
7Supplements

Anyone writing a book will rarely follow a plan that was not revised several times
during the process. This was definitely the case when this book was written. We have
discussed many different versions beforewe arrived at the current format. In some of
these versionsmathematical terms like “convergence of functions” or “cardinality of
sets” played an important role. At the end, we found a way to discuss the Brownian
motion without using these terms explicitly. The obvious consequence could have
been to simply drop this material.

Discussions with students and colleagues taught us that these topics can also
be of use in several other areas of economics. Therefore we decided to leave the
supplements in our book. The four subsequent sections can be read independently of
each other. The entire chapter can be skipped for the understanding of the Brownian
motion.

7.1 Cardinality of Sets

Imagine adding 0 to the set of scores on a dice as another element:

{0, 1, 2, 3, 4, 5, 6}.

Obviously, this set is larger than the original set: instead of six there exist now seven
elements. With this simple fact in mind, one is inclined to conclude that this idea
will also be applicable in the case of infinite sets. For example, if we compare the set
N of all natural numbers with the set Z of integers, it seems reasonable to suppose
that Z is greater than N.

However, one cannot prove whether such a proposition is correct or false by
looking at the number of elements. This number is infinite in Z as well as N, and
we had already realized that infinite is not a number that can be used to perform
simple arithmetic operations such as addition or comparisons. Thus, one has to
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create another concept if one wants to compare infinite sets. This boils down to
cardinality.

If one looks at infinite sets, results dealing with finite sets seem to contradict
common sense. First, one might think that the set of natural numbers is smaller than
the set of integers since all negative values −1,−2, . . . are missing. However, one
can prove by a simple consideration that this conclusion is mistaken. Rather, it is
shown that the set of integers is exactly as large as the set of natural numbers or
both have “the same cardinality” which we will explain below. This underlines the
fact that infinity must be handled very carefully. It is better not to rely on common
sense or “intuition”!

The idea of cardinality is to employ a one-to-one relation when comparing
two sets rather than counting their elements. Two sets are said to have the same
cardinality (or are “equal in size”) only if there exists a one-to-one relation between
all their elements.

With finite sets counting elements or using one-to-one relations lead to the same
result. Figure 7.1 illustrates that the set with seven elements is greater than the set
with six elements: one element from the set {0, 1, . . . , 6}will never find a “partner.”

In the case of the two infinite sets, however, the outcome is surprising. This
is demonstrated by the assignment in Fig. 7.2: each natural number is mapped to
exactly one integer and this mapping is one-to-one. One can clearly observe that
both every natural number and every integer appear exactly once. Those preferring
formulas might use

f : N → Z, f (n) =
{

−n
2 , if n is even ;

n+1
2 , if n is odd .

(7.1)

f is a function that obviously assigns an integer to each natural number n and f is
also reversible in the sense that every integer in Z is also captured.

The idea of cardinality will be further illustrated with another example.

Example 7.1 (Cantor’s Diagonal Argument) The set of nonnegative rational num-
bers Q+ has the same cardinality as the set of natural numbers. To show the
equivalence it is necessary to prove—analogous to Fig. 7.2—that it is possible to
uniquely assign all nonnegative rational numbers to natural numbers.

Fig. 7.1 The two finite sets
{0, 1, . . . , 6} and {1, 2, . . . , 6}
do not have equal cardinality
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Fig. 7.2 The infinite sets N
and Z have equal cardinality
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Fig. 7.3 Cantor’s diagonal argument to prove that N and Q+ have equal cardinality

The rational numbers Q+ consist of all fractions m
n
with m and n being positive

natural numbers. These rational numbers are now arranged in an infinite two-
dimensional matrix as shown in Fig. 7.3.1 The arrows shown illustrate how one
may imagine the one-to-one correspondence between the natural and the rational
numbers: the 1 is assigned to fraction 1

1 , the 2 to fraction 2
1 , the 3 to fraction 1

2 , the
4 to fraction 1

3 , the 5 to fraction
2
2 , and so on.

