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Abstract. We propose a novel learning approach, in the form of a fully-
convolutional neural network (CNN), which automatically and consis-
tently removes specular highlights from a single image by generating its
diffuse component. To train the generative network, we define an adver-
sarial loss on a discriminative network as in the GAN framework and
combined it with a content loss. In contrast to existing GAN approaches,
we implemented the discriminator to be a multi-class classifier instead of
a binary one, to find more constraining features. This helps the network
pinpoint the diffuse manifold by providing two more gradient terms. We
also rendered a synthetic dataset designed to help the network generalize
well. We show that our model performs well across various synthetic and
real images and outperforms the state-of-the-art in consistency.

Keywords: Deep learning · GAN · Dichromatic reflection separation ·
Specular and diffuse components

1 Introduction

The appearance of an object depends on the way it reflects light. The materi-
als constituting most objects have a dichromatic behaviour: they produce two
types of reflection, namely diffuse and specular reflections. Shafer’s dichromatic
model [21] linearly combines these two terms for the image formation model.
The fundamental difference between them is that the diffuse reflection does not
change with the viewing direction, while the specular one does. The specular
reflection is thus largely responsible for the tremendous difficulty of solving for
the parameters of an image formation model. It is then appealing to assume
the object’s surface to be perfectly diffuse and rule out the specular reflection.
This has been extensively used in various computer vision problems, including
SLAM, image segmentation and object detection, to name but a few. The price
to pay however is failure of the methods when the real object’s reflection departs,
sometimes even slightly, from diffusion.
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Quite naturally, many approaches have been proposed to solve the prob-
lem of specular and diffuse separation, and to be applied as a preprocessing
to many algorithms. The separation is also relevant in computer graphics since
the specular component conveys precious information about the surface material
and illumination [6,14]. We can group model-based methods in two categories:
multi-image and single-image approaches. Multi-image methods ingeniously use
specular reflections’ physical properties to find and remove specularities from
an image, such as their polarization properties [18,28] or their dependance to
the viewpoint to find matching specular and diffuse pixels from several images
[9,15,16]. While obtaining good results, these methods are impractical to use
because of the need for multiple images, special equipment (polarizer) or known
object geometry. Single-image methods mostly rely on the Dichromatic Reflec-
tion Model and the fact that specularities retain the illumination’s color to do
the separation [2,11,21,22,26]. However, the separation problem with a single
image being ill-posed because of the ambiguity of the image formation process
[1], they make strong assumptions about the scene such as a single illumination
of known color, no saturated pixels and no nonlinearity of the capture device.
This obviously hinders the generic applicability of the methods. Therefore, this
is still a challenging and open problem.

In this paper, we propose a deep learning approach to overcome the limi-
tations in applicability. The idea is that the network will work out the intri-
cate relationships between an image and its diffuse part. Recently, a handful of
learning-based methods have been proposed to solve the diffuse and specular sep-
aration problem [4,17,24]. Such data-driven approaches reduce the need to find
hand-crafted features and priors, which might not even be relevant for the wide
diversity of possible scenes [27]. An immediate challenge is to find a large scale
real dataset, since it is extremely time-consuming to produce one. Therefore, we
train our network on synthetic data. We specifically rendered the data to over-
come some limitations known to the problem of separation, by including known
causes of failure cases in hand-crafted methods. Another challenge of learning
approaches is to generalize, all the more difficult when training with synthetic
data. To overcome this limitation, we build our work on the fairly recent frame-
work of Generative Adversarial Networks (GAN) [5], which we adapt to the
separation problem. Just as in GANs, we have a generator network, which we
call Specularity Removal Network, trained to generate the diffuse image, while
the discriminator network is used only for training by determining whether spec-
ularities are well removed. The main difference with a classical GAN resides in
the discriminator network, which is not a binary classifier but a categorical clas-
sifier. By increasing the number of classes, we help the discriminator pinpoint
the desired manifold. This allows it to find more discriminative features for the
task at hand. It also prevents an unwanted behaviour of the GAN on synthetic
data i.e. to generate data that look synthetic. Our method takes a single RGB
image as input and does not make any assumption about the scene. We show
in the results Sect. 3 that our framework is more stable than existing meth-
ods [23,25,26] for a wide range of images, outperforming them qualitatively and
quantitatively.
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In summary, our work addresses the aforementioned challenges and makes
the following contributions:

– A new method of Single-image Specular-Diffuse Separation (SSDS), free
from priors on the scene and capable of performing on a wide range of
images.

