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Abstract. The cross-correlation is a fundamental operation in signal
processing, as it is a measure of similarity and a tool to find translations
between signals. Its implementation in Fourier space is used for large
datasets, as it is faster than the one in real space, however, it does not
consider any special properties which signals may have, as is the case
of Limited Angle Tomography. The Fourier space of limited angle tomo-
grams, which are reconstructed from a reduced number of projections,
has a large number of empty values. As a consequence, most opera-
tions needed to calculate the cross-correlation are executed on empty
data. To address this issue, we propose the projected Cross Correlation
(pCC) method, which calculates the cross-correlation between a reference
and a limited angle tomogram more efficiently. To reduce the number of
operations, pCC follows a project, cross-correlate, reconstruct process,
instead of the typical reconstruct, cross-correlate process. Both methods
are equivalent, but the proposed one has lower computational complex-
ity and provides significant speedup for larger tomograms, as we confirm
with our experiments. Additionally, we propose the usage of a l1 penalty
on the cross-correlation to improve its sensitivity and its robustness to
noise. Our experimental results show that the improvements are achieved
with no significant additional computational cost.

Keywords: Limited angle tomography · Template matching ·
Volume Alignment · Cryo electron tomography

1 Introduction

Cross-correlation is a fundamental and widely used operation in signal process-
ing. It can be used as a measure of similarity between signals [14], and for
estimation of the translation between them. Due to computational efficiency it
is calculated in Fourier space, and, as a general method, it does not take into
consideration any special property the signals may have. This is the case, for
example, of limited angle tomographic data, where the Fourier space is sparse.
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Limited angle tomography is encountered when the data acquisition is
restricted to a reduced number of views. For example, in cryo-electron tomogra-
phy (cryoET) for structural biology [6] the samples are very sensitive to radiation
damage. This limits the acquisition to only 41 projections with very low SNR,
filling, in some cases, 20% of the Fourier space or less. This field is the inspiration
for the present work, as a typical workflow in cryoET includes the registration of
1000 to 50000 tomograms to one or several references by cross-correlation. This
alignment process takes multiple days on modern hardware.

In this paper we propose a new method to calculate the cross-correlation
between a reference and a set of projections, which reduces the number of oper-
ations by using the sparsity of the Fourier space of limited angle tomograms
(Fig. 1). The method, called projected Cross Correlation (pCC), has lower com-
putational complexity and provides significant speedup for larger tomograms.
Furthermore, we use the l1 penalty function to the cross-correlation to improve
its robustness to noise. The lower complexity of the proposed method and its
improved robustness makes it potentially useful for cryoET data processing.

(a) Cross–correlation. (b) Proposed projected Cross Correlation
(pCC).

Fig. 1. Scheme of the computation of 3D cross correlation between a set of 2D pro-
jections and a 3D reference. (a) The typical computation follows a reconstruct then
cross-correlate process. (b) The proposed projected Cross Correlation (pCC) follows a
project, cross-correlate and reconstruct process

1.1 Related Work

The main proposals to speed up the computation of the cross-correlation are the
precalculation of look-up tables [9] and split the calculations into blocks [11].
These approaches work for any kind of signals and do not take into account any
type of property those signals may have.

Similar to our approach, the Projection-based Volume Alignment
(PBVA) [15] method uses the project, cross-correlate approach, but it estimates
the peak of cross-correlation instead of calculating it. PBVA has similar com-
putational complexity to pCC, and it can be seen as a special case of it: it
approximates the peak value instead of reconstructing the cross-correlation. It
is a faster procedure, but it is more sensitive to noise and it does not find the
translation between signals.



Fast Cross Correlation for Limited Angle Tomographic Data 417

2 Theoretical Context

The Fourier central slice theorem is the mathematical foundation for transmis-
sion tomography. It defines a relationship between a Nm-dimensional signal and
a Nm−1-dimensional projection of it.