This procedure would create a one-to-one relation if there was not an annoying
blemish. The right matrix contains too many elements. The rational numbers 1

1 ,
2
2 ,

3
3 , . . . or

3
17 ,

6
34 ,

9
51 , . . . are actually identical and do not represent different rational

numbers at all. Therefore, they must not be assigned to different natural numbers.
One has to make sure that they are accounted for only once. This is achieved by
“thinning-out” the right matrix. All fractions m

n
consisting of m, n which are not

coprime are deleted. In this case the diagonal construction is only carried out for
values that are coprime. The formal proof is much more complicated due to this
“thinning-out” and must—if one wants to be formally precise—be conducted with
complete induction. However, we will not present the details of this proof.

A set whose cardinality corresponds to the cardinality of the natural numbers is
called countable. In this sense natural numbers, integers and rational numbers are
countable. Countable quantities are of great importance because they can appear as
indices in sums and products. An expression of the form

∑
i∈A ai makes sense if

and only if A is countable. If A = N one can even write limn→∞
∑n

i=1 ai for this
sum.

One could suspect that for all infinite sets it can be proven—with ingenious
tricks—that they are countable. However, that is not the case and we will show
for a very prominent set that it is larger than the set of natural numbers.

1The idea of this proof goes back to the founder of set theory, Georg Ferdinand Ludwig Philipp
Cantor (1845–1918, German mathematician).
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Fig. 7.4 Cantor’s diagonal
argument to prove the
uncountability of real
numbers

0 . a1 a2 a3 a4 . . .
0 . b1 b2 b3 b4 . . .
0 . c1 c2 c3 c4 . . .
0 . d1 d2 d3 d4 . . .

...

Example 7.2 (Uncountability) We prove that the set of real numbers R has a
different cardinality than the set of natural numbers. That is quite simple.

To this end we assume that someone claims being able to map the set of real
numbers one-to-one to the set of natural numbers. This person would be able to list
all real numbers one after the other. This would constitute a sequence of all real
numbers. In particular, this person can name a unique predecessor and successor for
each real number.We will show that at least one real number is still missing—which
is a contradiction. This proves that the set of real numbers must be larger than the
set of natural numbers.

In Fig. 7.4 we present the sequence of real numbers with their (possibly
infinite) decimal representation which the above person claims to be complete, i.e.,
containing all real numbers. Instead of the decimals 0, 1, . . . , 9 we use symbols
ai, bi, ci, di , . . . for every real number.2

The missing number can be constructed very easily. We consider Fig. 7.4 as a
matrix of numbers and focus on the diagonal (the diagonal elements are printed in
red). Using the diagonal we form a new real number of the form 0. z1 z2 z3 z4 . . .. As
first decimal z1 of this new real number, a decimal must be selected such that it does
not equal a1. The second decimal must fulfill the inequality z2 �= b2, for the third
decimal the inequality z3 �= c3 must hold, and so on. The new real number formed
in this way cannot match any of the numbers mentioned in our person’s supposedly
complete list. With each element of our person’s list (at least) one decimal in the
representation is different from our newly constructed number. We have found the
missing number!

These considerations show that the set of real numbers can hardly be counted. It
is said that the real numbers are uncountable. Therefore, it follows that an expression
of the form

∑
i∈R ai does not represent a mathematically meaningful term: each

element i in an index set must have a unique predecessor and a unique successor, a
situation impossible for the real numbers R.

Example 7.2 shows that there exist infinite sets with different cardinalities. The
set of real numbers R is “larger” than N, while the sets of natural numbers is “as
large” as the sets Z andQ+. In mathematics this is indicated by appropriate symbols.
The number of natural numbers is not indicated by the rather fuzzy infinity sign ∞

2Without loss of generality we can ignore all digits before the decimal point.
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but by the symbol ℵ0.3 Since the cardinality of the real numbers is greater than ℵ0,
the symbol ℵ1 is used.

Concluding Remark Finally, we would like to draw the reader’s attention to an
interesting issue. We have already shown that the set of natural numbers is smaller
than the set of real numbers. Instead of the set of natural numbers, one could use
their power set P(N), i.e., the set of all subsets of natural numbers. This power set
contains the set of all even numbers, the set of all odd numbers, the set of all natural
numbers less than 5, and so on. Without presenting the mathematical details, it can
be shown that the power set has the same cardinality as the set of real numbers. On
page 20 we had made it clear that for a finite set of n elements the number of subsets
is just 2n. This relationship is assigned to the symbols just introduced by writing the
following equation:

2ℵ0 = ℵ1. (7.2)

However, this symbolic notation should not be confused with real arithmetic
operations. One must not write ℵ0 = log2(ℵ1).

