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Abstract. With the advent of cheap sensors and computing capabili-
ties as well as better algorithms it is now possible to do structure from
motion using crowd sourced data. Individual estimates of a map can be
obtained using structure from motion (SfM) or simultaneous localization
and mapping (SLAM) using e.g. images, sound or radio. However the
problem of map merging as used for collaborative SLAM needs further
attention. In this paper we study the basic principles behind map merg-
ing and collaborative SLAM. We develop a method for merging maps –
based on a small memory footprint representation of individual maps –
in a way that is computationally efficient. We also demonstrate how the
same framework can be used to detect changes in the map. This makes
it possible to remove inconsistent parts before merging the maps. The
methods are tested on both simulated and real data, using both sensor
data from radio sensors and from cameras.

Keywords: Map merging · Change detection · Collaborative SLAM ·
SfM

1 Introduction

Structure from motion [5], is the problem of estimating the parameters of a
map and of sensor motion using only sensor data. The map is typically a set of
2D or 3D points each consisting of a position and a feature vector. Assuming
that feature errors are zero-mean Gaussian, the maximum likelihood estimate
is that of minimising the sum of squares of the residuals. Within the field of
computer vision this process is denoted bundle adjustment, where bundle refers
to the bundle of light rays connecting each camera with each 3D point. For an
overview of the literature and theory, see [13].

These optimization techniques are applicable not only to vision, but also
to other types of sensors, such as audio, [9,14] and radio [1]. With the advent
of cheaper sensors and computing capabilities as well as better algorithms, it
is now possible to gather and use much larger datasets. Instead of mapping a
city every 5 years using special measurement cars or aerial photography, it is in
principle possible for every car to add to the map of cities as they drive through
them. Thus there is an additional need for research on map merging, including
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Fig. 1. Structure from motion (SfM) is used to estimate a 3D map of scene features
using images (or other sensors). In this paper we study the problem of detecting changes
and merging maps, given multiple maps estimated by SfM from datasets collected at
different occasions.

the problem of determining what has changed in a map. In this paper we study
the basic principles behind map merging and collaborative SLAM. A straight-
forward method to merge several individual maps is to take all measurements into
account simultaneously. However, non-linear optimization using all data can be
prohibitively slow. We will study how a small memory footprint representation of
a map can be generated and used to merge maps in a way that is computationally
efficient, while still retaining most of the information from each individual bundle
adjustment. We also demonstrate how the same framework can be used to detect
changes in the map. This makes it possible to remove changing parts before
merging the stationary parts of the map. The idea is demonstrated in Fig. 1.

The idea of approximating the result from parts of the data has previously
been used in the rotation averaging literature, cf. [2]. These approximate methods
can give satisfactory results at a much increased speed. Another example of this
idea is the approach of Global Epipolar Adjustment [12], in which a simplified
error metric is based on the linear epipolar constraints for image pairs. Another
approach is incremental light bundle adjustment, iBLA, [6] in which an error
metric based on a combination of epipolar constraints and a variant of the trifocal
constraint is used.

The main contributions of this paper are a novel method for computationally
efficiently merging of individual maps obtained from bundle adjustment, utilizing
a compact representation of the Jacobian matrix, and a change detection method
based on a statistical analysis of the residuals.
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2 The Separate Bundles - for TOA and Images

Before different maps are merged, the individual map estimates have to be cre-
ated. In this section we present some of the notations used to understand how
the raw data relates to the quality of the map estimates.

For the case of time of arrival (TOA) measurements the feature map consists
of a number of receiver positions. Initially, TOA measures between m receivers
at positions xi ∈ R3 and n sender positions yj ∈ R3 are given. For each
sender-receiver pair this measure can be translated into a distance estimate
dij = |xi − yj | + εij , where 1 ≤ i ≤ m and 1 ≤ j ≤ n and where | · | denotes the
Euclidean norm of a vector in R3. The measurements errors εij are assumed to
be independent, Gaussian with mean zero and standard deviation σ.

The final map estimate for a TOA or structure from motion system is usually
obtained by non-linear least squares minimization over inlier measurements; this
process is referred to as bundle adjustment in computer vision. Here, a few key
components from the optimization are presented.

