 0.77 95.58 0.38 1.35
Nm 0.00 0.68 0.68 0.23 98.18 0.23
Sp 2.65 0.18 2.12 1.05 0.35 93.65

Rotated version
Ce Go Ho Nu Nm Sp

Ce 98.89 0.19 0.00 0.73 0.00 0.19
Go 0.00 99.32 0.00 0.68 0.00 0.00
Ho 0.20 0.20 98.80 0.40 0.00 0.40
Nu 0.38 0.58 0.19 97.89 0.38 0.58
Nm 0.00 0.00 0.23 0.45 99.32 0.00
Sp 0.00 0.00 0.53 0.88 0.53 98.06

This result confirms the observation made by Perez and Wang [17] for real-
world images. They also concluded that GANs do not perform better than tra-
ditional augmentations. However, there is still a potential in combining them
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Fig. 3. The overall accuracy (OA) graphs for GoogLeNet (G-net), VGG-16 (V-net),
and Inception-v3 (I-net).

together, as was shown by Frid-Adar et al. [8] for liver lesion classification, where
inclusion of the GAN-based augmentation does help. Our results for VGG-16
and also for Inception-v3 support this conclusion also for HEp-2 images, since
we observe a slight increase in accuracy achieved by combining rotated and gen-
erated images during the training.

Table 6. Comparison with other approaches on the same dataset and with the same
division of publicly available part of HEp-2 images. Presented values are in %.

OA MCA

Kastaniotis et al. [14] – 93.6

Gao et al. [9] 97.24 96.76

Shen et al. [21] 98.82 98.62

Our top performing method 98.60 98.71

We also observe that the versions with the subscript rot have generally
slightly higher performance than their corresponding variants without this sub-
script. This indicates importance of the amount and variability of training sam-
ples for performance of DCGANs, as well as an effect that the quality of training
data has on the resulting quality of generated images. Finally, both balanced
datasets exhibit slightly lower performance. However we note that the original
dataset is relatively balanced, with only one class with lower number of training
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samples, which is primarily compensated by additional rotations. As a result,
the effect of perfect class balancing does not turn out to be important.

To provide a look at the HEp-2 image classification from a broader per-
spective, we present the comparison of our top performing approach with the
methods from the literature in Table 6. To enable a fair comparison, we include
only the methods using the same, or almost the same, split technique for train-
ing and test datasets as we did. Table 6 suggests that we share the top position
together with the Shen et al. [21], depending on the choice of metric used for
evaluation. Shen et al. [21] proposed a deep cross residual network (DCRNet) for
HEp-2 cell classification and their method is the winner of the most recent HEp-
2 image recognition contest, with achieved accuracy which exceeds all of the top
performers in the previous contests. Our solution is based on transfer learning
and we used slightly less images for training (70% vs. 80%), when compared to
their presented solution.

7 Conclusion

In this article, we compare and discuss augmentation techniques for HEp-2
images for their classification. We evaluate the usage of the recently proposed
DCGAN and we observe that these type of networks are capable of producing
very realistically looking images of HEp-2 cells. However, application of DCGAN
for classification purposes does not lead to convincing results, in particular when
the generated images are used independently, without the combination with orig-
inal ones. This result is not surprising and it supports the conclusions from the
similar comparison performed in a different image domain [17]. The potential
of combining generated and rotated images is, however, still interesting, as is
also demonstrated by our results, especially for the VGG-16 and Inception-v3
network configurations.

For future work, we would like to focus on further improvement of the quality
of the generated dataset by an external measure. There is a possible problem of
large intra-class variance, which was not discussed and covered in this work and
which could lead to the low quality of synthetic images. Despite some of the weak
performances presented here, we still see a potential of GANs in biomedical and
medical domain for helping to address the problem of small annotated datasets.
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