
3Measures and Probabilities

Continuous-time theory makes use of a sophisticated functional analytical appara-
tus. If you really want to understand what a Brownian motion is and how to use it,
you have no choice but to first deal with measurement theory and general integration
theory.

3.1 Basic Problem of Measurement Theory

In everyday life it is often said that something is measured. Therefore, every reader
probably has a certain idea of what a measure is. If you are not a mathematician,
you might even ask yourself why you need a theory for such a “simple object”
as a measure at all. Characteristically, a measure is a number that describes a
property of an object, such as its volume, weight, or length. Probabilities are also
numbers which measure something: probabilities provide information about the
intensity with which someone expects a possible future development. They play
a decisive role in the theory of stochastic processes. And hardly anyone will deny
that probabilities are not quite as easy to comprehend as the distance between two
points on a plane.

We hope that our readers can follow us better when we state that it is necessary to
engage in measurement theory. This theory attempts to discuss in a general way the
properties of numbers which are intended to capture characteristics of the diverse
objects of interest.

Properties ofMeasures An elementary introduction to measurement theory could
simply be imagined in such a way that each subset of the event space is assigned a
number, namely its measure. A measure μ would then be a mapping of each subset
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of � into the real numbers or formally1

μ : P(�) → R. (3.1)

If we think of the dice again, a number has to be assigned to each of the
64 subsets. If we think of a probability measure, we would assign the relative
frequency 1

6 to each elementary event of an ideal dice. A subset with n elements2

has probability n
6 . Unfortunately, the conditions are much more complicated when

dealing with event spaces that contain an infinite number of elements. Under these
circumstances, the number of conceivable share prices within an arbitrarily large
closed interval is infinite. This forces us to pursue a different approach.

It is obvious to demand that a measure has reasonable properties. You have to
be careful. It can easily happen that with the formulation of desirable properties
one gets entangled in logical contradictions without even realizing. In the following
we will show that this is indeed the case. We will subsequently reflect on the
conclusions to be drawn.

To understand how readily one can get caught in contradictions, let us look at
a specific example: we concentrate on the event space � = R which includes
the real numbers, and try to construct a probability measure μ on �. We will
present a number of properties that should be thought of being useful or at least
unproblematic.

Existence: The first property that we want to propose seems perfectly natural. We
require that a measure μ(A) can be assigned to each set A ⊂ �. Some readers
may wonder why such a trivial feature has to be mentioned at all. At the end of
this section we will see that exactly this property will turn out to be problematic.

Nonnegativity: In the introductory remarks we had suggested that a measure
could be understood as something like a volume, a length, or a probability.
Against this background it seems obvious to postulate that a measure is non-
negative,3

∀A ⊂ � μ(A) ≥ 0. (3.2)

This is immediately plausible for probabilities. If one limits oneself to classical
physics, masses and lengths will also be nonnegative. The area of the plane also
has no negative contents.4

1We have described the set of all subsets of � as power set P(�) with the details being discussed
on the pages 20 ff.
2This is an event with n different results from rolling a dice only once.
3The symbol ∀A means “for all A applies. . . ”
4However, it is conceivable that in more advanced considerations these parameters could also
become negative. In this case, the measurement theory must be expanded. One speaks then of
the so-called signed measures, a topic we will not pursue further.
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Additivity: Furthermore, we require that in the case of two disjoint subsets which
are combined, the corresponding measures must be added,

∀A,B ⊂ � A ∩ B = ∅ ⇒ μ(A) + μ(B) = μ(A ∪ B). (3.3)

The measure must be additive. This requirement will come as no surprise to
anyone who thinks in terms of area, space, or volume. It should also apply when
you are dealing with probabilities. In this case the prerequisite of Eq. (3.3) means
that the events A and B are mutually exclusive.

Before we turn to further properties of measures, we will deal with a statement
about measures that can be derived directly from (3.3).

From this condition it applies, for example, that a subset cannot have a larger
measure than its supersets. If A ⊂ B applies, it follows that

∀A ⊂ B ⊂ � B = B\A ∪ A ⇒ μ(B) = μ(B\A) + μ(A) ≥ μ(A). (3.4)

A First Exercise (Additivity) In order to gain experience with measures we want
to prove two characteristics. We will not need the following theorem for our
further considerations. However, the proof of the theorem is suitable for a better
understanding of the interplay of the various properties of measures.5 We propose
the following:

Proposition 3.1 If A and B are arbitrary two subsets of �, the following two
properties are equivalent:

1. The measure is additive, see Eq. (3.3).
2. For the measure applies

μ(A) + μ(B) = μ(A ∩ B) + μ(A ∪ B) (3.5)

(for arbitrary sets!) and μ(∅) = 0.

The merit of Eq. (3.5) can be realized by considering Fig. 3.1. This figure shows
three separate areas. You see the set A\(A ∩ B) on the left, (A ∩ B) in the middle,
and B\(A ∩ B) on the right. Note that the intersection (A ∩ B) belongs to both A

and B.
Let us look at Eq. (3.5). With the sum μ(A) + μ(B) we capture the measure of

A, i.e., the left as well as the middle set,

A = A\(A ∩ B) ∪ (A ∩ B) (3.6)

5If you want to skip this exercise, continue reading on page 32.
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A A B B

Fig. 3.1 Intuition of property (3.5) of a measure

and the measure of B, i.e., the middle and the right set,

B = B\(A ∩ B) ∪ (A ∩ B). (3.7)

Obviously, the middle set (A ∩ B) here is “counted” twice.
Let us concentrate on the right side in Eq. (3.5). Counting is different here. In the

sum μ(A∩B)+μ(A∪B) we capture the measure of A∪B and thus the measure of
the left, middle, and right set. Subsequently, the measure of A ∩B, i.e., the measure
of the middle set, is added. But this is exactly the same area we calculated before.
We come to the formal proof.