For the TOA data, let r denote the measurements residuals,

r =
[
r11 . . . r1n r21 . . . r2n rm1 . . . rmn

]T
, rij = dij − |xi − yj |, (1)

and denote the parameters of interest, which are optimized, by z. This would
typically be the receiver and the sender positions,

z = (x1, x2, . . . xm, y1, . . . yn). (2)

The computer vision case is analogous. Denoting the camera matrices Pi and
the 3D points Uj , each image point uij gives a residual rij . The residual vector
r is found by stacking all image feature residuals rij and the parameters are
collected in a parameter vector

z = (P1, P2, . . . Pm, U1, . . . Un). (3)

The maximum likelihood estimate of z is found by minimizing the sum of
the squares of the residuals, i.e.

z∗ = argminzr
T r, (4)

which gives the optimal parameter update

Δz = −(JT J)−1JT r. (5)

For more details on the optimization, see [13]. For the analysis, the estimate
of the matrix J (the Jacobian) is containing the derivatives of the residuals
with respect to the parameters is of interest, i.e. r with respect to z, further on
denoted ∂r/∂z.

The map points can only be estimated up to a choice of coordinate system.
For simplicity we will in the TOA case normalize the coordinate system so that
the first receiver is placed in the origin, the second along the x-axis, the third
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in the xy-plane and so forth. By removing this gauge freedom with dimension
φ we see that the effective number of degrees of freedom in the problem is
ddof = (m + n)ρ − φ, where ρ denotes the dimension. For TOA problems in 3D
we have ρ = 3 and φ = 6. The effective degrees of freedom for the computer
vision case becomes ddof = (6m + 3n) − φ, with gauge freedom φ = 7 since we
are free to choose position, orientation and scale of the coordinate system.

3 Merging Separate Maps

Once the N separate maps are obtained they can be merged to get a single more
accurate map. We have investigated three different ways to do this.

3.1 The Full Bundle

One way to add the maps is do one large bundle where all the individual mea-
surements are used simultaneously. Merging all maps through a large bundle is
a good way to get an accurate map. However, the method is time consuming
and if a new measurement is made after the original merge, the whole map has
to be re-bundled. In that sense, there is no way to add new information to the
existing, which makes this method unsuitable for online applications.

3.2 The Kalman Filter

A traditional method designed to update parameters gradually is the Kalman
filter [8]. The algorithm for the Kalman filter looks as follows:

Priori estimate update:
x1 = A · x0 (6)

P1 = A · P0 · AT + Q (7)

Measurement update:

K = P1 · HT · (H · P1 · HT + R)−1 (8)
x2 = x1 + K · (u − H · x1) (9)
P2 = (I − K · H) · P1. (10)

Then, H ·x2 is the new state prediction, and x2 and P2 are the new estimates
replacing x0 and P0 for the next iteration. In our case x0 will be the receivers from
the first measurement occasion, x0 = q(1) (superscript denoting measurement
occasion), while the observation u will be the receiver values from the following
N − 1 measurements s.t. uk−1 = q(k), 2 ≤ k ≤ N . Both the update matrix and
the observation matrix are identity matrices, A = I, H = I and the covariance
of the random excitation is set to Q = 0.1 ·I. Finally, P0 and R are measurement
uncertainties, P0 = C[Δq(1)] and Rk−1 = C[Δq(k)], 2 ≤ k ≤ N . The covariance
C[Δq] can be extracted from the covariance of Δz from Eq. (5). This is given
by

C[Δz] = (JT J)−1JT · E[rT r] · J(JT J)−1 = σ2(JT J)−1. (11)
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The covariance of the map, C[Δq], can be retrieved by picking the rows and
columns in C[Δz] that correspond to q and the variance of r can be approxi-
mated by [7, p. 148]

σ2 ≈ 1
m · n − ddof

· rT r =
1

m · n − ddof
·

m·n∑

i=1

r2
i . (12)

The Kalman filter is a computationally cheap method. However, it is not
as accurate as the full bundle. Also, the parameters need to be tuned for the
specific problem and it is not evident either how to detect and handle changes
in the map.

