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Abstract. In this paper, we consider the alignment problem of building
outlines, provided by openly available sources, and high resolution aerial
images. This problem can be transferred to that of matching images with
different modalities. After studying related works, we propose to mini-
mize a cost function penalizing both color and gradient discrepancies.
Semantic context is extensively taken into account, and additional infor-
mation, such as classification result, can be integrated. Pyramid-based
coarse registration and median-filtering-based outlier suppression were
implemented as pre- and post-processing modules, respectively. We per-
formed extensive tests with three very different datasets and achieved
encouraging results, which were very stable once application of pre- and
post-processing took place.
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1 Introduction and Previous Research

Motivation. Buildings represent essential part of urban infrastructure and their
correct geo-localization is important for many applications, such as city plan-
ning, civil security, and disaster management. In this last application, up-to-date
information about building footprints are needed both by emergency services for
setting up rescue missions, and insurance companies, who in a shortest possi-
ble time must assess the damage and restitute to the policyholder the rele-
vant amount of money. The company usually sends a so-called loss adjuster to
assess the damage of each building in the company’s portfolio. To spare this
loss adjuster the tedious process of roof-climbing, close-range quasi-nadir aerial
or UAV images with a very high resolution are increasingly being applied to
assess the roof damages. Automatic evaluation of damage by means of image
processing methods, such as those described by [9] and [15], is another quite
efficient concept of saving costs for the insurer. A very important detail about
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both contributions is that damage assessment is carried out not building-wise
but region-wise, which allows to assess whether tiles were blown away by the
wind, damaged by heavy trees, or whether the roof was entirely collapsed. From
this information, the damage degree and thus the compensation amount can be
calculated. However, the necessary assumption for this is a correct delineation
of buildings in the portfolio. Bearing this application in mind, the task covered
in this paper will be alignment of building footprints provided by GIS data with
the relevant image data. As [4,16] have pointed out, the deviations between the
GIS database and the image can be quite high (=8 m) and the main reasons
for this are: the three-dimensional character of buildings, occasional discrep-
ancy between roof polygons and ground plans, as well as changes with respect
to out-to-date database. We wish to exclude these coarse systematic errors and
accomplish the alignment task with the high-resolution image data and available
geographical data only, keeping in mind that time is a critical factor and that
training examples are hardly available or useful because some buildings may
be damaged or destroyed. In what follows, we will briefly review the existing
approaches, explain their insufficiencies, and outline our contributions.

Previous Works. We start with the interactive approach [2], where images
were segmented with a commercial software, after which segments were pro-
cessed manually. Since for large scenes, interactive processing is cumbersome
and since we wish to make use of available outlines, we turned our attention
towards automatic methods. Active contour models [10,11], such as snakes, are
helpful for evolution of already available approximate values, but are often an
overkill if alignment transformations can be described by a few parameters, to
the same extent as methods based on fitting preferably rectangular primitives,
as do [1] by means of Marked Point Processes. For rigid alignment transforma-
tion, matching key-points, such as [8], and model instantiation using RANSAC
is probably the fastest strategy. Here two main challenges are incorporating the
context information (typical properties of buildings) and matching key-points in
extremely different images. Furthermore, there exist change detection methods,
such as [3], where a subdivision into new, modified, remaining, and not-anymore-
existing building was presented. Particularly interesting is their suggestion to
take local maximums of gradient maps as seed points for building outlines. How-
ever, 3D data must be acquired from the satellite images. As for purely image-
based methods, convolutional neural networks (CNNs) are increasingly being
applied for outlining [10,13] and aligning [14,16] buildings. The latter contribu-
tion establishes analogy with the traditional gradient descent method while the
conventional matching based on pyramids inspired the design of their neural net-
work architecture (encoder-decoder like ones or with U-connections as in [12]).
The big advantage of a CNN-based approach is that it can easily be general-
ized to other problem settings, such as medical image registration, however, we
find it a pity that the well-known properties of buildings were sacrificed in favor
of dozens of training examples. Finally, [14] propose a rather flat architecture
that allows them to obtain a heatmap (of inverse likelihood) as data cost term.
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Optimization runs over all offsets, as random variables on a Markov Random
Field, using this data term as well as the usual smoothness assumption that
neighboring buildings must have similar offsets. In our work, we will avoid com-
puting heatmaps since for high-resolution data (building masks having 40000
and more pixels as well as 60 pixels offset), this could be costly. Thus, the afore-
mentioned non-local energy minimization is simplified to a procedure reminding
median filtering.