Proof Part 2⇒ 1 is trivial, see Eq. (3.3). The opposite is a little more complicated.
Since (3.3) must apply to any set A,B we use A = B = ∅, get μ(∅) = 0 and thus a
part of the result. We prove the second part by referring to the exercise of the chapter
on set theory.6 Accordingly it follows from (2.10) that for any sets A and B (even if
they are not disjoint)

A ∪ B = (A\B) ∪ B (3.8)

must be fulfilled. If we apply Eq. (3.3) we get

μ(A ∪ B) = μ(A\B) + μ(B). (3.9)

We also realize that for any set A and B

A = (A\B) ∪ (A ∩ B) (3.10)

and again the two sets on the right side of this equation are disjoint. Hence

μ(A) = μ(A\B) + μ(A ∩ B) (3.11)

also applies. From Eqs. (3.9) and (3.11) follows the claim, if μ(A\B) is
eliminated. �

6See page 18.
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σ -Additivity So far, we have restricted ourselves to the union of two, three, and in a
few cases to four sets and formed their intersections and determined the associated
measures. However, the number of sets involved has always been finite. It should
have become clear how to proceed if the number of sets continues to increase, but
still remains finite. Sometimes, however, it is necessary to deal with the union of
an infinite series of sets and to determine their measure. It is by no means obvious
how to proceed under these circumstances. A relevant property of measures in this
context is called σ -additivity. That is what we are going to discuss now.

Consider an infinite sequence of sets A1, A2, . . . This is supposed to be a
sequence of subsets, i.e.,

A1 ⊂ A2 ⊂ A3 ⊂ . . . . (3.12)

Obviously, the sets grow with an increasing index. We form the infinite union or the
set containing all elements of the An and call it

⋃∞
n=1 An. Figure 2.4 on page 19

illustrates this situation.
Each of these sets An has the measure μ(An). What can one meaningfully

say about the measure of
∞⋃

n=1
An? To answer this question, we consider any finite

number n < m and break the union at m,
m⋃

n=1
An. This set differs from

∞⋃
n=1

An by

those elements which are only contained in the “later” sets Am+1, Am+2, . . .. With
increasing m this “residual set” gets smaller and smaller. All we are asking is that
the measure of this residual set disappears entirely when m → ∞.

Thus, we require that the measures μ(An) converge to the measure of the set of

infinite union μ

( ∞⋃
n=1

An

)

,

A1 ⊂ A2 ⊂ A3 ⊂ . . . ⇒ lim
n→∞ μ(An) = μ

( ∞⋃

n=1

An

)

. (3.13)

And that is exactly what the σ -additivity is supposed to mean.

Return to our interval example from page 20. We know that sets
[
1
n
, 1 − 1

n

]

“cling” as close as possible to the open interval (0, 1) when n → ∞. Between
these closed intervals and the limit (0, 1) there is “nothing.” There is no number in
(0, 1) that cannot be found in any one of the An. Now look at the measures μ(An).
If the limit of these sets would not go to μ

(
(0, 1)

)
, then quite obviously a part of

the measure either “disappeared” or “arose from nowhere.” Property (3.13) prevents
exactly that. Our measure is σ -additive.
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· · ·A1 A2 A3

A

Fig. 3.2 Pairwise disjoint sets as in Proposition 3.2

You can easily come up with a “measure” which violates the condition (3.13). To
this end, we define the following measure μ on the set of real numbers,7

μ(A) =
{
1 A = R,

0 else.
(3.14)

With this measure, the full probability is assigned only to the set of all real numbers
with other sets being impossible. Now look at the setsAn = (−∞, n], which contain
all real numbers up to n. These sets form an ascending sequence. The following
applies

lim
n→∞ μ(An) = 0 �= 1 = μ

( ∞⋃

n=1

An

)

. (3.15)

σ -additivity does not hold.

Another Exercise (σ -Additivity) Let us concentrate on σ -additivity a bit further.8

We just looked at a series of sets, each being a subset of its predecessor. Now we
turn our attention to the case of an infinite number of sets that are pairwise disjoint.9

Then the following applies:

Proposition 3.2 Let An be a sequence of pairwise disjoint sets. Furthermore, the
measure is additive and σ -additive. Then the following applies:

μ

( ∞⋃

n=1

An

)

=
∞∑

n=1

μ(An). (3.16)

The prerequisite of Proposition 3.2 states that the sets of a sequence never
overlap. To obtain a descriptive idea of what is asserted here look at Fig. 3.2. The

7This is even a probability measure.
8Anyone wanting to skip the exercise may continue reading from page 35 following the material
after the keyword “probability measure of the event space.”
9“Pairwise disjoint” means that every two sets (every pair, so to say) are disjoint, i.e., do not have
a common element.
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Proposition 3.2 states that the measure of the total set
⋃∞

n=1 An is as large as the
(infinite) sum of the individual measures μ(An).

Proof The proof’s challenge is that the σ -additivity deals with ascending sets, while
the sets under consideration are pairwise disjoint. We show how to cope with the
pairwise disjoint sets in such a way that you end up with increasing sets. You can
easily find such an ascending sequence by combining the first m sets Am into a new
set.

We start with a finite number of sets and define

Bn :=
n⋃

m=1

Am. (3.17)

SinceB1 ⊂ B2 ⊂ . . . , the setsBn represent an ascending sequence. Thus, according
to (3.13)

μ

( ∞⋃

n=1

Bn

)

= lim
n→∞ μ(Bn). (3.18)

Remember that the union of all Bn is the same as the union of all An, and therefore
we have10

μ

( ∞⋃

n=1

An

)

= lim
n→∞ μ(Bn). (3.19)

Looking at (3.3) on page 31, the right side of the last equation can be written as

μ

( ∞⋃

n=1

An

)

= lim
n→∞

n∑

m=1

μ(Am). (3.20)

That was to be shown. �

Probability measure of the event space: In the context of probabilities it is
reasonable to assume that the decision-maker has a complete picture of all
conceivable events. Therefore, probability of any event occurring is obviously
one. In formal notation

μ(�) = 1. (3.21)

10One reason for this is that A ∪ A = A always applies.
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Shift invariance: One or two more propertieswill be added to those noted before.
We request that the measurement of a set remains unchanged if it is shifted by
one unit.
It is rather difficult to get a clear idea of this property when you think of
a probability measure. With area measures, however, the demand for shift
invariance is immediately obvious. A circle with a certain diameter finally has
the same are everywhere on the plane; and a cylinder with a certain diameter and
height has the same volume everywhere no matter where it is located it in space.
By analogy, we require that the measure of an interval [0, 1) equals the measure
of the shifted interval [x, x + 1) no matter how large x is. We note

∀A ⊂ �, x ∈ R μ(A) = μ(A + x). (3.22)

The reader will probably understand that area measures should be shift-invariant.
But why this should also apply to probability measures is not obvious. We will
address this point later.