What do these considerations tell us? If mathematicians transfer as in (7.2) a
symbolic notation from one subject area to another, one is tempted to use it in
all its dimensions. Unfortunately, such practice cannot only be wrong but even be
dangerous.We have already experienced this situation while discussing the notation
of Brownian motion.

7.2 Continuous and Almost Nowhere Differentiable Functions

In order to discuss the Brownian motion thoroughly, it is useful to deal with
remarkable features of functions. The paths of Brownian motion are continuous
functions which one cannot differentiate at (almost) any point. Anyone wanting
to handle such functions properly must recognize that the use of mathematical
operations known from ordinary analysis is inadmissible. Compared to ordinary
analysis dealing with Brownian paths can be considered as being “exotic.”

Non-mathematicians probably cannot imagine continuous functions that are
not differentiable (almost) anywhere. We would like to assist this understanding
by an example developed by Weierstraß.4 He also showed that in mathematics
such functions are anything but rare. Prior to Weierstraß these functions had been

3The symbol ℵ is the first letter of the Hebrew alphabet and is pronounced aleph.
4Karl Theodor Wilhelm Weierstraß (1815–1897, German mathematician). In 1872 Weierstraß
introduced this function in a lecture and claimed that Riemann had knowledge of such an example.
However, no such reference has been found in Riemann’s inheritance. Around 1830 Bolzano found
the first example of a function that could not be differentiated almost anywhere in a manuscript that
was published only in 1922.
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Fig. 7.5 Approximation of the Weierstraß function w(x) using the first seven summands

regarded as “monster curves.”5 It was assumed that these functions were either only
special cases or that the points where differentiation is not possible were indeed rare.

Weierstraß considered the function

w(x) =
∞∑

n=0

sin(3n x)

2n
. (7.3)

To give an idea of the appearance of this function, Fig. 7.5 shows only the first
seven summands of a Taylor series.6 We concentrate on two characteristics of the
Weierstraß function: first its continuity and second its differentiability.

Non-mathematicians state that a function is continuous if one can draw its path
without interrupting the movement of the drawing pen. Although this is not a precise
definition one may suspect that the Weierstraß function is continuous when looking
at Fig. 7.5. Even with more precision the same result applies: the numerator of each
fraction is at most 1 and the denominator grows exponentially. Therefore, the sum
converges for each x. Furthermore, it also converges uniformly. This means that
the difference between

∑m
n=0

sin(3n x)
2n and w(x) going to zero can be estimated

independently of x. In such cases the property of continuity of the summands
sin(3n x)

2n also applies to the function w(x).
The above considerations do not represent a complete proof but only give

an indication of the evidence: the result is intuitively appealing. Looking at the
definition of the functionw(x) the following observation is decisive. The numerator

5The French mathematician Charles Hermite (1822–1901) wrote in 1893 in a letter to Stieltjes: “I
avert myself with horror and shock from this lamentable plague of functions that have no derivative
at all.”
6The picture does not change very much if additional summands are added with the approximation
error being reduced.
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Fig. 7.6 Cosine functions cos(31x), cos(32x), and cos(33x)

of each additional summand exists in the interval [−1, 1]. On the other hand,
the denominator of each new summand grows exponentially. Hence, each new
summand (however it may behave) contributes only marginally to the change of
the function value. Therefore, continuity is maintained at the limit.