Most interesting to the authors are procedures operating without training
data and possibly independent on resolution. Variational approaches are excel-
lent examples for this. In [5], intensity values are interpreted as samples of
two random processes and are linked by a probability density function (such
as Mutual Information). The transformation is computed pixelwise and a regu-
larization term is added to penalize transformations of neighboring pixels. What
we consider as a bottleneck is the gradient-based energy minimization scheme
because, especially for destroyed buildings, outliers must be treated with care.
At cost of computation time, we will minimize a median-based energy function
by means of the downhill simplex algorithm.

Contributions. We interpreted the alignment problem between the raster-
ized building outline and the image fragment as registration of two multimodal
images and implemented a robust and fast approach for obtaining the unknown
registration parameters. Technically, an energy function consisting of a color
consistency and a gradient consistency terms is minimized. These terms are spe-
cific for the current building, but they are weighted by factors taking general
building properties into account. In spite of an occasional presence of destroyed
buildings, neither training data is required nor retrieving pixelwise cost functions
(heatmaps). Even though it does not fully apply to the pre- and post-processing
modules, the core part of the approach shows a very similar behavior for datasets
having a different resolution. Finally, a classification result can be easily consid-
ered yielding better results and making dispensable the gradient-based term.

2 Methodology

The main part of our work is organized as follows. The most common variable
names and basic definitions will be provided in Sect. 2.1, after which we give the
cost function and details on its minimization (Sect.2.2) concluded by the pre-
and post-processing modules (Sect. 2.3).

2.1 Preliminaries

For a large amount of cities, there exist GIS data for building footprints (P) that
we wish to align with the actual image data. Let Z denote a region of interest in a
geo-referenced airborne image with three or more channels, containing a building
with some surrounding area and let M be the mask obtained by rasterization of
the corresponding footprint P. That is, for points inside of the polygon, the value
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of M is 1 and outside it is zero (see Fig. 2 of [16]). A special value (2) is given to
pixels at the border of the rasterization. We are looking for a transformation ¢
to align M with the roof of the building that way that the corresponding edges
of the transformed outline P(p) coincide with the roof silhouettes in Z. For ¢, we
consider a two-dimensional translation within a known range (search range), but
if necessary, our approach can be generalized for a four- or even six-dimensional
vector representing an Euclidean or affine transformation, respectively.

2.2 Minimization of Energy Function

In the case that freely available building outlines and roofs fit quite well, there
is a sufficient overlap between the building footprint and the requested roof
area to guarantee good starting values for our target function. Consequently, a
modification of the mutual information can be applied, taking into account the
homogeneity of the dominant color f € R? sampled from a 3D histogram over
the color values of all pixels p in 7 labeled as inside of M. The number b of
the histogram bins was 16; that is, color resolution of 16 for an 8-bit image.
Sometimes, a building roof contains more than one dominant color, which is
mostly true if the building is destroyed. Additionally, there may be some consid-
erable fair or dark spots, like dormers, chimneys, or their shadows. To cope with
this, the penalization between 7 and the dominant color f over the channels of
and later over pixels is carried out using the Li-norm which is more robust to
such outliers. We denote this penalization (our first energy term) by ||Z¢(p)]|.
An additional weighting wg can be applied according to how likely a pixel is
supposed to belong to a building. Ideally, this should reflect the likelihood for
the building class in the classification result C(p). In order not to lose too many
resources for classification, we consider merely the pixelwise NDVI (Normalized
Difference Vegetation Index) measure rescaled between 0 and 1. This measure
is very popular in Remote Sensing if it comes to separate buildings from vege-
tation. We applied the term C = (1 +R/N)~!, which is close to 0 if the near
infra-red channel A is negligible compared to the red channel R while in the
opposite case, it is 1.