– A new multi-class adversarial loss for the problem of SSDS.
– A new synthetic dataset, designed for the task of specular highlights removal.

2 Deep Specularity Removal

Fig. 1. Overview of our architecture. The Specularity Removal Network takes a single
image as input and outputs its diffuse component. The discriminator network is used
only for training. It takes the entire image as input and is trained to classify an image
into three categories: the input image (I), the diffuse component (D) and the generated
diffuse component (D̂); while the generator is trained to fool the discriminator to
classify D̂ as D.

Following the dichromatic model [21], when light hits an object, it is divided
in two parts at the surface, at a ratio depending on the material’s refraction
index. One part, called the specular reflection, is reflected at the surface, in
the manner of a mirror reflection. The other part, called the diffuse reflection,
penetrates the object and scatters before coming out and being reflected. These
two bounced off parts of light then add up, and after integrating all lights coming
from the upper hemisphere of the object surface, the image is formed. Integration
being a linear operation, we can describe an image I as:

I = S + D, (1)
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where S is the specular image and D the diffuse image. The problem of Single
image Specular and Diffuse Separation (SSDS) consists in estimating the spec-
ular S and/or the diffuse D component of a given image I, since a consistent
estimation of one component suffices to retrieve the other by subtracting from I.
Thus, we consider the problem of predicting the diffuse component D for which
we have more visual cues since there are often purely diffuse pixels in images.

2.1 Overview

To solve the ill-posed problem of SSDS, we propose a generator Gθg
, parametrized

by its weights θg. Gθg
is a feed-forward CNN, which takes I as input and gen-

erates D. To train Gθg
, we carefully rendered a realistic and diverse synthetic

training set T = {Ii,Di}N
i=1 of N images and their corresponding ground truth

diffuse components. The dataset generation is discussed in Sect. 2.2. Formally,
our method boils down to the following optimization problem:

θ̂g = arg min
θg

1
N

N∑

i=1

�
(Gθg

(Ii),Di

)
, (2)

where � is our SSDS-specific loss function. � is a weighted combination of two
loss components. One of these components is a content-loss to drive the learning
and the other is an adversarial loss to increase the accuracy of predicted diffuse
components. The discriminative network is specifically designed for the task
of SSDS, as shown in the results. It is trained to recognize whether or not
specularities were well removed from an image, while the specularity removal
network is trained to fool them. The discriminator network and the loss are
discussed in Sects. 2.4 and 2.5 respectively.

2.2 Synthetic Training Dataset

Our training set T = {Ii,Di}N
i=1 consists of N = 20000 realistically rendered

pairs of images. The generation is automated with a script using Blender and
the Cycles engine. Each of the N training frames shows a single object from a
set of 8 synthetic 3D models, rendered at the center of the image in a random
orientation. We excluded 5 shapes of the training set to also create a test set of
1000 images used in the quantitative evaluation. The diffuse part is rendered with
the Lambertian model [12] and the specular part with the Beckmann distribution
of a microfacet model (Glossy BSDF in Blender). The specular roughness is
randomly chosen in the range [0.2, 0.5]. We set a lower bound to this roughness so
that the material does not become highly specular, almost mirror-like. To handle
mirror-like surfaces, we would need a different dataset and maybe a different
network all-together. Among these N frames, we have four sets of data, each
one rendered to overcome a learning limitation.
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Random Texture Objects. This first set has 10000 images rendered with
four area lights, directed towards the object. The position of the lights as well as
their intensity are randomized, to increase the diversity of the scenes. With the
same intent, we set a random colored texture to each object. This simulates real
life objects which do not always show uniform reflectance and also compels the
network to render images of high quality by focusing on details. The lights’ color
is fixed to near white (two are slightly blue and the others yellow to imitate real
lights).

White Objects. With only the first set, the generative network simply learns
to remove white pixels from the image as it suffices for the training set. Therefore
we add this second set with 4000 images of white objects, otherwise rendered
in the same manner as the first set, to help the network grasp the difference
between white objects and specularities.

