
Video Frame Interpolation via Cyclic
Fine-Tuning and Asymmetric

Reverse Flow

Morten Hannemose1(B), Janus Nørtoft Jensen1, Gudmundur Einarsson1,
Jakob Wilm2, Anders Bjorholm Dahl1, and Jeppe Revall Frisvad1

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
{mohan,jnje,abda,jerf}@dtu.dk

2 SDU Robotics, University of Southern Denmark, Odense, Denmark

Abstract. The objective in video frame interpolation is to predict addi-
tional in-between frames in a video while retaining natural motion and
good visual quality. In this work, we use a convolutional neural net-
work (CNN) that takes two frames as input and predicts two optical
flows with pixelwise weights. The flows are from an unknown in-between
frame to the input frames. The input frames are warped with the pre-
dicted flows, multiplied by the predicted weights, and added to form the
in-between frame. We also propose a new strategy to improve the perfor-
mance of video frame interpolation models: we reconstruct the original
frames using the learned model by reusing the predicted frames as input
for the model. This is used during inference to fine-tune the model so
that it predicts the best possible frames. Our model outperforms the
publicly available state-of-the-art methods on multiple datasets.

Keywords: Slow motion · Video frame interpolation ·
Convolutional neural networks

1 Introduction

Video frame interpolation, also known as inbetweening, is the process of gener-
ating intermediate frames between two consecutive frames in a video sequence.
This is an important technique in computer animation [19], where artists draw
keyframes and lets software interpolate between them. With the advent of
high frame rate displays that need to display videos recorded at lower frame
rates, inbetweening has become important in order to perform frame rate up-
conversion [2]. Computer animation research [9,19] indicates that good inbe-
tweening cannot be obtained based on linear motion, as objects often deform
and follow nonlinear paths between frames. In an early paper, Catmull [3] inter-
estingly argues that inbetweening is “akin to difficult artificial intelligence prob-
lems” in that it must be able understand the content of the images in order
to accurately handle e.g. occlusions. Applying learning-based methods to the
problem of inbetweening thus seems an interesting line of investigation.
c© Springer Nature Switzerland AG 2019
M. Felsberg et al. (Eds.): SCIA 2019, LNCS 11482, pp. 311–323, 2019.
https://doi.org/10.1007/978-3-030-20205-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20205-7_26&domain=pdf
https://doi.org/10.1007/978-3-030-20205-7_26

312 M. Hannemose et al.

f

f

f

f

f

I0

I1

I2

I3

Î0.5

Î1.5

Î2.5

Ĩ1

Ĩ2

Fig. 1. Diagram illustrating the cyclic fine-tuning process when predicting frame Î1.5.
The model is first applied in a pairwise manner on the four input frames I0, I1, I2, and
I3, then on the results Î0.5, Î1.5, and Î2.5. The results of the second iteration, Ĩ1 and Ĩ2,
are then compared with the input frames and the weights of the network are updated.
This process optimizes our model specifically to be good at interpolating frame Î1.5.

Some of the first work on video frame interpolation using CNNs was pre-
sented by Niklaus et al. [17,18]. Their approach relies on estimating kernels to
jointly represent motion and interpolate intermediate frames. Concurrently, Liu
et al. [11] and Jiang et al. [6] used neural networks to predict optical flow and
used it to warp the input images followed by a linear blending.

Our contribution is twofold. Firstly, we propose a CNN architecture that
directly estimates asymmetric optical flows and weights from an unknown inter-
mediate frame to two input frames. We use this to interpolate the frame in-
between. Existing techniques either assume that this flow is symmetric or use a
symmetric approximation followed by a refinement step [6,11,16]. For nonlinear
motion, this assumption does not hold, and we document the effect of relaxing it.
Secondly, we propose a new strategy for fine-tuning a network for each specific
frame in a video. We rely on the fact that interpolated frames can be used to
estimate the original frames by applying the method again with the in-between
frames as input. The similarity of reconstructed and original frames can be con-
sidered a proxy for the quality of the interpolated frames. For each frame we
predict, the model is fine-tuned in this manner using the surrounding frames in
the video, see Fig. 1. This concept is not restricted to our method and could be
applied to other methods as well.