As our second energy term, we wish to enforce the norm of the image gradient
to be significantly higher at border pixels than inside P(p). Analogously to we,
the weighting wy takes on the minimum value on the border, a small positive
value inside and, as an option, a smoothly decreasing function outside the mask,
since around buildings, high texture variations (gardens, roads, cars) are often
present. The overall cost function is thus

E(p)= Y {ows(p)|Ze(p)| + (1 — a)ivw (p) IVZ(P)|I} . (1)
PEM(p)
where
_ (C(p)OR 1 if m >0, - v i.ffm -2
wf(p) - { 0 iftm=0" ’wv(p) - —d(();;())l iftm=1 ) (2)

—e = ORO ifm=0
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and m = M(p). Furthermore, d is the distance from p to where M is 1 (to
be computed as a morphological operation at the binary image patch), o is a
constant around 0.5, « is a balance parameter to be explored in the experiments
section together with both OR options in (2), and * denotes Gaussian smoothing.
Note that while both w.-terms in (1) are supposed to fit the outline P to a
building, both terms involving || - || pull P to the relevant building.

To minimize (1), we used the gradient-free Nelder-Mead method implemented
by [7]. Its big disadvantage is to get occasionally stuck in a local minimum.
However, it is several orders of magnitude faster than simulated annealing. Out
of this reason, the Nelder-Mead method has been run for several starting values
of ¢ after which the value yielding the minimum energy is chosen. At a lower
resolution, an alternative to this method is to perform the exhaustive search for
every single integer offset. Even though it is neither feasible for high resolution
images nor for higher-dimensional search space, computation of cost function can
be performed as a sliding window approach, with a sequence of convolutional
operators (similar to CNNs), thus allowing to obtain a heatmap H(yp), see Fig. 1.

Fig. 1. Visualization of input data and cost function: top left and middle: Z and VZ.
Bottom left and middle: Heatmaps H induced by both terms in (1), whereby blue means
low energy /high likelihood. Right: heatmaps H represented as 3D surfaces. Note the
numerous side minima for the gradient-based heatmap Hy. (Color figure online)
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2.3 Modification and Post-processing

Similar to [16], an approach based on image pyramids has been implemented.
In order to keep the results section concise, we restrict ourselves to only one
downsampling step p, 2 to 8. The searching range is, logically, diminished by
the factor 1/p which allows to perform a coarse registration in around 1/p?
of time. The subsequent fine registration uses the original resolution and the
searching step has now the order of magnitude of the pyramid size. Note that
doing so, a failed coarse registration cannot be corrected during fine registration.
To cope with this, we firstly wish to avoid getting stuck in a local minimum by
performing exhaustive search as described above; moreover, we choose quite
neutral parameter values, such as a = 0.5 in (1) and wy = 0 outside in (2). The
fine registration takes place using Nelder-Mead method with varying parameters,
whereby the starting value at original resolution is computed via nearest neighbor
interpolation; that is, in our case parg ming (H(¢')). Secondly, we hope that a
gross misalignment will only happen to a few isolated buildings such that the
upcoming post-processing step will correct these outliers.