Let us turn to the second characteristic of the functionw(x). Weierstraß was able
to show that the function cannot be differentiated except for a few values x. While
the proof is difficult, one can illustrate the result as follows: deriving the sum with
respect to x one obtains7

dw(x)

dx
= lim

N→∞

N∑
n=0

(
3

2

)n

cos(3n x). (7.4)

To examine this limit in more detail we first ignore the factor
(
3
2

)n

and draw several

graphs of the function cos(3nx) depending on n (see Fig. 7.6).
It can easily be seen that the frequency of the cosine function increases with every

exponent n. Since the increasing fluctuations are multiplied by the factor
(
3
2

)n

, their

impact on the sum grows with n. Obviously, the sum can only converge for numbers
x where the cosine function approaches zero. The zeros of these cosine functions are
very thinly scattered.8 For all other x the sum diverges to plus or minus infinity and
this represents the default case. Thus, the first derivative of this function is almost
everywhere either minus or plus infinity. This implies that the function cannot be
differentiated anywhere.

7We will change derivation and infinite summation in our calculation which is mathematically
inadmissible under these circumstances. The following argument therefore does not constitute full
proof.
8The set of those x has Lebesgue measure zero.
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7.3 Convergence Terms

From numerous discussions with students and colleagues we learned that there is
certainly interest in looking more closely at the issue of convergence of functions.
When looking at convergence of numbers it is entirely irrelevant how to define
convergence precisely. Regardless of the definition of convergence of numbers,
all turn out to be equivalent. However, this is entirely different when dealing with
sequences of functions. There are many different ways to define convergence with
each option being fundamentally different from one another. While most non-
mathematicians can imagine what a sequence of numbers is, the issue of dealing
with a sequence of functions is very different.

To illustrate this phenomenon we use an analogy. Finding the shortest route
from Berlin to San Francisco depends on the way the earth is looked at. Using
a conventional map of the world it will be concluded that the shortest route of
the two cities is always south of 53◦ North. However, when using a globe you
will find that the shortest route is in fact via Greenland. This analogy is similar
to the convergence concept for functions: there are not just one but several ways
of defining the convergence of a sequence of functions. The results depend on the
chosen convergence definition.

Convergence is important in the context of limits. To understand the applications,
it is useful to realize how proofs are conducted in the theory of Lebesgue
integration9: if one wants to prove that a certain property or a given proposition
applies in general, one can make life easier to start by proving the correctness of
the proposition for linear or piecewise linear functions. In order to show the general
validity, one has to move from these simple functions to more general ones. To this
end one has to consider the limit of a sequence of functions. A proposition applying
to each (piecewise linear or simple) element of a function sequence will also apply
to the limit of this sequence and thus to a general function. It should be noted it must
not matter whether one integrates first and subsequently passes to the limit or vice
versa. Integration and limit must be interchangeable:

lim
n

∫
�

!=
∫

�

lim
n

. (7.5)

Let us look at random variables as an example of functions. For random variables
expectation and variance are (Lebesgue) integrals.10 From (7.5) it should follow

lim
n→∞E [Zn]

!= E
[
lim

n→∞ Zn

]
(7.6)

9See page 71 ff.
10See page 80.
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and

lim
n→∞Var [Zn]

!= Var
[
lim

n→∞ Zn

]
. (7.7)

Remember that Zn is a random variable and thus a measurable function.
The above claims deserve two remarks: first, there is an exclamation mark above

the equal signs. We need a definition of a limit such that right and left sides are
identical. It is apparent that limit and expectation or limit and variance can be
swapped. Second, consider the left side of Eq. (7.5) which represents limits of
sequences of numbers since expected values and variances are numbers. The right
side of Eq. (7.5) does not contain a sequence of numbers but a sequence of functions.
While students of economics are aware of how to determine a limit of a sequence
of numbers, they may not know what a sequence of a function is let alone how to
determine its limit.

Before introducing two important concepts of convergence, namely pointwise
convergence and mean square convergence,11 we will start with sequences of
numbers.

Sequences of Numbers In mathematical analysis, it is stated that a sequence of
numbers converges to a limit if the numbers with a sufficiently large index will
approach a particular value. For example, if you look at the sequence of numbers

sn = a + 1

n
with n = 1, 2, . . . , (7.8)

we have

s1 = a + 1, s2 = a + 1

2
, s3 = a + 1

3
, (7.9)

and so on. By letting n increase the second summand decreases and approaches
zero.12 For n → ∞ the summand can be neglected. Thus, the sequence converges
to a which is written as

lim
n→∞ sn = lim

n→∞

(
a + 1

n

)
= a. (7.10)

After exploring sequences of numbers we will now concentrate on sequences of
functions.