2.1 Fourier Central Slice Theorem

Let s and S be a signal and its Fourier transform, and F, the discrete Fourier
transform matrix, such that S = Fs and s = F−1S. Then, given the matrix
Eθi

, that extracts a slice crossing the center of coordinates in the angle θi, the
projection pθi

is defined as [7]:

pθi
= F−1Eθi

Fs. (1)

Equation (1) can be interpreted as: The projection pθi
of s in the direction θi is

the inverse Fourier transform of the slice through S in the corresponding direction
To recover s we have to write Eθi

as the product of the rotation Rθi
and the

binary mask Mθi
. Then, by using the element-wise multiplication operator �,

Eq. (1) takes the following form:

pθi
= F−1Rθi

Mθi
� (S). (2)

We must note that the rotation matrix Rθi
is invertible while the mask

matrix Mθi
is not. Then, by using Pθi

= Fpθi
we have:

R−1
θi

Pθi
= Mθi

� (S). (3)

This last equation defines an insertion-like operation, as the projection Pθi
fills

the slice of S defined by the matrix Mθi
. To recover S we need multiple projec-

tions in different orientations such that Mθi
�= 0 can be inverted [3].

2.2 Analytic Tomogram Reconstruction

Let S̃ be the reconstruction of S from a given set of projections pθi
, and let WΘ

be an unknown weighting matrix. Then, S̃ can be calculated using the following
equation:

S̃ = WΘ �
(∑

i

R−1
θi

Pθi

)
(4)

Using Eq. (3) and by defining MΘ =
∑

i Mθi
, we can rewrite the last equation

as S̃ = WΘ � (MΘ � S). Finally, to obtain the proper reconstruction S̃ = S,
the matrix WΘ must be:

WΘ = M−1
Θ . (5)

If the Fourier space of S is fully and uniformly sampled, matrix WΘ takes
the form WΘ = 1/|w|. This form is called radial filter and it is used in the
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Weighted Back Projection reconstruction algorithm [12]. If the Fourier space is
fully but non-uniformly sampled, we can use Eq. (5) to find WΘ [13].

If the Fourier space is not fully sampled some values of MΘ will be 0, making
the reconstruction an ill-posed inverse problem, as MΘ is non-invertible matrix.
This is the case of limited angled tomography, where we have few projections of
the signal we want to reconstruct and, therefore, a sparse Fourier transform of
the reconstructed tomogram (Fig. 2). The approaches to address this issue use
a priori information of the signal, and solve the ill-posed system by imposing a
regularization factor [1,4,5,8,10]

Fig. 2. (a), (b) Shepp–Logan phantom and its power spectrum. (b), (c) limited angle
tomogram from 25 projections (from −60◦ to 60◦, 5◦ step), and its power spectrum.

In our case we do not need the reconstruction of the limited angle tomogram
to calculate its cross-correlation against a reference: the proposed projected Cross
Correlation method calculates it directly. Nevertheless, a reconstruction algo-
rithm is used in the final stage of the pCC and it can use a priori information
to improve its results. If two signals are similar, the cross-correlation ressembles
a delta dirac function, which is sparse in real space. In the following section we
describe the pCC method and how to use the l1 regularization to add the real
space sparsity constrain to the cross-correlation.

3 Fast Correlation for Limited Angle Tomography

In this section we find a relationship between the cross-correlation of a reference
signal s and a set of projections pθi

. We start by stating the definition of cross-
correlation ϕ: let Fs be the complex conjugate of Fs, and given two signals s
and g, then:

ϕsg = F−1
(
Fs � Fg

)
. (6)

The relationship we describe in this section can be applied, in a similar way,
to the normalized cross-correlation (NCC), zero-normalized cross-correlation
(ZNCC) and the phase correlation. But, for the sake of simplicity, and without
losing generality, we use this Eq. (6) to represent all the family of cross-correlation
functions.
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3.1 Cross Correlation for Limited Angle Tomograms

Given s, a signal used as reference, and p̃, a signal reconstructed from the set of
projections pθi

, we use Eq. (6) to calculate the cross-correlation between them:

ϕp̃s = F−1
(
Fp̃ � Fs

)
. (7)

The projection ϕ
(θi)
p̃s is found using Eq. (2):

ϕ
(θi)
p̃s = F−1Rθi

Mθi
� (

Fp̃ � Fs
)
. (8)

As the binary mask Mθi
is idempotent, we expand the last equation into:

ϕ
(θi)
p̃s = F−1Rθi

(Mθi
� Mθi

) � (
Fp̃ � Fs

)
, (9)

and by rearranging the element-wise multiplications and by using Eq. (3):

ϕ
(θi)
p̃s = F−1Rθi

((Mθi
� Fp̃)︸ ︷︷ ︸

R−1
θi

Fpθi

� (Mθi
� Fs)︸ ︷︷ ︸

R−1
θi

Fsθi

). (10)

Finally, we factorize R−1
θi

:

ϕ
(θi)
p̃s = F−1Rθi

(R−1
θi

(Fpθi
� Fsθi

)), (11)

and use the definition of cross-correlation to obtain:

ϕ
(θi)
p̃s = F−1

(
Fpθi

� Fsθi

)
︸ ︷︷ ︸

ϕpθi
sθi

. (12)

This results in the intuitive property: A projection of the cross-correlation of
two signals is the cross-correlation of the projection of those signals in the same
slice. Furthermore, we can calculate the cross-correlation of two signals from
their projections by reconstructing the cross-correlation of those projections:

Fϕp̃s = WΘ �
(∑

i

R−1
θi

(
Pθi

� Eθi
S

))
. (13)

This equation is the core of the projected Cross Correlation (pCC) method,
which calculates the cross-correlation between a reference and a set of projections
(Fig. 1) and it is described in Algorithm 1. We must note here that we reconstruct
a cross-correlation function instead of a signal, allowing us to impose constrains
to the reconstruction process, like sparsity in real space.
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Algorithm 1. projected Cross-Correlation (pCC)
Input : pθi

, a set of K projections; θi, a set of K angles; s, a reference signal

Output: cc = ϕp̃s

S ← Fs;
/* Cross-correlation of projections */

for i ← 1 to K do
Sθi

← Extract(S, θi);

ccθi
← F−1

(
Sθi

� Fpθi

)
;

/* Reconstruct cross-correlation */

cc ← Reconstruct(ccΘ, Θ);

Computational Complexity. Given s, a signal with Nm elements, and a
set of k projections pθi

, with Nm−1 elements each, the computational cost of
calculating the cross-correlation using Eq. (6) is:

Nop(ϕp̃s) = O(kNm)︸ ︷︷ ︸
reconstruction

+ 3O(NmlogN)︸ ︷︷ ︸
FFTs

+O(Nm)︸ ︷︷ ︸
�

. (14)

In the other hand, the computational cost of calculating the cross-correlation
using Eq. (13) is:

Nop(pCC(pθi
, s)) = 3O(kNm−1logN)︸ ︷︷ ︸

FFTs

+O(kNm−1)︸ ︷︷ ︸
�

+ O(kNm)︸ ︷︷ ︸
reconstruction

. (15)

If k < N , then Nop(ϕp̃s) < Nop(pCC(pθi
, s)): for limited angle tomography

the calculation of pCC is faster than the calculation of ϕp̃s.

3.2 Fast Implementations

The computational performance of the implementation of Algorithm1 is domi-
nated by the reconstruction algorithm used. We can improve this performance by
using an approximation of Eq. (13) or by reducing the size of the reconstruction.
The first approach is called Projection-Based Volume Alignment (PBVA) and it
will be used as a reference algorithm. We call the second one pCC on a Region
Of Interest (pCC ROI), and we add the sparsity constrain to the pCC ROI to
obtain the Regularizated pCC on a ROI (pCC ROI Reg). These three algorithm
will be explained next.