For post-processing, centers of gravity of buildings are computed and n near-
est neighbors are identified for each of them. This is a fast, almost linear step
even for a large number of buildings. Now, median values for offsets in z and
y direction are taken from the set of neighbors for every building in order to
update the current value. Of course, this step will only improve the performance
if the reason for misalignment is justified by our model assumption that close-by
buildings have similar offsets. This happens, for example, if a slightly non-nadir
view has been taken from a scene containing buildings of approximately similar
height. Clearly, in absence of the heatmap proposed e.g. by [14], this strategy of
correcting gross errors may have a negative side effect of occasional smearing the
discrepancies in the offsets. However, it must be pointed out that both heatmap
computation and suitable optimization framework, e.g. by [6], especially with a
large number of labels for the random variable, are more costly than the Nelder-
Mead optimization and the proposed post-processing step. The value of n chosen
for our experiments is 4.

3 Results

This section is structured as follows: In the first paragraph, we will present the
datasets and evaluation metrics. Next, quantitative evaluation is provided. Algo-
rithm parameters are varied allowing graphical visualization and interpretation
of the results. Also, comparison with previous approaches [14] and [10] is carried
out. The last two paragraphs of this section are dedicated to qualitative results
and remarks on computation time.

In order to demonstrate the universality of our pipeline, we wish to con-
sider several datasets having completely different properties. Firstly, the set-
tlement called Marco Island, Florida, USA, represents a post-event high reso-
lution data, captured from the air after the Irma hurricane in 2017. The thus
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captured images were mosaicked without consideration of the non-nadir per-
spective. Because of the high resolution (5cm), the roof structures appear quite
inhomogeneous; moreover, there are several damaged or destroyed buildings. The
offsets are quite high, up to 60 pixels or 3m. In total, there were 13 tiles from
which we considered two and used 103 and 156 buildings, respectively, which are
alignable by a pure translation. We refer to these datasets as D1 and D2. The
third dataset, recorded at a much coarser resolution 0.5 m, is a densely built
region in Perth (Australia), called City of Melville. The shapefile, which con-
tains some 1500 buildings, is quite obsolete; hence, 154 buildings were selected
for evaluation. The offsets are between —5 and 8 pixels whereby a moderate
bias was kept intentionally. This dataset is denoted as D3. In all datasets, the
offsets were measured manually. To measure the accuracy of our algorithm, we
compared the ground truth offsets with the manually measured ones recording
the widely used root mean square (rms) error. That is, Ly norms of deviations
were computed, averaged and shown in Fig. 2 as variable ¢ for each set of param-
eters. Additionally, in datasets D1 and D2, we differentiated between damaged
and non-damaged buildings. As for the parameters, we varied « between 0 (only
gradient-based) and 1 (only color-based) as well as wy and ws in dataset D3
(since infrared channel was available) according to the choices from (2).

The first observation one can immediately derive from the graphs in Fig. 2,
top, is that for good parameter sets, the errors in relative deviations can be
reduced below 6 pixels in dataset D1 and even below 4 pixels in D2, correspond-
ing to 0.3 or 0.2m, respectively. What is not recorded in the graphs is that the
distribution of errors (medians of deviations below 1 pixel) indicates that there
are some outliers degrading the performance. Unfortunately, these outliers are
often those buildings with damaged roofs as we indicated by circles: the larger
the radius, the larger the ratio between average inaccuracies over all damaged
and all non-damaged buildings. The most dramatic ratios of almost 2.0 tend to
be obtained for the choices of wy(p) # 0 outside of the building mask without
pyramids (red curves) while for green curves, the changes between accuracy over
damaged or non-damaged buildings are more or less statistical (0.7 to 1.1 with
pyramids for D2). The reason is that occasional gradient discontinuities within
the roofs of destroyed buildings lead to confusion with usual texture elements
outside. Even though the best results were obtained without pyramids, the strat-
egy of applying the Nelder-Mead method on high resolution data seems to be a
risky business because the balance parameter @ must be chosen with care. For
the strategy based on pyramids, the course of the graphs is much more flat. This
means that the job of coarse registration has mostly been done well. Notably,
the dashed green curve lies below the red one for D1 and above for D2.