Contradiction Following from Our Properties After having presented the six
properties of probability measures we get to the core of the matter. We intend to
show the reader that a measure with the six characteristics described leads to a
serious problem.

To this end consider the half-open interval A = [0, 1), which must have a
measure using the first property. This measure may be denoted by x := μ([0, 1)).
Now we use the properties (3.2), (3.3), (3.13), and (3.22) to determine the measure
of the entire real axis. We break down the real axis R = � into infinite many half-
open intervals

� =
∞⋃

n=−∞
[n, n + 1). (3.23)

Note that these intervals are pairwise disjoint. Then it follows that

μ(�) = μ(R) = μ

(
⋃

n∈Z
[n, n + 1)

)

due to (3.21) and definition

=
∑

n∈Z
μ([n, n + 1)) see (3.16)

=
∑

n∈Z
μ([0, 1)) due to shift invariance (3.22)

=
∑

n∈Z
x due to definition of measure

=
{
0, if x = 0,

∞, else.
(3.24)
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The following observation is decisive: regardless of the specific value x, the
probability of the entire event space cannot be one: either the probability is infinite
or zero. Hence, (3.24) shows the contradiction with property (3.21).

Conclusion (Measurable Sets) What conclusion must be drawn from this state-
ment? Obviously, at least one of the properties mentioned abovemust be eliminated.
Which of the six properties is a suitable candidate?

Let us start with shift invariance, because we have noted that there exist no
obvious intuition for this property. Although removing shift invariance seems to
be a good idea, it is not sufficient. It can be shown that a contradiction can be
constructed even if one limits oneself to the properties of nonnegativity, additivity,
and σ -additivity. The proof of the contradiction is then, however, no longer as simple
as above and requires a set of advanced mathematical instruments.11

Thus, we have no choice other than to realize that the idea of assigning a measure
to any subset cannot be maintained. The very first property of a measure that we
developed on page 30 must be dropped. While in the finite dimensional case every
elementary event will indeed have a probability, in the infinite dimensional case
we must proceed with more caution. Our measurement function μ may not assign
a number to any subset. Instead we must start by determining those subsets that
should be measurable at all.

To this end the notion of a σ -algebra is introduced. There are two ways to
approach this concept. One alternative is to restrict ourselves only to the properties
which have to be met by measurable sets. These properties are quickly explained,
so that we can understand the formal definition of a σ -algebra directly.12 Another
alternative is to provide a content-related interpretation of measurable sets which is
often used when economists work with a σ -algebra.13

3.2 σ -Algebras and Their Formal Definition

Mathematical Basics Remember that it is not permissible to treat any subset as
being measurable. Therefore, it is necessary to determine what can be measured
and what cannot be measured. In most cases this choice is arbitrary.

If we want to use ideas of a measure developed on pages 30, we have to place
certain minimum requirements on measurable sets. Otherwise the concept of a

11This is the proposition of Banach and Tarski from 1924. It should be noted that both scholars
could even dispense with the σ -additivity of the measure for their evidence, referring only to the
properties of nonnegativity and additivity. However, the proof of their theorem is only possible in at
least three-dimensional space and using an axiom that is otherwise not necessary in measurement
theory (axiom of choice). Under attenuated conditions, similar paradoxes can also be constructed
in the plane and on the straight line.
12We will do that in the next section.
13See page 40 ff.
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measurable set will lose its meaning. These minimum requirements result from
mathematical considerations.

Formally, a σ -algebra contains all measurable sets. At a minimum, any σ -algebra
must have the following properties:

1. It is only natural that each measure assigns the number zero to the empty set. But
this presupposes that the empty set is measurable. Therefore, any σ -algebra must
contain the empty set.

2. Correspondingly, any measure will naturally assign the number 1 to the entire
state space. Again, this presupposes that the set � is measurable and must be
contained in every σ -algebra.

3. We had made it clear that no measure is lost when uniting disjoint sets A, B

μ(A) + μ(B) = μ(A ∪ B), (3.25)

see page 31. If the disjoint sets A and B are measurable, then consequently their
intersection and union must also belong to the σ -algebra.

4. Consider a set A ⊂ �. This set A and its complement �\A are disjoint. The
measure of the state space is

μ(�) = μ(A ∪ �\A) = μ(A) + μ(�\A). (3.26)

Equation (3.26) implies that the complement should be included in the σ -algebra.
5. We had several examples above in which infinite unions and intersections were

involved. We claim that for sets An also the infinite union
⋃∞

n=1 An and the
infinite intersection

⋂∞
n=1 An are measurable.

The five properties listed are based on simple mathematical considerations. Before
we interpret these properties economically we want to state the formal definition of
a σ -algebra using the following two-step procedure.

A Two-Step Procedure

• The first step is to specify some sets that should be measurable.
• The second step describes the operations that can be performed with measurable

sets without destroying the property of measurability. These operations include
complement, union, and intersection.

Admittedly, this procedure is a bit cumbersome, because we have to check
whether or not we are still dealing with a measurable set. However, it has the great
advantage that one will not get entangled in logical contradictions. There is no other
alternative.
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Definition 3.1 (σ -Algebra) By a σ -algebra F we define a set of sets with the
following properties14:

1. The empty set is a part of the algebra, ∅ ∈ F .
2. With any set B its complement Bc = �\B is included, �\B ∈ F .
3. Along with B1, B2, . . . the union

⋃
n Bn is included.

It is also said: sets are F -measurable if they are part of a σ -algebra. In this context,
we will also refer to the properties mentioned here as construction rules or simply
rules.

The following note may be helpful. Our definition applies to any starting sets
(subsets) of �. Those sets must be determined. Otherwise the properties 2 and 3
would be meaningless. The definition will usually not result in a unique σ -algebra.
Often, different σ -algebras will exist for a given set �.