3.3 The Linearized Method

The idea of this method is that the optimal residuals from the separate bundles
can be linearized – such that all that needs to be saved is a small memory foot-
print representation – to avoid the large bundles. Having the optimal residuals
r(k) and the optimal Jacobians J (k) from each run k, the residuals can be lin-
earized using a first order Taylor approximation. A key idea here is to divide
the unknown parameters in z into two parts q and s, where q are the param-
eters that exist in several SLAM sessions. The parameters s can be thought of
as auxiliary paramters, e.g. those that are relevant only for one specific bundle
session. In the time-of-arrival case, some of the 3D anchors might be constant
over several SLAM sessions whereas the measurement points and some of the
anchors might be different. For vision based structure from motion, some of the
3D points are the same (these go into q) whereas the rest of the points and
camera matrices go into s.

The Compressed Residual. First, the Jacobian is divided into two blocks

J =
[
Ja Jb

]
, (13)

where Ja contains the columns that correspond to the main parameters q and Jb

contains the columns corresponding to the auxiliary parameters s. The squared
Jacobian is

JT J =
[
JT

a

JT
b

]
· [

Ja Jb

]
=

[
JT

a Ja JT
a Jb

JT
b Ja JT

b Jb

]
=

[
U W

WT V

]
. (14)

Furthermore, if we insert this in the equation for the optimal update from (5)
we get

Δz =
[
Δq
Δs

]
= −(JT J)−1JT r ⇔

[
U W

WT V

] [
Δq
Δs

]
= −JT r. (15)

The product −JT r is zero in an optimal point and so the second row provides a
connection between q and s. This gives a linear constraint on how to adjust the
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auxiliary parameters s when the main parameters q change. Thus the partial
derivatives of s with respect to q is

WT Δq + V Δs = 0 ⇔ Δs = −V −1WT Δq ⇒ ∂s
∂q

= −V −1WT . (16)

We can use this together with the definition J = ∂r/∂z to find how the residuals
change if we change the receiver map

Δr =
[
Ja Jb

]
[
Δq
Δs

]
=

(
Ja + Jb · ∂s

∂q

)
Δq. (17)

Thus, Ja + Jb
∂s
∂q will be the Jacobian for the map, further on denoted Jq.

Now, denote the residuals as a function of Δq. A first order Taylor expansion
gives

r(Δq) ≈ r|o + r′
Δq|oΔq = r|o + Jq|oΔq. (18)

Here o denotes an optimal point and |o denotes evaluating an expression at the
point o. Then, the square of these residuals will be

rT r ≈ (r|o + Jq|oΔq)T (ro + Jq|oΔq) = r|To ro + 2r|To Jq|oΔq + ΔqT Jq|To Jq|oΔq.
(19)

In a minimum point r|To Jq is zero. Furthermore, using the QR-decomposition of
the Jacobian we get

ΔqT JT
q JqΔq = ΔqT (QR)T QRΔq = ΔqT RT QT QRΔq = ΔqT RT RΔq. (20)

Introducing the notation a = (r|To r|o)1/2, the squared residuals from (19) can be
written shorter as

rT r ≈ a + ΔqT RT RΔq, (21)

and this is our compressed expression for the residuals.

The Merge. Furthermore, this compressed expression can be used to add two
separate maps. Assume that we have the residuals for the two maps,

(
r(i)

)T (
r(i)

)
=

(
a(i)

)2 +
(
Δq(i)

)T (
R(i)

)T
R(i)Δq(i), i = 1, 2. (22)

Adding the two equations and writing Δq(i) = q − q(i) for an arbitrary q gives

2∑

i=1

(
r(i)

)
T
(
r(i)

)
=

2∑

i=1

(
a(i)

)2 +
(
Δq(i)

)T (
R(i)

)T
R(i)Δq(i) =

(
a(1)

)2 +
(
a(2)

)2

+
[
R(1)

(
q − q(1)

)

R(2)
(
q − q(2)

)
]T [

R(1)
(
q − q(1)

)

R(2)
(
q − q(2)

)
]

=
(
a(1)

)2 +
(
a(2)

)2 + r̂T r̂.