11In addition to these two types of convergence, there exist in mathematics a few others definitions
that will not be discussed here.
12One easily realizes that, for example, the sequence sn = (−1)n does not converge with increasing
n. Such sequences are called divergent.
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Fig. 7.7 What is the limit of a function sequence?

Sequences of Functions We look at the simple example

fn(t) = a + t

n
. (7.11)

With increasing n one obtains

f1(t) = a + t, f2(t) = a + t

2
, f3(t) = a + t

3
, (7.12)

and so on. It seems clear that such a sequence of functions converges and how its
limit is determined. In a sequence of numbers individual numerical values at the
limit should converge to a certain value. With a sequence of functions it is quite
plausible to expect that with increasing n a function “clings to a limit function.” In
the above example the functions fn(t) are approaching the limit function f (t) = a.
Figure 7.7 illustrates this vividly. With increasing n the influence of the term
t
n
gets less and less significant in Eq. (7.11). The limit function takes the form

limn→∞ fn(t) = a.

Pointwise Convergence This definition can be regarded as a “natural” candidate
based on the above example.

Definition 7.1 (Pointwise Convergence) Consider a sequence of functions of the
form fn : � → R.

A sequence of functions fn converges pointwise13 to a function f if and only if
the following is valid14:

lim
n→∞ fn(ω) = f (ω) ∀ω ∈ � . (7.13)

13The noun is “pointwise convergence,” and the verb is “to converge pointwise.”
14The definition is easy to interpret: it is required here that for each value ω the sequence fn(ω)

converges against the number f (ω). So you concentrate on each value f (ω) and ignore the values
f (ω ± δ) “next to it” when considering convergence.
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t0
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fn (t )

Fig. 7.8 An example with regard to the pointwise convergence

With this definition of convergence integration and limit can be swapped only
under certain conditions.15

We will now present an example which demonstrates that the interchangeability
of integration and limit is lost if one uses pointwise convergence.The expected value
of the limit does not equal the limit of expectations.

Let us consider the state space � = R and a function fn which is zero on the
real line except in the neighborhood of n ∈ R. The area below the function should
be exactly one. Figure 7.8 illustrates such a function that show a rectangle at index
n. With increasing index the rectangle is moving to infinity.16

We look at this sequence of functions and apply the definition of pointwise
convergence. Doing so we will show that the limit of this sequence is zero with
the rectangle neither changing its form nor disappearing entirely. This might be
surprising.

• The functions fn converge pointwise to zero: consider a fixed value t . For t the
following applies

lim
n→∞ fn(t) = 0 , (7.14)

15Sufficient conditions are formulated in the theorem of monotone convergence. The theorem is
due to Beppo Levi and can be found in any textbook on measure theory, for example, Rudin (1976),
theorem 11.28.
16For example, consider f3(t) and f1(t). At t = 1 we have f3(t) = 0 and f1(t) = 1 and thus
f3(t) �≥ f1(t).
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because any index n will eventually be greater than t . This is why the following
must hold:

lim
n→∞ fn(t) = 0 
⇒

∫ ∞

−∞
lim

n→∞ fn(t) dt = 0. (7.15)

• On the other hand, the area under each function is 1 and therefore

∫ ∞

−∞
fn(t) dt =

∫ n

−n

fn(t) dt = n + 1

2
−

(
n − 1

2

)
= 1, (7.16)

and therefore

lim
n→∞

∫ ∞

−∞
fn(t) dt = lim

n→∞ 1 = 1. (7.17)

Equations (7.15) and (7.17) show that one must not interchange integration and limit
in the sequence of functions considered here. This conclusion can be expressed as

lim
n

∫
�=

∫
lim
n

. (7.18)

For the reasons described above such a result is useless. We must therefore note
that pointwise convergence is not an appropriate concept. Rather, it is advisable
to find another concept of convergence which permits the interchangeability of
integration and limit.

Mean Square Convergence This concept of convergence17 is used to ensure that
expectation (i.e., expected value and variance) and limit can be interchanged. To
this end we assume a measure space (� ,F , μ). It is presupposed that there is a
sequence of measurable functions fn.