The readermay wonder why our definition contains statements about the union of
sets, but not about their intersection. Are intersections not supposed to be included in
the σ -algebra? The answer may come as a surprise. Intersections of sets are actually
elements of the σ -algebra. However, we do not need to include this statement
explicitly in Definition 3.1 because it follows from our definition—this result will
be derived in the next paragraph. Definitions should always be as parsimonious as
possible.

Measurability of Intersections To verify the statement that intersections of sets
must be F -measurable when following Definition 3.1, we focus on the third
construction rule. This rule states that the union of any number of subsets

⋃
n Bn

belongs to the σ -algebra. Based on the second rule the complement
⋃

n(�\Bn)

must be F -measurable. However, the following always applies to any set:

⋃

n

(�\Bn) = �\
⋂

n

Bn , (3.27)

which is illustrated by Fig. 3.3. Hence by using rule 2, �\ ∩n Bn must also belong
to the σ -algebra. It follows that not only the union but also the intersection ∩nBn of
subsets are measurable.

Measurability of the Event Space You can observe that the event space � is F -
measurable. The second construction rule states that B ∪ Bc = �, and according to
the third rule, subset unions are measurable.

There is a vivid interpretation of what measurability means. We will discuss this
in the next section.

14σ -algebras are often referred to as F . The symbol stands for the word “filtration.” We will
consider filtrations in more detail in Sect. 5.5.



40 3 Measures and Probabilities

A B A B

Fig. 3.3 To illustrate the identity of �\(A ∩ B) (left) and the union of �\A and �\B (both sets
are colored blue in the images)

3.3 Examples of Measurable Sets and Their Interpretation

We will use three examples to illustrate our considerations.

Example 3.1 (Coin Toss) A σ -algebra for flipping a coin has a simple shape. First
of all, we know that the σ -algebra must contain both the empty set and the total set.
Thus the two sets ∅ and � = {u, d} always belong to any σ -algebra,

∅ ∈ F , � ∈ F .

In the case of tossing a coin the σ -algebra is either F = {∅,�} (and thus represents
the smallest conceivable algebra) or it consists of all subsets of the event space
F = P(�).15 In the first case one speaks of a “trivial” σ -algebra. If you realize that
the coin toss is the simplest uncertain situation you can imagine,16 you might not be
surprised by this result.

The example allows a very straightforward and easy-to-understand interpretation.
For this purpose we want to equate measurable events with events whose occurrence
a decision-maker can “observe.” The trivial σ -algebra would then be synonymous
with the (almost worthless) information “a coin was tossed” without being told the
result of the toss.

In the second example, however, individual events {u} and {d} were also
measurable. This can be understood to mean that it should be verifiable whether
the coin toss resulted in heads or tails.

Example 3.2 (Dice Roll) Basically there are six possible elementary events, i.e.,
the sets {1} to {6}. But let us consider the case that a person watching the dice roll
is only told whether an even or an odd score was obtained. Nothing else shall be
revealed. Since it is possible to check whether the dice was rolled at all, the total
set � = {1, 2, 3, 4, 5, 6} and the empty set ∅ are undoubtedly among the observable
events. If, moreover, it is stated whether the number of points obtained was even
or odd, the sets {1, 3, 5} and {2, 4, 6} are also observable. This makes it possible to

15The P symbol denotes the power set, i.e., the set of all subsets. See page 20.
16After all, uncertainty can only be spoken of if there are at least two different events.
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define the σ -algebra in the form

F1 =
{
∅, {1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}

}
.

It can easily be seen that this set indeed meets all the requirements for a σ -algebra.
Now we extend the example and assume that the exact score will be announced.

Then for the σ -algebra the following applies:

F2 = P({1, . . . , 6}),

where the σ -algebra is denoted by F2. Apparently, the σ -algebra consists of all
subsets of the set {1, . . . , 6}.

Example 3.3 (Double Dice Roll) Consider the case where a dice is rolled twice in
a row and the order of the scores is important. Then an elementary event can be
described by a pair such as (1, 6). It should be possible to measure the event in
which it is only known that the score of the second roll is exactly one point higher
than the score of the first roll. Which exact scores (on the first and second roll) were
achieved, however, remains hidden. Obviously, the set

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

can then be measured. The complement of this set (which contains 36 − 5 = 31
elements) is also measurable. The same applies to the empty set and �. Other sets
are not measurable.

Let us summarize our considerations. Measurable sets are mathematically
characterized by the fact that certain operations (union, complement building) are
permissible. The admissibility of these operations leads to a set of measurable sets
which we call σ -algebra. Every element of this algebra is called an event. Events
contain elementary events which cannot be broken down further. An event A (a
measurable set or an element from the σ -algebra) can be described as follows:

Interpretation: an event A can be measured if it is possible to observe whether
or not A has occurred.

We can show that the above interpretation does not only contradict the mathe-
matical definition but rather supports it:

1. Common sense, on which one certainly cannot always rely, tells us that for
any event the negation of this event (“the opposite”) should also be known. If
someone can prove in court that event A has happened, he can also disprove that
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eventA did not happen. Exactly this shows up in the mathematics of a σ -algebra:
if any set A ∈ F is selected, the complement �\A is included in F . The second
rule of construction in the definition of the σ -algebra thus confirms common
sense.

2. If events are logically linked we expect that observability is maintained. If you
can prove whether or not the eventsA and B have taken place you will be able to
tell whether or not the compound events “A and B” or “A or B” have occurred.
This is ensured by the third construction rule in the definition of the σ -algebra.
In our examples, the corresponding operations are transparent because the two
logical links always yield only trivial results such as the sets themselves, the
empty set or �. We note, however, that the union and intersection of two sets are
always part of the algebra.

In economic contexts instead of a σ -algebra one prefers to talk about an
information system. However, not all algebras can be interpreted as (meaningful
or plausible) information systems; but conversely, every information system must
be represented by a σ -algebra.

In summary, we can state the following: if we want to denote by σ -algebra the
set of events known to and verifiable by a person, then each such algebra must meet
several conditions,

There is an event: The total set � is part of the σ -algebra.
Negations are known: With every known event A ∈ F the complement �\A is

also located in the σ -algebra.17

Or/and links are known: With the events A and B being part of the σ -algebra,
then the union A∪B and the intersection A∩B are also elements of the algebra.