Turning our attention to dataset D3 and Fig. 2, bottom, we can see that the
rms errors can be reduced to values between 1.5 and 1 pixels and that there
are basically two ways to achieve it. First, we could proceed similarly to D1
and D2 by choosing a reasonable « in (1). Alternatively, we could consider the
classification result by C'(m) in (2) and here it is recommendable to omit the
gradient-based term. Similarly to D1 and D2, the red and orange curves show



368 D. Bulatov

5 4
szl —_ w%uts1de #£0 20 . ratio < 1.0
ol = w%utmde # 0+ pyrs sl

_— w%utside -0 wl
O ratio > 1.9

- w%uts1de

= 0+ pyrs

14

@

—s— Default

Default +pyrs

=0 Default + wg
Default + pyrs +wg

—8— Default + filt.

~0- Default +wg + filt. /
Default + pyrs + 2x filt.

Default + pyrs +wg 4 2x filt.

}as above but we
———
. }as in Fig. 2 top

}as above but we = C(m)

L L L

0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2. Top row: results for datasets D1 (left) and D2 (right) depending on the param-
eter choice. For convenience, a in (1) was multiplied by 10. By circles we indicate to
what extent the performance on damaged roofs was worse than for those with non-
damaged roofs. Bottom row: results for dataset D3 depending on the parameter choice.
Please note that red and orange solid curves in the left image coarsely correspond to
red curves on the right while red and orange dashed curves in the left image coarsely
correspond to orange curves on the right. See legend for more details. (Color figure
online)
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a sharper minimum (or a higher sensitivity to the balance parameter «) than
the green and cyan ones. Differently to the datasets taken at a finer resolution,
all configurations perform worse if pyramids are applied which gives us a hint
that a resolution of 1 meter and coarser could be critical for our method. With
respect to the post-processing, we took the red and orange curves in Fig. 2, left,
with a little different value of o, performed registration for all ~1500 buildings,
and, after applying filtering, recorded the results only for the selected ones. Two
reasons to consider the red and orange curves are that they are most promising
and, at the same time, they exhibit a sharper minimum with respect to «,
which we hope to smooth during post-processing (blue curves). Moreover, if we
use pyramids and post-process twice (once after the coarse and once after fine
registration), we obtain cyan curves. We see that the range of acceptable values
of parameters becomes more stable and that for almost all configurations, blue
and cyan curves are lying below their respective red and orange counterparts.
The last observation, not recorded in Fig. 2, concerns application of (1) without
term ||Z¢||. The results become worse especially for quite large and small o, which
means that outlines occasionally jumps to a neighboring building. In other words,
the classification result alone could be insufficient.

To compare our approach with other state-of-the-art procedures, e.g. [14]
and [10], we should first mention that they worked with different (to each other
and to us) and geographically hardly comparable datasets, had different problem
settings and evaluation metrics. The precision and recall of [14] were 80% and
64% respectively. However, since our final offsets are given in pixels, we must take
into account the average building size and make some simplification assumptions.
Assuming that the area of a roof is 12 x 12 = 144 m? and that the offsets in both
x and y are 0.5/v/2 ~ 0.35m (to yield a not unrealistic result of 0.5 m rms), both
precision and recall in our approach would be approximately (1 —2-0.35/12)2 ~
0.88 in the worst case. This is slightly better than their values and at each case
can be considered as a good result since some buildings are destroyed and the
running time is less than half. The intersection over union, used by [10], ranges
between 0.65 and 0.84 while ours would be 0.79 in this worst case.