(23)
The terms (a(1))2 and (a(2))2 are fixed while the third term r̂T r̂ can be minimized
to minimize the sum of the residuals. Introducing new notations M and b, r̂ can
be written

r̂ =
[
R(1)(q − q(1))
R(2)(q − q(2))

]
=

[
R(1)

R(2)

]
q −

[
R(1)q(1)

R(2)q(2)

]
= Mq − b. (24)
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To minimize r̂ and thus r̂T r̂ is a least squares problem which can be solved using
the pseudo inverse. Denoting the merged map q∗ gives

q(∗) = (MT M)−1MT b. (25)

We can also compress the final result. Using that a general q can be written
q = Δq(∗) + q(∗), the third term in (23) can be expressed

r̂T r̂ =(Mq − b)T (Mq − b) =
(
Mq(∗) − b + MΔq(∗)

)T (
Mq(∗) − b + MΔq(∗)

)

=
(
Mq(∗) − b

)T (
Mq(∗) − b

)
+

(
Δq(∗)

)T
MT MΔq(∗),

(26)
where the linear term vanishes due to orthogonality. Using this in Eq. (23) gives
(
r(∗)

)T
r(∗) =

(
a(1)

)2+
(
a(2)

)2+
(
Mq(∗)−b

)T (
Mq(∗)−b

)
+

(
Δq(∗)

)T
MT MΔq(∗).

(27)
If M is QR-decomposed in a similar manner as Jq was in (20) this total result
can be compressed as

(
r(∗)

)T
r(∗) =

(
a(∗)

)2 +
(
Δq(∗)

)T (
R(∗)

)T
R(∗)Δq(∗), (28)

with R(∗) being the triangular matrix from the QR-decomposition of M and

a(∗) =
((

a(1)
)2 +

(
a(2)

)2 +
(
Mq(∗) − b

)T (
Mq(∗) − b

)) 1
2

. (29)

By this, the representation of the final map is the same as in (21) and the
merged map can be treated as one of the original. Furthermore, more maps can
be added using the algorithm described above. Thus, to add maps, all we need
to save from the separate bundles are the maps q(i), the squared residuals a(i),
and the triangular matrices R(i) from the QR-decompositions of the Jacobians.

In some cases the linearized method is similar to the Kalman filter. However,
several maps can be added at once using the linearized model and it also allows
for better control. We will also show that this method can be developed to detect
map changes.

4 Detection of Changes

Once we know how to merge two or more maps we can also use this to detect
whether the map has changed between the measurement occasions. For this,
assume that we have two maps q(1) and q(2) and their merge q(∗). Furthermore,
we have the norms of their residuals, a(1), a(2) and a(∗). An approximation for
the residual variance is derived in (12). This can be used to find the estimated
value of how the squared residuals change when we add maps. Rearranging terms
from (12), we get

E
[(

a(i)
)2] =E

[(
r(i)

)T (
r(i)

)]
= σ2(mn − (nρ + mρ − φ)), i = 1, 2 (30)

E
[(

a(∗)
)2] =E

[(
r(∗)

)T (
r(∗)

)]
= σ2(mn − (Nnρ + mρ − φ)), (31)
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and subtracting these – in this case with N = 2 maps – gives

E
[(

a(∗)
)2 − (

a(1)
)2 − (

a(2)
)2] = σ2(N − 1)(mρ − φ). (32)

If we use real data, σ is unknown, but it can be estimated from the separate
bundles using (12), s.t. σ̂2 = ((σ(1))2 + (σ(2))2)/2.

The values in (32) can be seen as a sum of (N−1)(mρ−φ) Gaussian variables,
and a sum of 2ν independent Gaussian distributed variables with mean zero and
standard deviation σn has a Γ distribution with density [3, p. 47]

fα,ν(x) =
1

Γ(v)
ανxν−1e−αx, (33)

with α = 1/(2σ2
n) and Γ being the gamma function. This density will be denoted

Γ(α, ν) (two parameters). Furthermore, using ã = (a(1))2 + (a(2))2 − (a(∗))2

and γ = (N − 1)(mρ − φ) we get that ã ∼ Γ(1/(2σ2), γ/2). Thus, to know
whether a map has changed we can compare the estimated ã to the distribution.
A reasonable choice is that if the difference ã lies within the 99 percentile of
Γ(1/(2σ2), γ/2) there has not been any change in the map, but if ã is higher
than this limit, a change has probably occured.

If a change between two maps is discovered, we further investigate those
maps. By comparing the positions for each map point, we say that if the distance
between them is larger than 3σ̂ the map point has probably moved. This could
also be used to decrease the variance even further for the receivers that have not
changed, by using information from all maps for these receivers.

5 Experimental Validation

To validate the method suggested in this paper, experiments on simulated TOA
data as well as real ultra-wideband (UWB) data have been performed. We have
also developed the method to work for, and tried it on, 3D-reconstructions from
image data.