If one imbeds also infinite unions into the set of conditions, the formal definition of
a σ -algebra results.18

Some readers may think that there is no need to say more. That would be a
mistake. In real life there exist situations where it is not sufficient that a person is
informed about the existence of an event. In the case of a lawsuit, i.e., this person
must also be able to convince other parties of the occurrence of the event. It must be
possible to provide irrefutable evidence. The event must therefore be verifiable by a
third party.

Finally, we would like to point out that information systems can also be related
to one another. This can be explained by an example. With the dice roll on page 41
we had stated that at first one could only observe whether the roll resulted in an
even or odd score. However, in the second σ -algebra it was also possible to verify
the precise score. If the σ -algebra can be understood as an information system, it
should be clear that the second system is more informative than the first one. After

17If it is known that an even number was rolled, i.e., {2, 4, 6} ∈ F , it is also known that an odd
number was not rolled, i.e., {1, 3, 5} = �\{2, 4, 6} ∈ F .
18See page 39.
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all, one learns something about the precise score and not only whether the score can
be divided by two without any remainder. This relation of the two sets of information
can be represented mathematically simply by

F1 ⊂ F2. (3.28)

Each event observable in the information system F1 can also be observed in the
information system F2. It is also said that F2 is “finer” than F1. The opposite, of
course, does not apply. In this way, σ -algebras naturally reflect characteristics of
information systems that otherwise can only be described with significant formal
efforts.

3.4 Further Examples: Infinite Number of States and Times

Key Date Principle Finance theorists often analyze models in which the present
(t = 0) and the future (t > 0) are considered. If situations with several future
times (t = 1, 2, . . . , T ) are examined, there are two possible approaches. You can
either work with discrete-time or continuous-time models.19 Regardless of which
approach is used a basic principle common to both must be pointed out:

All considerations made in the context of multi-period models take place in
the present (t = 0).

While being in t = 0 we think about what we now know about the future
(t = 1, 2, . . .). However, as we move in time our knowledge about the future may
improve, but this aspect is of absolutely no relevance now (i.e., in t = 0).

Several Points in Time In this section we will deal with more complex σ -algebras.
They comprise either several times or an infinite number of elementary events.

Example 3.4 (Binomial Model) We refer again to the example of the binomial
model (see Fig. 3.4 on page 24). The model consists of exactly three points in
time. The individual paths are described by sequences of u and d . There are a total
of eight paths, each representing an elementary event. As can be seen at t = 3 only
four different results are possible: the “state” uud at t = 3 can result from three
entirely different paths: uud , udu, and duu.

19For the difference between both approaches we refer the reader to pages 23 ff.
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Fig. 3.4 Binomial model
with T = 3
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We now turn our attention to a σ -algebra, which may consist of the measurable
sets described below,

F2 =
{
{uuu, uud}, {udu, udd}, {duu, dud}, {ddu, ddd}, . . .

}
. (3.29)

The . . . sign indicates all those sets that can be constructed by forming unions and
intersections from the four measurable sets {uuu, uud}, {udu, udd}, {duu, dud},
and {ddu, ddd}. This means, for example, that the set {uuuu, uud, uud, udd} and
�\{uuuu, uud} are also contained in the σ -algebra. Subsets of the above four events
are not included in the σ -algebra. Therefore the event {uuu} is not measurable. The
same applies to {uud} and {udu}.

It is also said that the σ -algebra considered here is “generated” by the four
elements {uuu, uud}, {udu, udd}, {duu, dud}, and {ddu, ddd} mentioned above.

This σ -algebra can also be thought of as an information system. The only thing
required is to understand what makes this algebra a measurable set. Let us look, for
example, at the two measurable sets

{uuu, uud} and {udu, udd}.
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What do these two sets have in common and what makes them different? They each
consist of two elementary events, and we can assign a probability to each of the two
sets. However, the following considerations are crucial:

1. Individual elementary events such as {uud}20 are not observable. The smallest
events that can be observed contain at least two elementary events.

2. If an elementary event is observable, then the same set of events also contains the
elementary event which has the same two initial movements. If the measurable
set contains uud , it also contains uuu. And if udu is an element of a measurable
set, then this must also apply to udd .

We had mentioned that σ -algebras can be interpreted as information systems.
Such an information system is constructed in a way that a decision-maker can
distinguish precisely which upward or downward movements will have occurred
up to t = 2. For example, at event {uuu, uud} the decision-maker is certain that two
consecutive u-movements must have occurred, uncertainty however prevails with
regard to the third movement. Similarly, at event {udu, udd}, the decision-maker is
certain that up to t = 2 there has been one upward and one downwardmovement, but
he does not know what the third movement will be. So we can present information
about what the first two movements were, but not which movement will follow
next. Thus, the σ -algebra contains the information we currently (t = 0) assume to
have at t = 2, but not at time t = 3. The events which only differ in t = 3 are
always combined in each measurable set. To summarize: this σ -algebra describes
the information that a decision-maker today thinks he will have at t = 2.

We will present a further example to reinforce this idea.

Example 3.5 (Binomial Model) Let us continue with the previous example. How
should a σ -algebra be constructed in order to describe the information a decision-
maker will likely have in t = 1? Let us look at event

udu

and assume that it is part of a measurable set. At t = 1 the decision-maker will only
know whether the first movement was up (u) or down (d). If the first movement was
u, in t = 1 the decision-maker cannot yet distinguish whether this event or one of
the three other events (udd , uuu, or uud) have occurred. Any measurable set that
contains udu must also contain the three other events.

20Note that this is an event other than udu, although both paths lead to the same result at t = 3 as
part of a recombining model. See the explanations on page 25.
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Similarly, a set with event duu must also contain the three events dud , ddu, and
ddd , because these four events are not yet distinguishable in t = 1. The generating
sets of such a σ -algebra are therefore

F1 =
{
{uuu, uud, udu, udd}, {duu, dud, ddu, ddd}, . . .

}
. (3.30)

The sign . . . is to be understood as above. However, in this simple case only two
sets are added, namely the empty set ∅ and the total set �.