2 Related Work

Video frame interpolation is usually done in two steps: motion estimation
followed by frame synthesis. Motion estimation is often performed using optical
flow [1,4,25], and optical flow algorithms have used interpolation error as an
error metric [1,12,23]. Frame synthesis can then be done via e.g. bilinear inter-
polation and occlusion reasoning using simple hole filling. Other methods use
phase decompositions of the input frames to predict the phase decomposition of

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 313

the intermediate frame and invert this for frame generation [14,15], or they use
local per pixel convolution kernels on the input frames to both represent motion
and synthesize new frames [17,18]. Mahajan et al. [13] determine where each
pixel in an intermediate frame comes from in the surrounding input frames by
solving an expensive optimization problem. Our method is similar but replaces
the optimization step with a learned neural network.

The advent of CNNs has prompted several new learning based approaches.
Liu et al. [11] train a CNN to predict a symmetrical optical flow from the inter-
mediate frame to the surrounding frames. They synthesize the target frame by
interpolating the values in the input frames. Niklaus et al. [17] train a network
to output local 38× 38 convolution kernels for each pixel to be applied on the
input images. In [18], they are able to improve this to 51× 51 kernels. However,
their representation is still limited to motions within this range. Jiang et al. [6]
first predict bidirectional optical flows between two input frames. They combine
these to get a symmetric approximation of the flows from an intermediate frame
to the input frames, which is then refined in a separate step. Our method, in
contrast, directly predicts the final flows to the input frames without the need
for an intermediate step. Niklaus et al. [16] also initially predict bidirectional
flows between the input frames and extract context maps for the images. They
warp the input images and context maps to the intermediate time step using the
predicted flows. Another network blends these to get the intermediate frame.

Liu et al. [10] propose a new loss term, which they call cycle consistency loss.
This is a loss based on how well the output frames of a model can reconstruct the
input frames. They retrain the model from [11] with this and show state-of-the-
art results. We use this loss term and show how it can be used during inference
to improve results. Meyer et al. [14] estimate the phase of an intermediate frame
from the phases of two input frames represented by steerable pyramid filters.
They invert the decomposition to reconstruct the image. This method alleviates
some of the limitations of optical flow, which are also limitations of our method:
sudden light changes, transparency and motion blur, for example. However, their
results have a lower level of detail.

3 Method

Given a video containing the image sequence I0, I1, · · · , In, we are interested
in computing additional images that can be inserted in the original sequence
to increase the frame rate, while keeping good visual quality in the video. Our
method doubles the frame rate, which allows for the retrieval of approximately
any in-between frame by recursive application of the method. This means that we
need to compute estimates of I0.5, I1.5, · · · , In−0.5, such that the final sequence
would be:

I0, I0.5, I1, · · · , In−0.5, In.

We simplify the problem by only looking at interpolating a single frame I1, that
is located temporally between two neighboring frames I0 and I2. If we know the

314 M. Hannemose et al.

g

I0

I2

F1→0

F1→2

W0

W2

Î1

Fig. 2. Illustration of the frame interpolation process with g from Eq. (2). From left to
right: Input frames, predicted flows, weights and final interpolated frame.

32
64

128 256 512 512 512 256 128
64

32 6Average
Pooling

2×Bilinear
UpsamplingConv + ReLU Conv Skip

Connection

Fig. 3. The architecture of our network. Input is two color images I0 and I2 and output
is optical flows F1→0,F1→2, and weights W0,W2. Convolutions are 3× 3 and average
pooling is 2× 2 with a stride of 2. Skip connections are implemented by adding the
output of the layer that arrows emerge from to the output of the layers they point to.

optical flows from the missing frame to each of these and denote them as F1→0

and F1→2, we can compute an estimate of the missing frame by

Î1 = W0W(F1→0, I0) + W2W(F1→2, I2), (1)

where W(·, ·) is the backward warping function that follows the vector to the
input frame and samples a value with bilinear interpolation. W0 and W2 are
weights for each pixel describing how much of each of the neighboring frames
should contribute to the middle frame. The weights are used for handling occlu-
sions. Examples of flows and weights can be seen in Fig. 2. We train a CNN g
with a U-Net [20] style architecture, illustrated in Fig. 3. The network takes two
images as input and predicts the flows and pixel-wise weights

g(I0, I2) → F1→0,F1→2,W0,W2. (2)

Our architecture uses five 2× 2 average pooling layers with stride 2 for the
encoding and five bilinear upsampling layers to upscale the layers with a factor
2 in the decoding. We use four skip connections (addition) between layers in the
encoder and decoder. It should be noted that our network is fully convolutional,
which implies that it works on images of any size, where both dimensions are a
multiple of 32. If this is not the case, we pad the image with boundary reflections.