Mean square convergence measures the difference of a function (out of the
sequence) and its limit. Mean square convergence is defined that the sequence
converges if both the expectation and variance of this difference go to zero. The
formal definition reads as follows.

Definition 7.2 (Mean Square Convergence) A sequence of measurable functions
fn converges in mean square to a function f

lim
n→∞ fn = f , (7.19)

17In the literature mean square convergence is also labeled as L2-convergence.
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if and only if

lim
n→∞

∫
�

|fn(ω) − f (ω)|2 dμ(ω) = 0 (7.20)

applies.

We will show that the mean square convergence ensures that integration and limit
can be interchanged. For this we concentrate again on a probability measure, i.e.,
we consider random variables. We use the definition of mean square convergence
and rely on the identity (5.36). Assume limn→∞ fn = f . Thus we get from (7.20)

0 = lim
n→∞

∫
�

|fn(ω) − f (ω)|2 dμ(ω)

= lim
n→∞

(
Var [fn − f ] + E2[fn − f ]

)
= lim

n→∞Var [fn − f ] + lim
n→∞E2[fn − f ] . (7.21)

Since neither of the two summands can be negative, both limn→∞ Var[fn −
f ] = 0 and limn→∞ E2[fn − f ] = 0 apply. If the squared expectation is
zero, limn→∞ E[fn − f ] = 0 must hold. The expectation is linear, and therefore
limn→∞ E[fn] = E[f ] is true. Thus limn→∞ E[fn] = E[limn→∞ fn]. That was
what we had to show.

7.4 Conditional Expectations Are RandomVariables

Finally, we want to draw the reader’s attention to an aspect of conditional expec-
tations that was originated by Kolmogoroff.18 So far we have realized that a
conditional expectation is a real number that refers to an event A (the condition).19

The expectation depends on this event A. If we choose a different event, a different
expectation will usually result. Therefore, Kolmogoroff has proposed that the
conditional expectation should be interpreted as a random variable.20

To understand this idea we need to remember how we had defined random
variables. We wanted to perceive them as functions of elementary events. On page
83 we have shown that a random variable X can be characterized as a function

X : � → R (7.22)

18Andrei Nikolayevich Kolmogoroff (1903–1987), Russian mathematician.
19See page 80 ff.
20See Kolmogoroff (1933), page 41 ff.
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Table 7.1 States, cash flows
CF3, and conditional
expectations of the cash flows
in the binomial model of
Example 5.6

ω ∈ � CF3 ∈ R E[CF3|F2]
uuu 140 }

=135
uud 130

udu 130 }
=127.5

udd 125

duu 130 }
=127.5

dud 125

ddu 125 }
=82.5

ddd 40

with its conditional expectation

E[X|F ] : � → R (7.23)

also being interpreted as a random variable. The following two examples will help
to better understand this concept.

Example 7.3 (Binomial Model) With Table 7.1 we refer to Example 5.6 from page
83. While the first column of this table shows the states, the second column
represents the cash flows CF3. The conditional expectation (at time t = 2) is given
in the third column.

The σ -algebra F2 corresponds to the set of information that the decision-
maker assumes today he will have available at the time t = 2. On the basis of
this information the decision-maker forms his expectations. In Table 7.1 we have
grouped by parentheses those states that cannot be discriminated at time t = 2. Let
us call the combination of two such states a “box.” At time t = 2 he only knows
which box he will be in but he cannot discriminate the states within the box.

Example 7.3 demonstrates the following: if a specific elementary event ω is
given, the event {ω} and other elementary events are combined into a set A (the
above-mentioned “box”). The set A contains only those elementary events that the
decision-maker cannot discriminate from ω on the base of his information set given.
In this example he was able to observe the uu node at t = 2 but did not (yet) know
whether the state uuu or uud will occur at t = 3. The conditional expected value
E[X|F ] assigns the actual number E[X|A] to the elementary event ω. To determine
the conditional expected values, the payments associated with the elementary events
are weighted with their respective probabilities of occurrence.