In comparing the last two examples a further reference can be made to the
interpretation of a σ -algebra as an information system.While Example 3.5 describes
the information available to a decision-maker at t = 1, Example 3.4 specifies the
information that he currently believes to have at t = 2. Obviously, the information
becomes more comprehensive as time goes by. The second σ -algebra at t = 2 is
greater than the algebra at t = 1. Thus

F1 ⊂ F2. (3.31)

It is also said that both σ -algebras form a filtration. If one examines a binomial
model with several points in time, a σ -algebra can be formulated for each t , which
describes the information available at t ≥ 1 from today’s perspective. It can be
stated that these algebras get “finer and finer,”

F1 ⊂ F2 ⊂ F3 . . . (3.32)

Economically, this corresponds to the idea that a decision-maker gains more and
more knowledge over time and that no information is lost with passing time.

An Infinite Number of Share Prices Consider the price of a stock at a future point
in time and assume that the event space includes not only the options u and d , but the
set of (nonnegative) real numbers,� = R+. It is not easy to determine which events
should be regarded as measurable. We will deal with this question in the following
example.

Example 3.6 (Share Price) For convenience we consider an event space containing
all real numbers (and not only the nonnegative ones), i.e., � = R.

Proceeding in the same way as with natural numbers and assigning a positive
probability to every conceivable value leads to a serious problem. Let’s assume that
the German DAX is measured in real numbers and all values between 8000 and
15,000 are possible. Let us further assume that we would like to model the DAX
as a rectangular distribution. If every real number between 8000 and 15,000 had
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the same positive probability, the sum of these probabilities would inevitably go to
infinity and not to one. Even probabilities of zero do not avoid the problem, because
these probabilities sum to zero and not to one. These conclusions remain valid even
when other distributions are being used.

For this reason we better not start with the requirement that the sets N and Q

are measurable. But how should we proceed? If single numerical values must be
unlikely, a sensible way to proceed is with intervals of numbers. As a first step
we specify all closed intervals [a, b] for any real numbers a ≤ b as measurable.
Subsequently we examine which other sets are measurable if we apply the design
rules from page 39 and proceed as follows:

1. By letting a = b one knows immediately that the point sets {a}, which contain
only the real number a, can be measured.

2. If the set {a} is measurable, according to rule 2 its complement can also be
measured. Thus, the sets R\{a} and R\{b} must be measurable.

3. Consequently the open intervals (a, b) can also be measured. This follows from
the fact that the intersection ofR\{a} andR\{b}with [a, b] is the same as (a, b);
and we had proven on page 39 that the intersection of any subsets is measurable.

4. Since point sets are measurable, the set of all rational numbers, in shortQ, must
also be measurable, because it is a union of all point sets.

All sets that can be generated with the construction mechanism used here are
called Borel-measurable sets.21 One particular characteristic of these sets is the
fact that the open intervals can be measured.22 Based on rule 3 all sets are Borel-
measurable which can be composed of a finite number of open intervals. A union of
open intervals is also called an open set. An open set is characterized by the fact that
not only point sets x but also all—however small—open intervals around x are part
of the set. Open sets can be thought of sets without “borders” (such as the closed
interval [0, 1]).

To make matters more complex we will consider not only an infinite number of
values of a share price but also its continuous development. Handling both elements
is what the Brownian motion is all about. Let us now describe the underlying σ -
algebra.

21Félix Édouard Justin Émile Borel (1871–1956, French mathematician).
22It may be hard to imagine that there exist sets that are not Borel-measurable, nevertheless they
can be constructed. However, the design specifications for such sets are highly complicated.
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Fig. 3.5 Three elementary events in the event space C[0,∞)

Example 3.7 (Share Price Evolution) With this example we will now approach
the Brownian motion. Wiener23 was the first to describe what a measurable set in
C[0,∞) could look like.24

Since the set C[0,∞) has an infinite number of functions, characterizing the
measurable sets is anything but a trivial task. One cannot expect the σ -algebra to
consist only of a finite number of functions.

Constructive action has to be used again. In a first step, one describes specific
measurable sets and in a second step one allows these initial sets to form their union
or intersection. In the following we will concentrate on the first step, a task that is
far from being elementary. The initial sets which are defined as measurable consist
of the following continuous functions:

First step (one point in time) We concentrate on one single point in time t > 0
and two real numbers a < b. The measurable set defined in the first step includes
all those functions with a value being exactly in the interval [a, b] at time t . This
is illustrated in Fig. 3.5.25

At time t one can see a red vertical line running from a to b on the ordinate.
You can recognize that two of the paths intersect this vertical line. The sinusoidal
path, however, runs in such a way that it neither intersects nor touches the red
line. Now one has to consider the set of all continuous functions that go through
the red line, i.e.,

Z = {f : function f is continuous on [0, T ] and f (t) ∈ [a, b]} . (3.33)

23Norbert Wiener (1894–1964, American mathematician). It is often said that Wiener was the first
to define what is now known as the Wiener measure. This is not entirely precise, because Wiener
published his work in 1923, but the measurement theory was put on an axiomatic basis only in 1933
by Kolmogoroff. However, Wiener described in his paper how to calculate measures of different
sets of paths and is therefore with good reason called the founder of the stochastic theory of the
Brownian motion.
24If you do not remember which event space we have designated with C[0,∞) see page 26.
25The same three functions were shown in Fig. 2.6 on page 27.
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Fig. 3.6 Cylinder sets with two fixed points in time

The set Z being characterized by (3.33) is measurable; this property applies
regardless of how the time t and the limits a and b are chosen.26

Second step (two points in time) Now we are not looking at one but at two
points in time with 0 < t < s. In addition to the numbers a and b two more
numbers c < d are given. The measurable set that is defined in the second step
includes the paths running through the interval [a, b] at t . However, there is
another requirement which plays a central role when looking at the second point
in time s. The development of the paths from our (to be defined) measurable set
Z should not be arbitrary between t and s; rather, the difference of the function
values f (s) − f (t) must belong to the interval [c, d].
It is not easy to express this statement precisely: each measurable event should
pass the interval [a, b] at time t , that is f (t) ∈ [a, b]. In addition, the
relation f (s) − f (t) ∈ [c, d] should apply for measurable events. This means
the following: if, for example, the event f (t) = x would happen at t , then
measurable events at time s should pass through the interval f (s) ∈ [x+c, x+d].
The interval from which the function values originate is shifted with each value
f (t) = x.
With Fig. 3.6 we try to illustrate this aspect. It should be understood that the
position of the vertical line at time s depends on where the event passes the
vertical line relevant for time t . In other words, the larger (smaller) x is, the
higher (lower) the interval relevant at time s is located. Hence, we have not
visualized all conceivable developments. Rather, we have limited ourselves to
those developments which belong to a fixed value f (t) = x. In principle Fig. 3.6
should be extended for each x ∈ [a, b].
We must emphasize that the blue-shaded areas in Fig. 3.6 could lead to misin-
terpretations because one could think that measurable events are restricted to
the blue areas at all. Of course, one can imagine continuous functions that go
through both vertical lines and still fall outside the blue areas. Functions with