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 315

Our model for frame interpolation is obtained by combining Eqs. (1) and (2)
into

f(I0, I2) = Î1, (3)

where Î1 is the estimated image. The model is depicted in Fig. 2. All components
of f are differentiable, which means that our model is end-to-end trainable. It is
easy to get data in the form of triplets (I0, I1, I2) by taking frames from videos
that we use as training data for our model.

3.1 Loss-Functions

We employ a number of loss functions to train our network. All of our loss
functions are given for a single triplet (I0, I1, I2), and the loss for a minibatch of
triplets is simply the mean of the loss for each triplet. In the following paragraphs,
we define the different loss functions that we employ.

Reconstruction loss models how well the network has reconstructed the miss-
ing frame:

L1 =
∣
∣
∣

∣
∣
∣I1 − Î

∣
∣
∣

∣
∣
∣
1
. (4)

Bidirectional reconstruction loss models how well each of our predicted opti-
cal flows is able to reconstruct the missing frame on its own:

Lb = ||I1 − W(F1→0, I0)||1 + ||I1 − W(F1→2, I2)||1 . (5)

This has similarities to the work of Jiang et al. [6] but differs since the flow
is estimated from the missing frame to the existing frames, and not between the
existing frames.

Feature loss is introduced as an approximation of the perceptual similarity by
comparing feature representation of the images from a pre-trained deep neural
network [7]. Let φ be the output of relu4 4 from VGG19 [21], then

Lf =
∣
∣
∣

∣
∣
∣φ(I1) − φ(Î1)

∣
∣
∣

∣
∣
∣

2

2
. (6)

Smoothness loss is a penalty on the absolute difference between neighboring
pixels in the flow field. This encourages a smoother optical flow [6,11]:

Ls = ||∇F1→0||1 + ||∇F1→2||1 , (7)

where ||∇F||1 is the sum of the anisotropic total variation for each (x, y) compo-
nent in the optical flow F. For ease of notation, we introduce a linear combination
of Eqs. (4) to (7):

Lr (I0, I1, I2) = λ1L1 + λbLb + λfLf + λsLs. (8)

Note that we explicitly express this as a function of a triplet. When this triplet
is the three input images, we define

Lα = Lr (I0, I1, I2) . (9)

316 M. Hannemose et al.

Similarly, for ease of notation, let the bidirectional loss from Eq. (5) be a function

LB(I0, I1, I2,F1→0,F1→2) = Lb (10)

where, in this case, F1→0 and F1→2 are the flows predicted by the network.
Pyramid loss is a sum of bidirectional losses for downscaled versions of images

and flow maps:

Lp =
l=4∑

l=1

4lLB

(

Al(I0), Al(I1), Al(I2), Al(F1→0), Al(F1→2)
)

, (11)

where Al is the 2l × 2l average pooling operator with stride 2l.

Cyclic Loss Functions. We can apply our model recursively to get another
estimate of I1, namely

Ĩ1 = f
(

Î0.5, Î1.5

)

= f
(

f (I0, I1) , f (I1, I2)
)

. (12)

Cyclic loss is introduced to ensure that outputs from the model work well as
inputs to the model [10]. It is defined by

Lc = Lr

(

Î0.5, I1, Î1.5

)

. (13)

Motion loss is introduced in order to get extra supervision on the optical
flow and utilizes the recursive nature of our network.

Lm = ||F1→0 − 2F1→0.5||22 + ||F1→2 − 2F1→1.5||22 (14)

This is introduced as self-supervision of the optical flow, under the assumption
that the flow F1→0 is approximately twice that of F1→0.5 and similarly for F1→2

and F1→1.5, and assuming that the flow is easier to learn for shorter time steps.

3.2 Training

We train our network using the assembled loss function

L = Lα + Lc + λmLm, (15)

where Lα, Lc and Lm are as defined in Eqs. (9), (13) and (14) with λr = 1, λb

= 1, λf = 8/3, λs = 10/3 and λm = 1/192. The values have been selected based
on the performance on a validation set.

We train our network using the Adam optimizer [8] with default values β1 =
0.9 and β2 = 0.999 and with a minibatch size of 64.