5.1 Time of Arrival – Simulated Data

For each of the simulated experiments m receivers in 3D were generated from a uni-
form distribution, q(t) ∼ U(0, 10), superscript (t) denoting the true value. We sim-
ulated N different measurement occasions with n sender positions s(t) ∼ U(0, 10)
each and calculated the mn sender-receiver distances. Gaussian noise with stan-
dard deviation σ was added to achieve distance measurements. For each measure
we performed a separate bundle to get the N maps q(1), . . . ,q(N) and the com-
pressed representation explained in Sect. 3.3 and more specifically in (21).

Test of Time and Accuracy. For the first experiment m = 10, σn = 0.3,
N = 2 and no change occured in the true map. The experiments were run four
times with n = 10, 100, 1000, 4000 respectively. For each case, the merge was
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computed using the three methods presented in this paper and the runtimes

were measured. We computed the error norm
√∑m

i=1 |q(t)
i − qi|2 and for the

full bundle and the linearized method, we also computed the squared distance
residuals per residual rT r/(mn) = a2/(mn). The results can be seen in Table 1.

Table 1. The results from the experiment explained in Sect. 5.1. The values come from
a merge of two maps between which no change has occured. These values are the mean
of 10 similar runs.

n 10 100 1000 4000

Runtime [s] Full bundle 2.3 · 10−2 0.19 3.8 54.7

Linearized 1.9 · 10−3 3.2 · 10−4 4.7 · 10−4 3.3 · 10−4

Kalman 2.4 · 10−3 2.1 · 10−4 2.2 · 10−4 2.1 · 10−4

|| |q(t) − q| || Full bundle 1.20 0.11 1.6 · 10−2 3.0 · 10−3

Linearized 1.34 0.11 1.6 · 10−2 3.0 · 10−3

Kalman 1.48 0.12 2.2 · 10−2 5.8 · 10−3

rT r
mn

= a2

mn
Full bundle 0.11 0.12 0.13 0.13

Linearized 0.11 0.12 0.13 0.13

Even if the runtime is highly dependent on the implementations, the table
gives a valid comparison between the methods. The linearized method is almost
as accurate as the full bundle. Moreover, when only the sender positions increase,
and thus also the number of distances, the runtime for the linearized method
and the Kalman filter does not increase notably, while the runtime for the full
bundle does. Hence, the linearized method is faster than the full bundle and
more accurate than the Kalman filter.

Validating the Detection Threshold. To validate the threshold for detection
of changes described in Sect. 4, we tested the distribution of ã empirically. Using
m = 30, n = 200, N = 2 and σn = 0.5 the distances were computed. The separate
bundles as well as the merge using both the full bundle and the linearized method
were then conducted. For all of the different maps we computed the compressed
representations from (21). We then computed

ãfull =
(
a(1)

)2 +
(
a(2)

)2 − (
a
(∗)
full

)2
, and ãlin =

(
a(1)

)2 +
(
a(2)

)2 − (
a
(∗)
lin

)2
,

(34)
where subscript index full and lin denotes the full bundle and the linearized
method respectively. This was re-made 2000 times with different noise. The total
degrees of freedom were γ = (N−1)(m·ρ−φ) = 30·3−6 = 84. The results of ãfull

and ãlin were then plotted in a histogram together with a Γ(2, 42) distribution
in Fig. 2. The histograms agree well with the gamma distribution in both cases;
hence, this can be used to test the significance.

Detection of Changed Maps. Furthermore, we did an experiment where the
map actually had changed. This time we used m = 10, n = 30, N = 3 and



Efficient Merging of Maps and Detection of Changes 357

Fig. 2. The plots show histograms of the residuals ãfull (to the left) and ãlin (to the
right) computed using the full bundle and the linearized method respectively. The curve
(–) shows the Γ distribution which we expect ã to belong to.

σn = 0.5. Four of the ten receivers moved before the last measurement. After
running the separate bundles and merging the maps both using a full bundle
and our linearized method we investigated the differences in the residuals. The
system had γ = 2 · (10 · 3 − 6) = 48 degrees of freedom and thus ã should be
such that it could come from a Γ(1/(2σ̂2), 24) distribution if no changes has
occured. Using the estimate σ̂2 the 99-percentile of this was ã = 17.7. In this
specific case, the results from the merge gave ãfull = 603 and ãlin = 749 and this
clearly showed that something had changed. The results from the unsuccessful
merge can be seen to the left in Fig. 3. To the right in Fig. 3 are the results from
the merge between the first and second map, after the system successfully had
detected the change.