Colored Lights. This third set contains 2000 images rendered as the first set
but with a random color assigned to each light. This allows us to take into
account the real life cases where the lights are not white, although it is not
very common (which is why we render only 2000 images for this set). Having
different light colors in the scene also ensures that our network does not overfit
our dataset by only analyzing white pixels and their intensity.

Environment Maps. Finally, this last set was added to the corpus because in
real life specular highlights sometimes spread over a large portion of the object
instead of being small and localized. This is due to the inter-reflections that
occur in real scenes, whereas our synthesized data only contain one object. To
simulate this effect, we render this set with an environment map Ei, randomly
sampled from a set of 6 High Dynamic Range (HDR) maps.

2.3 Specularity Removal Network

The specularity removal network is a CNN with skip connections, inspired by
U-Net [19]. It takes in a single RGB image, decreases its resolution with strided
convolutions before further processing and upsampling it to generate its diffuse
counterpart. Figure 1 (top) depicts the architecture of our generator network,
where k, d and s respectively mean the kernel size, the depth and stride of the
convolutions. We use the ReLU activation function at each convolutional layer.
The network was trained with images of size 256 × 256, but can then be applied
to images of any size as it is fully convolutional.

2.4 Discriminator Network

In classical GANs, the discriminator network is a binary classifier, trained to
recognize real images from fake ones. Then, the generator is trained to fool it,
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which results in high perceptual quality image generation, close to the data’s
distribution. In our case, this framework does not fit for two reasons: (1) we
do not want our generator to fit our synthetic data’s distribution (e.g. a single
object in the center of the image), which still lacks diversity compared to real
data in spite of our efforts; (2) visual quality is not the sole concern of our
problem, the main one being to accurately remove specularities. Therefore we
propose a new framework following the GAN paradigm of Goodfellow et al. [5],
but differing in the discriminator network’s role.

Multi-class Adversarial Optimization. The discriminator network’s objec-
tive is to classify generated diffuse images from real ones but also from input
images I, which show specularities. Instead of returning a single scalar value,
it ouputs a tensor of three values, standing for the probabilities of the image
belonging to either one of the three classes and which add up to 1. For that we
replaced the usual sigmoid activation function at the last layer by a softmax acti-
vation. We call Dθd

our discriminator network and D̂ = Gθg
(I) a diffuse image

generated by Gθg
. The discriminator network is then optimized in an alternating

manner with Gθg
to solve the adversarial min-max problem:

min
θg

max
θd

3∑

i=1

Exi∼pxi

{
log D(i)

θd
(xi)

}
+

3∑

i=1,j=1,i �=j

Exj∼pxj

{
log

[
1 − D(i)

θd
(xj)

]}
,

(3)

where:

– D(i)
θd

denotes the ith output of Dθd
and represents the probability of the image

belonging to the class Ci.
– xi is an image drawn from the distribution pxi

which corresponds to Ci.
– Ci ∈ {C1, C2, C3} =

{
CI , CD, CD̂

}
is one of the three classes.

Note that Eq. (3) depends on θg when j = 3 and xj = D̂ = Gθg
(I). The idea

behind this multi-class discriminator is that recognizing D from D̂ will ensure
visual quality as in a classical GAN, while the classification between I and D̂ will
compel the discriminator to find features related to the sole difference between
them i.e. specular highlights, thus ensuring accurate specularity removal.

Architecture. An overview of the discriminator’s architecture can be seen in
Fig. 1 (bottom). It takes as input the image of size 256 × 256 and decreases its
resolution every other layer with convolutions of stride 2, going from 256 × 256
to 16 × 16, while the number of kernel filters increases every other layer, going
from 64 to 512. Every convolutional layer is followed by a LeakyReLU activation
and a batch normalization except at the last layer. We then apply a Flatten
layer before a Dense layer to form the 3-dimensional vector.
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2.5 Loss Function

To stabilize the learning and at the same time train an efficient and accurate
network, we define our loss to be a combination of a content loss and our SSDS-
specific adversarial loss:

�
(Gθg

(I),D
)

= �content + λ × �SSDS , (4)

where λ is a regularization parameter to scale the two losses.
We use the Mean Square Error (MSE) as our content loss:

�content

(Gθg
(I),D

)
=

1
WH

W∑

x=1

H∑

y=1

(
Dx,y − Gθg

(Ix,y)
)2

, (5)

with W and H are respectively the width and the height of the input image. We
explored other options, such as measuring the error on low layer feature maps
of a discriminator network in order to extract relevant representations [13,20],
but it did not bring improvements on our rather simple data.