Projection-Based Volume Alignment (PBVA). The cross-correlation is
used to assess the similarity between two signals by finding its maximum value.
We can reduce the number of operations if we focus on finding the peak of
cross-correlation instead of calculating the whole cross-correlation function. If
we explore Eq. (13), and by noting that 0 ≤ WΘ ≤ 1:

Fϕp̃s = WΘ �
(∑

i

R−1
θi

(Pθi
� Eθi

S)

)
≤

∑
i

R−1
θi

(Pθi
� Eθi

S). (16)
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This equation defines an upper bound for the cross-correlation, and it is used
in the PBVA method [15] as a fast estimator of max(ϕp̃s):

m̃ϕ = max(ϕp̃s) ≤ PV BA(p̃, s) =
∑

i

max
(
ϕpθi

sθi

)
. (17)

Calculation of PV BA(p̃, s) is fast, as it does not need the final reconstruc-
tion, but it is not as robust as the cross-correlation, and it cannot calculate the
translation between the signals. PBVA is described in Algorithm 2.

Algorithm 2. PBVA [15]
Input : pθi

, a set of K projections; θi, a set of K angles; s, a reference signal

Output: m̃ϕ = P V BA(pθi
, s)

S ← Fs;
m̃ϕ ← 0;
/* Cross-correlation of projections and average their maximums */

for i ← 1 to K do
Sθi

← Extract(S, θi);

ccθi
← F−1

(
Sθi

� Fpθi

)
;

m̃ϕ ← m̃ϕ+ Max(ccθi
)/K;

3.3 Localized Reconstruction

The cross-correlation is used to find a spatio-temporal translation between two
signals, which is done by finding tϕ, the position of the peak of cross-correlation.
Typically, the maximum translation is constrained to a known area. Let ML be
a matrix with L non-zero elements that defines the area of search for the peak
of cross-correlation. We can find tϕ by solving:

tϕ = argmax {ML � (ϕsg)} . (18)

From this result, we can devise an algorithm that only reconstructs the cross-
correlation in the area defined by ML. The number of operations and memory
requirements are reduced, as we only need to find mϕ = max(ϕp̃s) and tϕ. To
achieve this, we propose pCC ROI (Algorithm 3), which reconstructs the cross-
correlation on a Region of Interest (ROI) and returns mϕ and tϕ.

Each element of the cross-correlation can be calculated independently, mak-
ing this algorithm suitable for implementations on GPUs. The computational
complexity of the pCC ROI is:

Nop(pCC ROI(pθi
, s)) = 3O(kNm−1logN)︸ ︷︷ ︸

FFTs

+O(kNm−1)︸ ︷︷ ︸
�

+ O(kL)︸ ︷︷ ︸
reconstruction

. (19)

3.4 Localized Reconstruction with Regularization

As we mentioned before, the cross-correlation between similar signals ressembles
a delta dirac function, which has the property of being sparse in real space.
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Algorithm 3. pCC on a Region Of Interest (pCC ROI)
Input : pΘ , a set of K projections; Θ, a set of K angles; s, a reference signal,

cL, a set of L coordinates where ML > 0 (ROI)
Output: mϕ = max{ϕpθi

s}; tϕ = argmax{ϕpθi
s}

mϕ ← 0; recϕ ← 0;
W ← CreateRadialWeight();
/* Cross-correlation of projections */

SΘ ← Extract(Fs, Θ);

ccΘ ← F−1 (
W � (SΘ � FpΘ)

)
;

/* Reconstruct on a ROI */

foreach c in cL do
for i ← 1 to K do

recϕ[c] ← recϕ[c] + ccθi
[Project(c, θi)];

/* Peak values */

mϕ = Max(recϕ);
tϕ = ArgMax(recϕ);

We use said property to improve the cross-correlation peak and to make it more
robust to noise. The sparsity condition is imposed in the following optimiza-
tion problem: Let ϕΘ be a collection of projections ϕ(θi), then the estimated ϕ̃
is obtained by: argmin