5.2 Time of Arrival – Real Data

To test our method N = 9 experiments were conducted using a Bitcraze Crazyflie
quadcopter and their Loco-positioning system which consists of m = 5 anchors
with UWB chips and a flying quadcopter with a mounted UWB chip, giving
approximately n = 600 sender positions for each measurement. The five anchors
were positioned around the room and one of them was moved before the last
three runs. The experiment was conducted in a MOCAP studio to record the
ground truth flightpath as well as the anchor positions. Distance measurements
from the quadcopter (sender) to all the anchors (receivers) were measured at a
frequency of 30 Hz.

The problem was solved as explained in previous sections, except that the
threshold for ã now was 10 times the 99 percentile for the Γ distribution. This
threshold was used for all real data experiments. In Fig. 4 the results from the
Kalman filter and the linearized method are shown. While the dynamics of the
Kalman filter makes the estimated receivers end up further away from the true
positions – on their way to the correct position – for some of the measurements,
the linearized method correctly detects when a change has occured. Thereafter,
only the similar maps are merged.
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Fig. 3. An unsuccessful merge of map 1,2 and 3 (left) and a successful merge of map
1 and 2 (right). The stars (∗) show the true receiver positions, the squares the results
from full bundle (�) and the linearized method (�). In the right figure, the points for
which a change has been detected are (correctly) marked by a diamond (�,�). (Color
figure online)

Fig. 4. Results from two of the maps from the experiments with UWB data. The stars
(∗) show the true receiver positions, the circles (◦) the results from the Kalman filter
and the squares (�) from the linearized method. The change between the maps has
been correctly detected by the linearized method and changed receivers are marked
with a diamond (�). (Color figure online)

5.3 Images – Real Data

In this experiment, N = 5 sets of images were taken of an indoor scene, a
bookshelf with a number of toy models, as depicted in Fig. 1. In between set 2
and 3 an R2D2 model was moved, which we wanted to detect. As a first step
we used a structure from motion pipeline [11] to obtain a 3D reconstruction for
each set. The points in this reconstruction are the feature points in the map,
corresponding to the receivers in the TOA experiments.

Unlike the TOA experiments, correspondence between 3D points in the dif-
ferent datasets are not given. Prior to merging, we performed data association by
SIFT [10] feature matching and geometric alignment in a RANSAC [4] frame-
work. After this the maps were also in the same coordinate system, which is
required for the linearized method and speeds up the full bundling method.
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Fig. 5. Changes detected in merge between dataset 2 and 3. Feature points are maked
with blue dots and changed features are circled in cyan. (Color figure online)

Using the same method as in Sect. 5.2 – with detection based on a Γ distri-
bution and the feature point distances – the algorithm detected change during
the merge of dataset 2 and 3, which is correct. In Fig. 5 we see that the feature
points on R2D2 are correctly detected as changed. Note that some features are
not present in both datasets and therefore these features on the R2D2 are not
marked as changed. Figure 6 shows the 3D reconstruction from above. Here we
see that the merged points on R2D2 does not align with either dataset 2 or 3.

Fig. 6. To the left, the merge between dataset 1 and 2 where no change was detected.
The separate maps are marked with dots (•,•) and the merge by diamonds (�). To the
right, the merge between dataset 2 and 3, where a change was detected. The points for
which a change was detected are marked by squares (�). (Color figure online)

6 Conclusions

We have presented a novel and efficient method, with small memory footprint, for
merging individual maps obtained from bundle adjustment optimization along
with a statistically motivated method for detecting changes in the map. The
method has been compared favorably to using full bundle adjustment and the
Kalman filter and is shown to be a good compromise between performance and
time efficiency. This makes the method suitable for online applications as well
as the use of crowd sourced data. The performance has been confirmed on both
TOA and vision problems for both simulated and real data. One limitation is
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that the map points used for the coordinate system normalization need to be
consistent for all maps. However, if this problem is solved, we believe that the
method could be further developed to a full collaborative SLAM system.
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