The discriminative part of the loss is defined on the probabilities of the
discriminator and updates the weights of the generator via the gradient of:

�SSDS = log
{

D
(3)
θd

(Gθg
(I))

}
− log

{
D

(1)
θd

(Gθg
(I))

}
− log

{
D

(2)
θd

(Gθg
(I))

}
, (6)

where, as a reminder, 3, 2 and 1 correspond to D̂, D and I respectively. Com-
pared to the adversarial loss of the GAN as formulated by Goodfellow et al. [5],
our multi-class adversarial loss has two more terms, which translate into more
gradients for the back-propagation.

2.6 Training Details

We trained our networks from scratch simultaneously on an NVIDIA GeoForce
GTX using the dataset described in Sect. 2.2. We trained the generator and the
discriminator in an alternating manner with batches of size 16. We scaled the
range of the input images to [0, 1]. Our final model was trained for 30, 000 itera-
tions at a learning rate of 2·10−4 and a decay of 0 using the ADAM optimizer [10].
The generator and the discriminator were updated at each iteration to solve the
adversarial min-max (3). In addition, the generator was updated to solve the
optimization problem (2) via the gradient of the loss (4), with a regularization
parameter set to λ = 10−3. We implemented our models in Keras [3].

3 Experiments

In this section, we evaluate our Specularity Removal Network quantitatively
on synthetic data, for which we have ground-truth, and qualitatively on real
data. We compare the performance of our method with three states-of-the-art
separation methods: Tan et al. [26] and Shen et al. [23], which are model-based
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methods, and Shi et al. [24] which is learning-based. The code for the hand-
crafted methods are available on the authors’ webpages and we downloaded the
model of [24] on the author’s GitHub1. We also show the contribution of the
multi-class adversarial loss in Sect. 3.3 and discuss the limits in Sect. 3.4.

Table 1. (Left) Results of the diffuse component estimation task of the different
methods on five synthetic test images. Best view in PDF. (Right) Quantitative results
of the diffuse component estimation task in terms of the different metrics. The values
represent the mean distance between the generated diffuse component and ground-
truth over 1000 randomly sampled synthetic test images. Baseline (AE) is a simple
autoencoder without GAN training and Baseline refers to our method with binary
classification (classical GAN framework).

Methods L2 DSSIM NET LIN-NET
Tan et al. [26] 0.020 0.052 0.408 0.054
Shen et al. [23] 0.016 0.048 0.380 0.052
Shi et al. [24] 0.222 0.410 2.363 0.313
Baseline (AE) 0.033 0.046 0.336 0.044
Baseline (GAN) 0.017 0.059 0.474 0.064
Ours 0.014 0.035 0.271 0.034

3.1 Evaluation on Synthetic Data

We provide qualitative and quantitative results regarding the estimation of the
diffuse component of synthetic images in Table 1. Table 1 (left) shows the results
of the diffuse component recovery with the different baseline methods and our
method, on five images out of our test set of 1000 images. As can be noticed, our
method’s outcome is the perceptually closest to the sought diffuse components.
Note that, the learning-based approach of Shi et al. [24] shows reconstruction
artifacts on the edges of the image. Their method actually has to work with
a mask to segment the foreground object, which is limited as the mask is not
provided in most scenarios.

Table 1 (right) provides quantitative results of the different methods and two
Baseline methods (AE for autoencoder and GAN for classical GAN) averaged
on the test set. We use two standard metrics, namely L2 and DSSIM [7], and
also consider recently developed perceptual metrics based on computing the
similarity of two images in the feature space of a neural network. Indeed, Zhang
et al. [29] showed that these metrics provide an embedding of images which
agrees surprisingly well with human judgment. In particular, we consider the

1 https://github.com/shi-jian/shapenet-intrinsics.

https://github.com/shi-jian/shapenet-intrinsics
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metric corresponding to the Squeeze network [8] (denoted NET) and its linear
version as proposed by [29] (denoted LIN-NET). This quantitative comparison
agrees with the perceptual analysis as our method outperforms all the methods
by a large margin on all the metrics. Specifically, it outperforms the Baseline
method which consists in considering a binary classification for the discriminator
rather than the proposed multi-class classification.