For qualitative results, we refer to Fig. 3, where the overall good performance
and, at the same time, some few shortcomings of the proposed method can be
observed. In Fig. 3, top left, we see why post-processing is not recommendable for
D1 and D2: Sometimes, the composition of tiles in the orthophoto is not accurate,
but there seem to be other error sources. For example, two neighboring utmost-
left buildings are similar in their roof shape, but the offset between the input
shape (red) and the manually clicked ground truth (green) differ dramatically.
Out of nine building in this fragment, seven were registered successfully. In
the top right image, the building marked by 1 exemplifies how the gradient-
based term in (1) was deceived by the footpath which has a similar color to the
roof. The building was aligned to the border between this path and grass area.
Moreover, the image shows a successful registration of a widely non-damaged (2)
and severely damaged building roof (3). For dataset D3, in Fig.3, bottom, we
see how buildings 1 and 2 could be correctly aligned after taking into account
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Fig. 3. Top row: example fragments of datasets D1 (on the left) and D2 (on the right,
as gray image). Manually measured ground truth, input outlines, and results of our
algorithm are specified by green, red, and dashed yellow lines, respectively. Bottom
row: example fragment of dataset D3. Here, results of our algorithm before and after
post-processing are specified by dashed yellow lines on the left, respectively, dashed
blue lines on the right. For more details (numbers), see text. (Color figure online)
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the offsets of the surrounding buildings in the post-processing step. At the same
time, the result for building 3 on the right became slightly degraded.

From the point of view of computing time, for datasets D1 and D2, aver-
agely 5.25 and 9s are needed per building, whereby the approach was run on
a standard PC with default parameters and without pyramids. If pyramids are
used, the computation times for coarse and fine registration are 2.75s resp. 4.25s
for D1 and 3.2s and 7.7s for D2. Clearly, the lions’ share for the computation
time is made up by the repeated evaluation of our cost function for energy min-
imization. This explains why the optimization using pyramids does not run in a
lower time: this number of evaluations does not grow with the resolution since
the method is not pixelwise. Only because of better initial values, less internal
iterations are needed. As for the exhaustive approach, we noted that while the
convolutional operators work efficiently until a certain matrix size (2.75 s per
building for the pyramid step p = 8), the computation cost already explodes for
the next level, p = 4, to 170s per building. The computing type for D3 measures
less than 1.5s per building and the time spent on the post-processing step was
negligible. It remains to say that the current MATLAB code was only optimized
algorithmically, but not computationally.

4 Conclusions

We presented an approach for adjustment of building outlines stemming from
the GIS data with quasi-nadir aerial images. This approach was developed and
successfully tested for a real-case application, namely, roof damage assessment
after a severe disaster. Its core procedure is based on minimization of an energy
function consisting of two terms linked by balance parameter. In all datasets,
reasonable values of a allow to achieve best results, which were around 0.2m
and almost 0.5 m for datasets having a finer and coarser resolution, respectively.
Another valid conclusion is that depending on how to penalize the gradient out-
side the building area, more or less stable the curves are with changing balance
parameter . One may think that the algorithm has quite many parameters:
b (number of color histogram bins), « in (1), choices of we, and wy, o in (2),
number of searching locations for energy minimization and that of surround-
ing buildings (n) in Sect.2.3. However, our modules for pre-processing (coarse
registration at a lower scale) and post-processing (outlier suppression using a
median-filter-based approach) allowed to keep the results stable for a wide ranges
of these parameters, as dashed curves in Fig. 2, top and bottom left, as well as
blue and cyan curves in Fig. 2, bottom right, show.

We could see that even a quite basic classification result based on NDVI
not only strongly improves the results but also the makes gradient-based term
widely unnecessary. This is an important conclusion: nowadays context-free CNN
approaches based on nested gradient computation are very popular. However,
just a little of context helps to obtain good results without training data at all.
Therefore, more effort must be put in the future to improve the classification.
Here, CNNs will show themselves more than helpful.
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For the dataset at a coarse resolution, the pyramid-based approach has turned
out to be less successful. It would be, however, interesting to explore how the
heatmap can be exploited: either upsampled to a finer resolution using a higher
degree polynomial, instead of the currently used Nearest Neighbor Interpolation,
or considered it as a data term in non-local energy minimization framework.

Acknowledgment. We thank to City of Melville and, in particular, Dr. Petra
Helmholz from Curtin University, for providing the dataset D3.
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