Example 7.4 (Share Price) To further deepen our reflections we consider a state
space� = [0, 1]. Each real number ω ∈ [0, 1] represents an elementary event. If we
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Fig. 7.9 Illustration of the
conditional expectation
E[X|F ]

choose the Lebesgue measure21 λ with the corresponding σ -algebra, a probability
space is generated since λ(�) = 1 holds.

Let us consider the random variable

X(ω) = ω2. (7.24)

With the elementary eventω = 1
2 the random variable assumes the valueX(ω) = 1

4 .
We present the path of this random variable in Fig. 7.9 as a dashed curve.

Let us determine the conditional expectation for the following σ -algebra

F =
{

∅,

{[
0,

1

2

)}
,

{[
1

2
, 1

]}
, {[0, 1]}

}
. (7.25)

In this case the decision-maker cannot tell with certainty which specific elementary
event ω ∈ [0, 1] is present; instead he receives only the information whether the
elementary event is greater or less than 1

2 .
22 This is all he knows. What is the

conditional expectation of the random variable X?

21See page 53.
22For mathematical reasons, the second set in the σ -algebra must be a half-open interval. If we
would add the set [0, 1

2 ] to the σ -algebra the intersection

[
0,

1

2

]
∩

[
1

2
, 1

]
=

{
1

2

}
(7.26)

would also be measurable and the decision-maker could determine whether the state ω = 1
2 has

occurred. But that would be more than we wanted to assume.
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Concentrating on the first subinterval we get according to (5.37)23 a conditional
expectation of

E

[
X|ω <

1

2

]
= 1

1
2

∫ 1
2

0
X2 dλ(ω) = 2

[
X3

3

] 1
2

0
(7.27)

and for the second subinterval

E

[
X|ω >

1

2

]
= 1

1
2

∫ 1

1
2

X2 dλ(ω) = 2

[
X3

3

]1
1
2

. (7.28)

Thus, we can present the conditional expectation simply by

E[X|F ] =

⎧⎪⎪⎨
⎪⎪⎩

1
12 , if ω ∈

[
0, 1

2

)
,

7
12 , if ω ∈

[
1
2 , 1

]
.

(7.29)

Figure 7.9 shows the form of the conditional expectation which is a constant
function with a jump at ω = 1

2 .

As before we recognize the idea of conditional expectation. Beginning with an
elementary event ω one must first determine the smallest set A which is part of the
σ -algebra F and also includes ω. The conditional expectation E[X|A] is calculated
using Eq. (5.37) and represents the value of the random variable E[X|F ] at ω.

Finally, let us present the following rules for calculating for conditional expecta-
tions.

Expected value of known quantities If X ∈ F (it is also said that X is F -
measurable), then E[X|F ] = X applies.
In order to illustrate the theorem imagine having to determine the conditional
expectation of an uncertain quantityX(ω). However, the situation is such that the
uncertain state ω can be derived directly from the observed value of the quantity
X. Thus the observed quantity is not really uncertain, a result confirming the first
theorem.
Further, if Z is F -measurable and bounded, then E[Z ·X|F ] = Z ·E[X|F ] holds.

Linearity For any numbers a, b the following is true: E[aX + bY |F ] =
a E[X|F ] + b E[Y |F ] .
Since the conditional expectation represents a generalization of the classic
(unconditional) expectation, the property of linearity remains valid. That is the
substance of this theorem.

23See page 83.
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Monotonicity If X ≥ 0, then E[X|F ] ≥ 0 applies.
Since probabilities are nonnegative the expected value of nonnegative variables
remains nonnegative. This applies to conditional expectations as well.

Limit almost everywhere If Xn is a monotonously growing sequence of random
variables which converges to X almost everywhere and if X has a finite
expectation, limn→∞ E[Xn|F ] = E[X|F ] holds.
We had emphasized in Sect. 7.3 that the interchangeability of limit and expec-
tation is of considerable importance in probability theory. This is one of the
strengths of the concept of conditional expectation. Under certain conditions
limit and expectation can be swapped using almost everywhere-convergence.

Iterated expectation If F ⊂ G, then E[E[X|G]|F ] = E[X|F ].
If iterated conditional expectations are to be calculated the inner expectation
E[X|G] can be omitted.
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