3.2 Evaluation on Real Data

Our network being trained on synthetic images, the fact that it outperforms
the other methods on synthetic data can seem natural. However, in this section
we evaluate our method on real images and show that it performs consistently.
The results can be seen in Fig. 2. Our network performs well on a wide range of
images, from images resembling our training data with a black background to
complex scenes such as the wooden objects and the earth balloon. This attests
of a better generalization from our Specularity Removal Network, while artifacts
on the edges and on the object are still visible in the results of Shi et al. [24]. Our
discriminative network constrains the generator to understand the distribution
of specularities and help it remove them from the image by training themselves
to differentiate I from D. Visually, our method consistenly outperforms [24].

Fig. 2. Results and comparison of our method on real images. The input image is on
the left and for each image, the top row is the diffuse component and the bottom row
is the specular component. Ground-truths are provided on the right when available.
Our baselines include Tan et al. [26], Shen et al. [23] and Shi et al. [24]. Our specular
component is obtained by subtracting our estimated diffuse component to the input
image. Best view in PDF.

In visual comparison to hand-crafted methods, we perform slightly worse
than Shen et al. [23] on the first and the second images (animals and fruits)
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and slightly worse than Tan et al. [26] on the first and third examples (animals
and wooden objects). This can be explained by the fact that these images were
taken in laboratory conditions and fit perfectly the hypothesis of the Dichromatic
Reflection Model [21], on which hand-crafted models are built. However, albeit
subjective since there is no metric to evaluate specularity removal, our method
performs best on the other examples, showing its consistency. On the fifth image
(the fruit basket), we can clearly see that purely specular (saturated) pixels
lose too much energy with hand-crafted methods because they don’t show any
diffuse color underneath, while our method consistently begins to inpaint them.
The same goes for the last image (beans) where our method does not leave holes
like the others. In summary, our method separates the reflection components
with the best consistency compared to the state-of-the-art.

3.3 Contribution of Our Multi-class GAN

Figure 3 shows learning curves for our method and for a classical binary GAN
with the exact same parameters. The amplitudes of the oscillations of both
curves easily tell us that the multi-class adversarial loss allows for a more stable
learning, while instability is common to adversarial frameworks. It also shows
that convergence comes faster and is more accurate, which is visible in the images
generated by the two methods (right of Fig. 3).

Fig. 3. Learning curves of a classical GAN and our multi-class GAN. (Right) Generated
diffuse components.

3.4 Limits

Our network is of course not perfect and can have failure cases in a real life
application. First, as mentioned before it does not handle mirror surfaces, which
would require a completely different definition of the problem (different data and
priors). Furthermore, despite our efforts (white objects and multi-class discrimi-
nators), the network still tends to darken the images. This is visible in the earth
balloon example of Fig. 2 and shows our network still misses a step of generaliza-
tion. This can be explained by the simplicity of our data, especially the lack of a
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background which would normally provide context to work on. Not any random
background however, which would have been easy to add, but a true background
containing illumination information. We tried to add a white background to help
the network discern white material from white specular highlights but did not
see any noticeable improvement. We also tried the patchGAN formulation of the
GAN framework without noticeable changes.

4 Conclusion

We have proposed a new method to separate diffuse and specular reflec-
tions based on a learning approach, which can better infer the complex rela-
tions between the object, the lighting condition and the image than existing
approaches. Our method takes advantage of synthetic data generation which
allows us to easily obtain a large amount of labeled data. We generated our
own training set and augmented our data in such a way to account for difficult
cases encountered in real scenarios, in order to help the network better generalize
to these situations. We also trained our model in a GAN framework adapted to
reflection component separation. For that, we defined a new multi-class adversar-
ial loss, which helps the training process by providing more gradients and more
precise features. This results in a model that removes specularity from a single
image, without any assumption made about the scene. We evaluated our model
on both synthetic and real data. Our method outperforms the state-of-the-art
in consistency across various scenes.

In future work, we would like to investigate the temporal coherence for live
applications in a continuous video stream. Our Specularity Removal Network is
not perfect and might not be entirely consistent from one frame to the next. Our
network would also greatly benefit from data with more complex scenes in the
training set.