Inspired by Liu et al. [10], we first train the network using only Lα. This is
done on patches of size 128 × 128 for 150 epochs with a learning rate of 10−5,
followed by 50 epochs with a learning rate of 10−6. We then train with the full
loss function L on patches of size 256 × 256 for 35 epochs with a learning rate
of 10−5 followed by 30 epochs with a learning rate of 10−6. We did not use
batch-normalization, as it decreased performance on our validation set. Due to
the presence of the cyclic loss functions, four forward and backward passes are
needed for each minibatch during the training with the full loss function.

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 317

Training Data. We train our network on triplets of patches extracted from
consecutive video frames. For our training data, we downloaded 1500 videos in
4k from youtube.com/4k and resized them to 1920 × 1080. For every four frames
in the video not containing a scene cut, we chose a random 320 × 320 patch and
cropped it from the first three frames. If any of these patches were too similar
or if the mean absolute differences from the middle patch to the previous and
following patches were too big, or too dissimilar, they were discarded to avoid
patches that either had little motion or did not include the same object. Our
final training set consists of 476,160 triplets.

Data Augmentation. The data is augmented while we train the network by
cropping a random patch from the 320× 320 data with size as specified in the
training details in Sect. 3.2. In this way, we use the training data more effectively.
We also add a random translation to the flow between the patches, by offsetting
the crop to the first and third patch while not moving the center patch [18]. This
offset is ±5 pixels in each direction. Furthermore, we also performed random
horizontal flips and swapped the temporal order of the triplet.

3.3 Cyclic Fine-Tuning (CFT)

We introduce the concept of fine-tuning the model during inference for each frame
that we want to interpolate and refer to this as cyclic fine-tuning (CFT). Recall
that the cyclic loss Lc measures how well the predicted frames are able to recon-
struct the original frames. This gives an indication of the quality of the interpolated
frames. The idea of CFT is to exploit this property at inference time to improve
interpolation quality. We do this by extending the cyclic loss to ±2 frames around
the desired frame and fine-tuning the network using these images only.

When interpolating frame I1.5, we would use surrounding frames I0, I1, I2,
and I3 to compute Î0.5, Î1.5, and Î2.5, which are then used to compute Ĩ1 and Ĩ2
as illustrated in Fig. 1 on page 2. Note that the desired interpolated frame Î1.5 is
used in the computation of both of the original frames. Therefore by fine-tuning
of the network to improve the quality of the reconstructed original frames, we
are improving the quality of the desired intermediate frame indirectly.

Specifically, we minimize the loss for each of the two triplets (Î0.5, I1, Î1.5)
and (Î1.5, I2, Î2.5) with the loss for each triplet given by

LCFT = Lc + λpLp, (16)

where λp = 10, and Lp is the pyramid loss described in Sect. 3.1. In order for the
model to be presented with slightly different samples, we only do this fine-tuning
on patches of 256 × 256 with flow augmentation as described in the previous
section. For computational efficiency, we only do this for 50 patch-triplets for
each interpolated frame.

More than ±2 frames can be applied for fine-tuning, however, we found that
this did not increase performance. This fine-tuning process is not limited to our
model and can be applied to any frame interpolation model taking two images
as input and outputting one image.

https://www.youtube.com/4K

318 M. Hannemose et al.

Overlaid input frames Ground truth SepConv L1 [18] CyclicGen [10] Ours

Fig. 4. Qualitative examples on the SlowFlow dataset. Images shown are representative
crops taken from the full images. Note that our method performs much better for large
motions. The motion of the dirt bike is approximately 53 pixels, and the bike tire has
a motion of 34 pixels.

Table 1. Overview of the datasets we used for evaluation.

Dataset Number of Resolution Number of frames Avg. sequence

sequences Interpolated Total length

SlowFlow [5] 34 1280× {1024, 720} 17,871 20,458 602

See You Again 117 1920× 1080 2,503 5,355 46

UCF101 [22] 379 256× 256 379 1,137 3

4 Experiments

We evaluate variations of our method on three diverse datasets: UCF101 [22],
SlowFlow [5] and See You Again [18]. These have previously been used for frame
interpolation [6,11,18]. UCF101 contains different image sequences of a variety
of actions, and we evaluate our method on the same frames as Liu et al. [11], but
did not use any motion masks as we are interested in performing equally well
over the entire frame. SlowFlow is a high-fps dataset that we include to showcase
our performance when predicting multiple in-between frames. For this dataset,
we have only used every eighth frame as input and predicted the remaining
seven in-between in a recursive manner. All frames in the dataset have been
debayered, resized to 1280 pixels on the long edge and gamma corrected with a
gamma value of 2.2. See You Again is a high-resolution music video, where we
predict the even-numbered frames using the odd-numbered frames. Furthermore,
we have divided it into sequences by removing scene changes. A summary of the
datasets is shown in Table 1.