ϕ̃
||Proj(ϕ̃, Θ) − ϕΘ||22 + λ||ϕ̃||1. Solving this requires the

reconstruction of ϕ̃ multiple times. To save computation time we work with the
reconstructed cross-correlation ϕ, and impose the sparse condition to it. The
new optimization problem to solve is:

argmin
ϕ̃

||ϕ̃ − ϕ||22 + λ||ϕ̃||1, (20)

and we use the Alternating Direction Method of Multipliers (ADMM) algorithm
to solve it [2]. Let Sλ() be the shrinkage function, λ be the regularization param-
eter, and ρ be the fidelity coefficient; then the formulas for the j-th ADMM
iteration are:

xj+1 =
ϕ + ρ(zj − uj)

1 + ρ
, (21)

zj+1 = Sλ(xj+1 + uj) =

⎧⎨
⎩

(xj+1 + uj) − λ , (xj+1 + uj) > λ
0 , |xj+1 + uj | ≤ λ
(xj+1 + uj) + λ , (xj+1 + uj) < λ,

(22)

uj+1 = uj + xj+1 − zj+1. (23)

Finally, we devise the Regularizated pCC ROI algorithm (Algorithm 4).
As in the previous algorithm, the reconstruction and also the ADMM itera-

tion can be implemented independently for each value of the cross-correlation,
making it also suitable for implementations on GPUs. The computational com-
plexity is also similar to the previous one, with the only addition of the J itera-
tions of the ADMM algorithm:

Nop(pCC ROI reg(pθi
, s)) = Nop(pCC ROI(pθi

, s)) + O(JL)︸ ︷︷ ︸
ADMM
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Algorithm 4. Regularizated pCC on a ROI (pCC ROI Reg)
Input : pΘ , a set of K projections; Θ, a set of K angles; s, a reference signal,

cL, a set of L coordinates where ML > 0 (ROI),
J, λ, ρ, the parameters for the ADMM procedure

Output: mϕ = max{ϕpθi
s}, tϕ = argmax{ϕpθi

s}
recϕ ← 0; x ← 0; u ← 0; z ← 0;
W ← CreateRadialWeight();
/* Cross-correlation of projections */

SΘ ← Extract(Fs, Θ);

ccΘ ← F−1 (
W � (SΘ � FpΘ)

)
;

/* Reconstruct on a ROI */

recϕ ← ReconstructROI(ccΘ, Θ, cL);
/* ADMM */

for j ← 1 to J do

x =
recϕ+ρ(z−u)

1+ρ
;

z = Shrink(x + u); u = u + x − z;

/* Peak values */

mϕ = Max(recϕ); tϕ = ArgMax(recϕ);

4 Experimental Results

We performed three computational experiments to test the performance of the
proposed algorithms in terms of correctness, robustness against noise, and exe-
cution time. We used the Shepp–Logan phantom of various sizes as the test
image, and we projected it using three schemes that are similar to the ones used
in cryoET: 41 projections, from −60◦ to 60◦ with 3◦ step; 25 projections, from
−60◦ to 60◦ with 5◦ step; and 17 projections, from −64◦ to 64◦ with 8◦ step.

The algorithms were implemented in Matlab and in C++, in the form of
MEX files, and executed on an Intel Core i7-8550U CPU (8 cores, 1.8 GHz),
with Linux as operative system and 16 GB of RAM memory.

4.1 Cross Correlation and Noise

For this experiment we used a 256 × 256 pixels Shepp–Logan phantom and we
generate two sets of projections from it. The first one adds a shift to the reference
image (Fig. 3(A)), and the second one adds an extra rotation (Fig. 3(B)). Both
sets were projected using the scheme with 5◦ step (K = 25), and, we added
gaussian noise to both sets (Fig. 3(C) and 3(D)). Equation 6 was used to calculate
the cross-correlation between the reference and the transformed images, and
between the reference and the reconstructions. Algorithms 1, 3, and 4 were used
to calculate the cross-correlation between the reference and the projections sets.
We do not include PBVA in this test as it does not calculate the cross-correlation.