References

1. Adelson, E.H., Pentland, A.P.: The perception of shading and reflectance. In: Per-
ception as Bayesian Inference, pp. 409–423 (1996)

2. An, D., Suo, J., Ji, X., Wang, H., Dai, Q.: Fast and high quality highlight removal
from a single image. arXiv preprint arXiv:1512.00237 (2015)

3. Chollet, F., et al.: Keras (2015)
4. Funke, I., Bodenstedt, S., Riediger, C., Weitz, J., Speidel, S.: Generative adversarial

networks for specular highlight removal in endoscopic images. In: Medical Imaging
2018: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10576,
p. 1057604. International Society for Optics and Photonics (2018)

5. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016)

6. Hara, K., Nishino, K., Ikeuchi, K.: Determining reflectance and light position from
a single image without distant illumination assumption, p. 560. IEEE (2003)

7. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th Interna-
tional Conference on Pattern Recognition (ICPR), pp. 2366–2369. IEEE (2010)

http://arxiv.org/abs/1512.00237
http://arxiv.org/abs/1701.00160


14 J. Lin et al.

8. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint arXiv:1602.07360 (2016)

9. Jachnik, J., Newcombe, R.A., Davison, A.J.: Real-time surface light-field capture
for augmentation of planar specular surfaces. In: 2012 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), pp. 91–97. IEEE (2012)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color
images. Int. J. Comput. Vis. 2(1), 7–32 (1988)

12. Lambert, J.H.: Photometria sive de mensura et gradibus luminis, colorum et
umbrae. Klett (1760)

13. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint (2016)

14. Lin, S., Lee, S.W.: Estimation of diffuse and specular appearance. In: The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, vol.
2, pp. 855–860. IEEE (1999)

15. Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-specular separation
and depth recovery from image sequences. In: Heyden, A., Sparr, G., Nielsen, M.,
Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 210–224. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-47977-5 14

16. Lin, S., Shum, H.Y.: Separation of diffuse and specular reflection in color images.
In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I. IEEE (2001)

17. Meka, A., Maximov, M., Zollhoefer, M., Chatterjee, A., Richardt, C., Theobalt,
C.: Live intrinsic material estimation. arXiv preprint arXiv:1801.01075 (2018)

18. Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color
and polarization. Int. J. Comput. Vis. 21(3), 163–186 (1997)

19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

20. Seddik, M.E.A., Tamaazousti, M., Lin, J.: Generative collaborative networks for
single image super-resolution. arXiv:1902.10467 (2019)

21. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4),
210–218 (1985)

22. Shen, H.L., Cai, Q.Y.: Simple and efficient method for specularity removal in an
image. Appl. Opt. 48(14), 2711–2719 (2009)

23. Shen, H.L., Zhang, H.G., Shao, S.J., Xin, J.H.: Chromaticity-based separation of
reflection components in a single image. Pattern Recogn. 41(8), 2461–2469 (2008)

24. Shi, J., Dong, Y., Su, H., Stella, X.Y.: Learning non-Lambertian object intrinsics
across ShapeNet categories. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5844–5853. IEEE (2017)

25. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

26. Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using
a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 178–193 (2005)

http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/3-540-47977-5_14
http://arxiv.org/abs/1801.01075
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1902.10467


Deep Multi-class Adversarial Specularity Removal 15

27. Weiss, Y.: Deriving intrinsic images from image sequences. In: 2001 Proceedings of
the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol.
2, pp. 68–75. IEEE (2001)

28. Wolff, L.B., Boult, T.E.: Constraining object features using a polarization
reflectance model. IEEE Trans. Pattern Anal. Mach. Intell. 13(7), 635–657 (1991)

29. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. arXiv preprint (2018)


	Deep Multi-class Adversarial Specularity Removal
	1 Introduction
	2 Deep Specularity Removal
	2.1 Overview
	2.2 Synthetic Training Dataset
	2.3 Specularity Removal Network
	2.4 Discriminator Network
	2.5 Loss Function
	2.6 Training Details

	3 Experiments
	3.1 Evaluation on Synthetic Data
	3.2 Evaluation on Real Data
	3.3 Contribution of Our Multi-class GAN
	3.4 Limits

	4 Conclusion
	References