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 319

Table 2. Interpolation results on SlowFlow, See You Again and UCF101. PSNR, SSIM:
higher is better. Our baseline is our model trained only with L1 + Lb + Ls and con-
strained to symmetric flow. Elements are added to the model cumulatively. Larger
patches means training on 256× 256 patches. Bold numbers signify that a method
performs significantly better than the rest on that task with p < 0.02.

SlowFlow See You Again UCF101

Method PSNR SSIM PSNR SSIM PSNR SSIM

DVF [11] - - - - 34.12 0.941

SuperSloMo [6] - - - - 34.75 0.947

SepConv L1 [18] 34.03 0.899 42.49 0.983 34.78 0.947

CyclicGen [10] 31.33 0.839 41.28 0.975 35.11 0.949

Our baseline 34.28 0.903 42.50 0.984 34.39 0.946

+ asymmetric flow 34.33 0.904 42.54 0.985 34.40 0.946

+ feature loss 34.29 0.901 42.62 0.984 34.60 0.948

+ cyclic loss 34.33 0.900 42.73 0.984 34.62 0.947

+ motion loss 34.31 0.900 42.74 0.984 34.61 0.948

+ larger patches 34.60 0.907 43.14 0.986 34.69 0.948

+ CFT 34.91 0.912 43.21 0.986 34.94 0.949

We have compared our method with multiple state-of-the-art methods [6,10,
11,18] which either have publicly available code and/or published their predicted
frames. For the comparison with SepConv [18], we use the L1 version of their
network for which they report their best quantitative results. For each evaluation,
we report the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM) [24].

Comparison with State-of-the-Art. Table 2 shows that our best method,
with or without CFT, clearly outperforms the other methods on SlowFlow and
See you Again, which is also reflected in Fig. 4. On UCF101 our best method
performs better than all other methods except CyclicGen, where our best method
has the same SSIM but lower PSNR. We suspect this is partly due to the fact
that our CFT does not have access to ±2 frames in all sequences. For some
of the sequences, we had to use −1,+3 as the intermediate frame was at the
beginning of the sequence. Visually, our method produces better results as seen
in Fig. 5. We note that CyclicGen is trained on UCF101, and their much worse
performance on the two other datasets could indicate overfitting.

Effect of Various Model Configurations. Table 2 reveals that an asymmet-
ric flow around the interpolated frame slightly improves performance on all three
datasets as compared with enforcing a symmetric flow. There is no clear change
in performance when we add feature loss, cyclic loss and motion loss.

320 M. Hannemose et al.

Input frames Ground truth DVF [11] SepConv L1 [18] CyclicGen [10] SuperSlomo [6] Ours

Fig. 5. Qualitative comparison for two sequences from UCF101. Top: our method pro-
duces the least distorted javelin and retains the detailed lines on the track. All methods
perform inaccurately on the leg, however, SuperSlomo and our method are the most
visually plausible. Bottom: our method and SuperSlomo create accurate white squares
on the shorts (left box). Our method also produces the least distorted ropes and white
squares on the corner post, while creating foreground similar to the ground truth (right
box).

For all three datasets, performance improves when we train on larger image
patches. Using larger patches allows for the network to learn larger flows and the
performance improvement is correspondingly seen most clearly in SlowFlow and
See You Again which, as compared with UCF101, have much larger images with
larger motions. We see a big performance improvement when cyclic fine-tuning
is added, which is also clearly visible in Fig. 6.

Discussion. Adding CFT to our model increases the run-time of our method
by approximately 6.5 s per frame pair. This is not dependent on image size, as we
only fine-tune on 256× 256 patches for 50 iterations per frame pair. For reference,
our method takes 0.08 s without CFT to interpolate a 1920× 1080 image on an
NVIDIA GTX 1080 TI. It should be noted that CFT is only necessary to do
once per frame pair in the original video, and thus there is no extra overhead
when computing multiple in-between frames.

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 321

Overlaid input frames Ground truth Ours without CFT Ours

Fig. 6. Representative example of how the cyclic fine-tuning improves the interpolated
frame. It can be seen that the small misalignment of the tire and the number “41” is
corrected by the cyclic fine-tuning.