The results show that the cross-correlations calculated using the pCC and
the pCC ROI algorithms are similar to the ones obtained using Eq. 6 for all the
projections sets. For the aligned ones, the pCC ROI REG algorithm gives a well
defined peak. When the projections are not aligned, pCC ROI REG scales the
intensity of the cross-correlation only. This is an expected behavior, as the cross-
correlation of different signals is no longer sparse. Nevertheless, the maximum
value of cross-correlation of the not aligned data is always lower than the aligned
one, as we will show in the next test.
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Fig. 3. On the left: setup of the experiment, showing the projections sets used (A,B,C
and D). On the right: reconstructed images, and the cross-correlation of the reference
against the transformed images (CC (GT)), against the reconstructions (CC), and
between the reference and the projections (using Algorithms 1, 3, and 4).

4.2 Alignment

In this experiment we find the rotation angle between the reference and a set
of projections [6]. The reference is rotated multiple times and cross-correlated
with the projections, we pick the angle that gives the highest peak of cross-
correlation. For the projected Cross Correlation-based algorithms the rotation
is embedded into the Extraction part of the algorithms. We also add two levels
of noise, and set the ADMM parameters for the pCC ROI REG algorithm to
ρ = 0.02, λ = 0.05, and J = 20. And additional test with λ = 0.1 was performed.

The result (Fig. 4) shows that most algorithms find the angles correctly, as
PBVA fails to do it when the noise level is high. The cross-correlation values
found using CC, pCC and pCC ROI, are almost identical, showing that the
algorithms are equivalent. PBVA behaves as an upper bound with no sharp
peaks where it reaches its maximum value. In contrast, the regularization used
in pCC ROI Reg makes sharper peaks of cross-correlation, but this depends on
the level of noise and the value of λ.

4.3 Running Time

To measure the running time, we tested different sizes for the reference, from
100 × 100 pixels to 800 × 800 pixels, with increments of 100 pixels. The ROI for
the reconstructions were circles with radius of 10, and 20 pixels.

The results shows a clear quadratic behavior for the traditional cross correla-
tion calculation (Eq. 6), and also the pCC, while the other algorithms behave in
an almost linear manner (Fig. 5). We can also note that there is almost no differ-
ence in running time between pCC ROI and pCC ROI Reg. This is because the
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(a) (b) (c) (d) (e) (f)

Fig. 4. Angular search: cross-orrelation values for different angles between a ref-
erence and a set of rojections. (a), (b), and (c) uses a 41 projections scheme,
while (d), (e) and (f), uses 17 projections. The SNR, in dB, of the projections are
−35.39,−54.15,−60.15,−29.80,−50.75 and −56.36, for (a) to (f) respectively.

ADMM iterations are fast and simple, making the use of the regularized version
of the cross-correlation negligibly fast. Finally, we can see a difference between
PBVA and pCC ROI. This difference is due to the reconstruction step, and it
was expected from the computational complexity analysis of the algorithms.

(a) CC, pCC (b) PBVA (c) pCC ROI (d) pCC ROI Reg

Fig. 5. Comparison of the running time of alignment of projections against a template.
Eq. (6) and the full pCC behave quadratically while the other algorithms, linearly.

5 Conclusions

In the present document we propose a method that exploits the sparsity inher-
ent to the limited angle tomography to calculate the cross-correlation with
lower computational complexity. For images, the initial quadratic complexity
is reduced to almost a linear one; and for volumes, the cubic complexity could
be reduced to a quadratic one. This is achieved by using a localized reconstruc-
tion algorithm to reduce the number of operations. Additionally, we added a
regularization constrain to the calculation of the cross-correlation at almost no
computational cost, which enhances its robustness to noise.

The proposed algorithms could be used to speed up computationally demand-
ing tasks that involves the usage of cross correlation. This tasks can be image
or volume alignment, classification or segmentation, and it can be used in areas
like cryo-electron tomography (cryoET) or computed tomography (CT).
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