26Because the red line can be understood as a (very thin) cylinder such a set is often called cylinder
set.
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these properties are also measurable. However, at times t and s they must have
function values that are specified in

f (t) ∈ [a, b] and f (s) − f (t) ∈ [c, d]. (3.34)

Indeed, the blue areas between the times t and s have neither an upper nor a lower
bound. Now we can state that the set constructed in this way

Z = {
f : function f is continuous on [0, T ] and

f (t) ∈ [a, b], f (s) − f (t) ∈ [c, d]} (3.35)

must also be measurable. This property should also apply regardless of how the
times t, s and the four numbers a, b, c, d are selected.

Next steps These constructions have to be repeated for three, four, and any
number of other times. However, the number of these points in time always
remains finite. The resulting sets of continuous functions are measurable.

As stated in Sect. 3.2, using these measurable sets one can form unions,
intersections, and complements.

Let us summarize. The measurable sets are obtained by a two-stage process.
First, specific subsets (initial sets) are determined which should be measurable
by definition. Additional measurable sets are formed with the help of the rules
discussed above.27 The resulting measurable sets may be different from each other
depending on the initial sets which are chosen in the first step.

The symbol F is used to denote the sets that form a σ -algebra. The totality of
basic sets, σ -algebra, and measure μ is called measure space (� ,F , μ).

Usually σ -algebras are constructed as shown in our examples: we start with
specific sets and add further sets by unions, intersections, and complements. It is
stated that the σ -algebra is generated by these specific sets. For example, if the
generating sets can be described by the symbolX, one can write σ(X). In the case of
Borel-measurable sets we could use the notation σ

( [a, b]a, b∈R
︸ ︷︷ ︸

:=X

)
for the σ -algebra.

3.5 Definition of a Measure

After introducing measurable sets we will define what constitutes a measure and
proceed in the same way as before.

• As a first step the measure is specified for those sets which are directly
measurable.

27See (3.2), (3.3), and (3.13) on page 30 f.
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• All sets which are not directly measurable can be obtained by union, intersection,
and complement of directly measurable sets. In the case of finite unions we
use the property of additivity given in Eq. (3.3) to determine the measure of
such sets and in the case of infinite unions the property of σ -additivity given
in Eq. (3.13).28

Hence, we can assign a unique number to each measurable set which we define as
its measure.

Definition 3.2 (σ -Algebra, Measure) A measure is a mapping of a σ -algebra F
into the real numbers

μ : F → R. (3.36)

The properties of nonnegativity according to (3.2), additivity according to (3.3), and
σ -additivity according to (3.13) are valid.

Mind that we waive the property of shift invariance. Since we will not only look
at probability measures, we allow for μ(�) �= 1. On the following pages we discuss
the construction of measures in the light of two examples (dice roll and, later, real
numbers).

Example 3.8 (Dice Roll) Let us start with the dice roll. In the following we will use
a more appropriate notation. For the set of all scores which are possible with a dice
roll, we can write

� = {1, 2, 3, 4, 5, 6}.

The set of even numbers is written as �e and the set of odd numbers �o:

�e = {2, 4, 6} and �o = {1, 3 , 5}.

The matter is very simple at t = 1: the only information available is whether the
score is even or odd. We stipulate

μ(�e) = μ(�o) = 1

2
.

Events such as {4}, {5}, {6}will not have their own measure because they cannot be
measured.

28See page 33.
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At t = 2 the elementary events are also measurable. In this case it makes sense
to define the measure as follows:

μ({1}) = . . . = μ({6}) = 1

6
.

None of the above is particularly remarkable.

3.6 Stieltjes Measure

The matter gets more interesting when we look at the Borel-measurable sets of
the real line.29 We had started the construction of the measurable sets with the
closed intervals [a, b]. Let us consider a monotonously growing and differentiable30

function

g : R → R. (3.37)

Examples for such functions are g(a) = ea or g(a) = �(a), where �(a) is the
distribution function of the standard normal distribution. We stipulate that

μ([a, b]) := g(b) − g(a) (3.38)

applies. μ is also referred to as the Stieltjes measure.31 It is obviously defined as a
measure of closed intervals.

In the following we show that we have therefore also defined the measure of the
open intervals: from our considerations on page 46 we know that point sets and open
intervals are also measurable. For point sets, it follows directly

μ({a}) = g(a) − g(a) = 0, (3.39)

implying they have measure zero. We can furthermore write a closed interval [a, b]
as union {a} ∪ (a, b) ∪ {b}, where the three subsets are pairwise disjoint. Hence,
because of property of a measure (3.3)

g(b) − g(a) = μ([a, b]) = μ({a}) + μ((a, b)) + μ({b})
= μ((a, b)). (3.40)

29See page 47.
30It should be noted that every differentiable function is continuous.
31Thomas Jean Stieltjes (1856–1894, Dutch mathematician).
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Fig. 3.7 Stieltjes measures μ
([

i
10 , i+1

10

])
for different generating functions g(·) depending on i

10

We recognize that the open interval has the same measure as the closed interval. It
is easy to conclude that the half-open intervals [a, b) and (a, b] have the measure
g(b) − g(a) too.

Example 3.9 (Real Numbers) For three specific functions g we will characterize
the resulting probabilities more precisely. For this purpose we first choose the
function g(a) = �(a), then the function g(a) = ea , and finally g(a) = a. To
understand the measure applied over any range of the real line, we focus on the
closed interval [−1, 1] and break it down into twenty subintervals. For each of the
twenty subintervals we define a measure μ([ i

10 ,
i+1
10 ]) with i = −10,−9, . . . ,+9

and plot function values. Figure 3.7 shows the effects that emerge with various
functions g.32 These are our observations:

• With g(a) = �(a) the measure of the interval increases as i goes to zero. The
entire real line has the measure 1.