Training for more than 50 iterations does not necessarily ensure better results,
as we can only optimize a proxy of the interpolation quality. The best number of
iterations remains to be determined, but it is certainly dependent on the quality
of the pre-training, the training parameters, and the specific video.

As of now, CFT should only be used if the target is purely interpolation
quality. Improving the speed of CFT is a topic worthy of further investigation.
Possible solutions of achieving similar results include training a network to learn
the result of CFT, or training a network to predict the necessary weight changes.

5 Conclusion

We have proposed a CNN for video frame interpolation that predicts two optical
flows with pixelwise weights from an unknown intermediate frame to the frames
before and after. The flows are used to warp the input frames to the intermediate
time step. These warped frames are then linearly combined using the weights to
obtain the intermediate frame. We have trained our CNN using 1500 high-quality
videos and shown that it performs better than or comparably to state-of-the-art
methods across three different datasets. Furthermore, we have proposed a new
strategy for fine-tuning frame interpolation methods for each specific frame at
evaluation time. When used with our model, we have shown that it improves
both the quantitative and visual results.

Acknowledgements. We would like to thank Joel Janai for providing us with the
SlowFlow data [5].

References

1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31
(2011)

2. Castagno, R., Haavisto, P., Ramponi, G.: A method for motion adaptive frame rate
up-conversion. IEEE Trans. Circuits Syst. Video Technol. 6(5), 436–446 (1996)

322 M. Hannemose et al.

3. Catmull, E.: The problems of computer-assisted animation. Comput. Graph. 12(3),
348–353 (1978). SIGGRAPH 1978

4. Herbst, E., Seitz, S., Baker, S.: Occlusion reasoning for temporal interpolation
using optical flow. Technical report, Microsoft Research, August 2009

5. Janai, J., Güney, F., Wulff, J., Black, M., Geiger, A.: Slow flow: exploiting high-
speed cameras for accurate and diverse optical flow reference data. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1406–1416 (2017)

6. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super
SloMo: high quality estimation of multiple intermediate frames for video interpo-
lation. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp.
9000–9008 (2018)

7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

9. Lasseter, J.: Principles of traditional animation applied to 3D computer animation.
Comput. Graph. 21(4), 35–44 (1987). SIGGRAPH 1987

10. Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation
using cyclic frame generation. In: AAAI Conference on Artificial Intelligence (2019)

11. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using
deep voxel flow. In: International Conference on Computer Vision, pp. 4463–4471
(2017)

12. Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image
matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46466-4 26

13. Mahajan, D., Huang, F.C., Matusik, W., Ramamoorthi, R., Belhumeur, P.: Moving
gradients: a path-based method for plausible image interpolation. ACM Trans.
Graph. 28(3), 42:1–42:11 (2009)

14. Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers,
C.: Phasenet for video frame interpolation. In: Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 498–507 (2018)

15. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based
frame interpolation for video. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1410–1418 (2015)

16. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In:
Conference on Computer Vision and Pattern Recognition, pp. 1701–1710 (2018)

17. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution.
In: Conference on Computer Vision and Pattern Recognition, pp. 670–679 (2017)

18. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable
convolution. In: International Conference on Computer Vision, pp. 261–270 (2017)

19. Reeves, W.T.: Inbetweening for computer animation utilizing moving point con-
straints. Comput. Graph. 15(3), 263–269 (1981). (SIGGRAPH 1981)

20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46466-4_26
https://doi.org/10.1007/978-3-319-46466-4_26
https://doi.org/10.1007/978-3-319-24574-4_28

VFI via Cyclic Fine-Tuning and Asymmetric Reverse Flow 323

22. Soomro, K., Zamir, A.R., Shah, M., Soomro, K., Zamir, A.R., Shah, M.: UCF101: a
dataset of 101 human actions classes from videos in the wild. CoRR abs/1212.0402
(2012)

23. Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: IEEE
International Conference on Computer Vision (ICCV), vol. 2, pp. 781–788 (1999)

24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

25. Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided TV-L1 video
interpolation and restoration. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt,
F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 273–286. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23094-3 20

https://doi.org/10.1007/978-3-642-23094-3_20

	Video Frame Interpolation via Cyclic Fine-Tuning and Asymmetric Reverse Flow
	1 Introduction
	2 Related Work
	3 Method
	3.1 Loss-Functions
	3.2 Training
	3.3 Cyclic Fine-Tuning (CFT)

	4 Experiments
	5 Conclusion
	References