• With g(a) = ea the measure of the interval increases as i grows. The entire real
line has infinite measure.

• With g(a) = a the measure of the interval does not change with i changing. The
whole real line has infinite measure again.

We inevitably determine the measure of a subinterval as the difference between the

function values g
(

i+1
10

)
− g

(
i
10

)
. Therefore, it should come as no surprise that the

figures look like the first derivatives of the respective measurement functions.
In the case g(a) = a the result is also called Lebesgue measure and is denoted

as λ. It corresponds to our “common” perceptions of length units. In the other two
cases the lengths are “weighted,” whereby the weight depends on where the interval
to be measured is located on the real line.

32In case g(∞) = 1 and g(−∞) = 0 we have a probability measure (the entire real line has the
measure 1). The graphs would then reflect the densities. This corresponds to g(a) = �(a).
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3.7 Dirac Measure

Wewill later revert to an admittedly degenerated probabilitymeasure where only the
number a is highly probable. In fact it is certain! All other numbers are absolutely
unlikely. This measure can be called degenerate because the numbers other than a

are impossible. The reader will subsequently understand why such a measure can
be important in the discussion about the Lebesgue integral.

To formally define the Dirac measure we again look at the real line � = R. For
the fixed number a we use

μ([a, a]) = 1, μ((−∞, a)) = μ((a,∞)) = 0. (3.41)

This measure is known as Dirac measure and is usually denoted by the letter δa .33

3.8 Null Sets and the Almost-Everywhere Property

The sets N having no weight for a given measure μ (i.e., μ(N) = 0) are of special
importance. Such sets are also called null sets. The complement Nc = �\N has
full measure (which can be infinite if � has no finite measure).

Null sets play an important role. To understand this consider the function

f (x) = n with n ≤ x < n + 1, n ∈ N. (3.42)

This function resembles a staircase that jumps up one unit at any natural number
and remains constant between these numbers as shown in Fig. 3.8.34 The function
f (x) has discontinuities in the places of the natural numbers and is otherwise
piecewise constant. This phenomenon is anything but noteworthy. However, the
discontinuities must not be ignored because they are responsible for the fact that
certain mathematical operations (derivations, limits, etc.) cannot readily be applied.
The staircase function is, however, recalcitrant and annoying.

Null sets offer a mathematically precise way to deal with these annoying
discontinuities.35 For this purpose we look at those points on the real line where
f is discontinuous which is precisely the set of natural numbers N. Although there
are infinitely many natural numbers, the entire set is rather small in comparison
to the remaining real numbers. In order to cope with the problem we look at a

33Paul Adrien Maurice Dirac (1902–1984, British physicist).
34The graph directly indicates the name of this function, as it actually resembles a staircase.
However, the representation is mathematically imprecise, because the function at x = 1, 2, . . .
obviously does not produce a single value but an interval of values. Of course, this is not allowed
for functions. Technically speaking, the vertical lines in Fig. 3.8 should be removed.
35It should be emphasized that the discontinuities here are only one illustrative example against
the background of which it is easy to discuss. We can also control other “unwanted” properties of
a function with null sets.
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Fig. 3.8 Staircase function
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f (x)
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measure on the set of real numbers and try to take advantage of the described
property. This is achieved by selecting the measure so that μ(N) = 0. Obviously,
the staircase function f (x) is constant outside the set N; discontinuities are only
present in N, and this set has now measure zero. In our example, this permits the
statement “The staircase function f is μ-almost everywhere continuous,” because
the property (here: continuity of the function) applies everywhere except for the null
set. The trick is not to deny unwanted properties of a function, but to ignore them
by assigning them a measure that does not matter at all.

If μ were a probability measure, we would obviously ignore events that have
measure zero. These are simply unlikely events. Our above statement would then
read “The staircase function f is continuous except for unlikely events.” If μ

measures the weight of objects, we could state “The function f is continuous
except for elements without mass.” Null sets do not attempt to deny the existence
of disturbing properties of functions; rather null sets are used to disregard these
characteristics. The staircase function remains discontinuous, but the discontinuities
are unlikely, insignificant, without mass, etc., in short: a null set. We can state:

Definition 3.3 A property applies μ-almost everywhere36 exactly when it applies
to all elements of the set Nc = �\N .

Note that the choice of the measure plays a crucial role and it is very important
which μ is used. If two different measuresμ1 and μ2 are defined, it is quite possible
that one and the same function μ1-almost everywhere is continuous, while this
property is lost if μ2 is selected. It is therefore important to choose the measure
μ skillfully.

Please also note that null sets of a measure can be very large, indeed infinitely
large. For example, it can be shown that the set of rational numbers is a null set
when a Stieltjes measure is employed. To intuitively understand the implication one
should imagine all rational numbers on a real line. If one adds a point to each of
these fractions, “almost” the entire real line will be drawn: for each real number

36Often, the term “f is μ-almost everywhere continuous” is abbreviated by “f is μ-a.e. continu-
ous.”
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selected one can find infinitely many rational numbers which are arbitrarily close.
Nevertheless, those numbers form a null set if a Stieltjes measure is used. Null sets
can therefore be infinitely large and still have measure zero.

Finally, we give four statements which apply almost everywhere under a specific
measure.

• The x2 function is Lebesgue-almost everywhere positive.37

• Each and every number is Dirac δa-almost everywhere equal to a.38

• The absolute value function |x| can Lebesgue-almost everywhere be differenti-
ated.39

• The staircase function in Fig. 3.8 can Lebesgue-almost everywhere be differenti-
ated.40

37x = 0 is the only point where the function is not positive. This set has Lebesgue measure zero.
38The numbers that do not equal a are given by the intervals (−∞, a) and (a,∞). This is a very
large set but its Dirac measure is nonetheless zero.
39The number where the function cannot be differentiated is x = 0. This set has the Lebesgue
measure zero.
40The points at which the function cannot be differentiated are the set of natural numbers. This set
has the Lebesgue measure zero.
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