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Abstract. We propose a secure integer-wise homomorphic division algo-
rithm on fully homomorphic encryption schemes (FHE). For integer-wise
algorithms, we encrypt plaintexts as integers without encoding them into
bit values, while in bit-wise algorithms, plaintexts are encoded into binary
and bit values are encrypted one by one. All the publicly available divi-
sion algorithms are constructed in bit-wise style, and to the best of our
knowledge there are no known integer-wise algorithm for secure division.
We derive some empirical results on the FHE library HElib and show that
our algorithm is 2.45x faster than the fastest bit-wise algorithm. We also
show that the multiplicative depth of our algorithm is O(l), where l is
the integer bit length, while that of existing division algorithms is O(l2).
Furthermore, we generalise our secure division algorithm and propose a
method for secure calculation of a general 2-variable function. The order
of multiplicative depth of the algorithm, which is a main factor of the
complexity of a FHE algorithm, is exactly the same as our secure division
algorithm.

Keywords: Fully homomorphic encryption · HElib ·
Secure integer arithmetic · Circuit depth

1 Introduction

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme presents a way to perform arbitrary calculations on encrypted data with-
out the requirement of decryption. The first construction of FHE [11,12] was
given by Gentry in 2009. Several improvements [4–6,10,13,14,25,27] have fol-
lowed since then, developing a diversity of features and complexity assumptions.
HElib [17–19] is a library for FHE widely used in applications, which imple-
ments the BGV scheme [3]. It allows for the “packing” of ciphertexts and single
instruction multiple data (SIMD) computations, amortizing the cost for certain
tasks.

There are numerous applications of FHE, but one of the most remarkable is
privacy-preserving delegated computations, such as privacy-preserving machine
learning as a service. In the service, users do not wish to reveal their sensitive
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data to the server, and the server does not want to reveal the cognitive model
to users. FHE enables these scenarios in an elegant way with non-interactivity.
However, because of the inefficiency of existing FHE schemes, most applications
are constructed evading the non-crypto-friendly calculations such as comparison,
division, and some non-linear functions.

Bit-Wise Encryption vs. Integer-Wise Encryption. Most FHE schemes,
including the BGV scheme, feature integer-wise and bit-wise encryption; the
size of the plaintext space in the scheme is variable. In bit-wise encryption the
plaintext space is Z2, and in integer-wise encryption the plaintext space is Zp

where p > 2. Because the main libraries of FHE, including HElib, do not support
some basic integer arithmetic operations such as division and comparison, sev-
eral studies [8,9,28] have been performed on improved arithmetic. The proposed
algorithms are primarily for bit-wise encryption, and they simply leverage the
existing algorithms for such operations on the bit-wise circuit such as Ripple
carry adder, long multiplication, and non-restoring division. Although bit-wise
encryption can perform integer comparison very efficiently [7], integer addition
and multiplication are not practical since they require homomorphic multiplica-
tion. On the other hand, integer-wise arithmetic can naturally perform integer
addition and multiplication efficiently, and recent remarkable privacy-preserving
machine learning such as [1,2,15,20] use integer-wise encryption. However, the
algorithm for these applications evades arithmetic such as division and compar-
ison, which are believed to be inefficient. While a concrete algorithm for secure
integer-wise comparison has been recently proposed in [22], to the best of our
knowledge there is no known concrete algorithm for secure integer-wise division
algorithm. Emergence of efficient algorithms for basic arithmetic operations such
as division and comparison will undoubtedly increase options to optimise higher
level applications of secure computation.

Our Contribution. We present a new concrete algorithm for privacy preserving
integer-wise division. Although several studies have been performed on privacy
preserving bit-wise division algorithms [8,9,28], there is no known concrete algo-
rithm for the integer-wise version. We implement our division algorithm using
HElib, and test its performance. The experimental results show that our algo-
rithm performs 2.45 times faster than the fastest bit-wise algorithm [8]. We also
theoretically analyse the multiplicative depth, which is a barometer for the com-
plexity for the FHE-based algorithm. While the order of the multiplicative depth
of existing division algorithms [8,9,28] is O(l2) for l-bit size integers, we show
that our algorithm can perform with O(l).

Furthermore, we generalise our secure division algorithm and propose an
algorithm for secure calculation of a general 2-variable function; the order of
multiplicative depth of the algorithm is O(l), which is the same as our secure
division algorithm. This is the first result to construct a concrete algorithm
for performing the general 2-variable function, expanding the FHE application
diversity.
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2 Preliminaries

2.1 Notation

In the FHE construction, a ring R is used, whose elements are written in lower
case; for example, r ∈ R. For an integer q, we use Rq to denote R/qR. For
a ∈ R, we use the notation [a]q to refer to a mod q, with coefficients reduced to
the range (− q

2 , q
2 ]. A concrete instantiation for our applications is the quotient

polynomial ring Rq = Zq[x]/Φm(x), where q is a prime and Φm(x) is the m-th
cyclotomic polynomial. We denote a ciphertext of r, which is encrypted with a
FHE scheme, by Cr.

We denote the logarithm to base 2 and the natural logarithm as log(·) and
ln(·), respectively. We denote vectors in bold. The notation v[i] refers to the ith

coefficient of v, while the scalar product of two vectors u,v ∈ Rn is denoted
as 〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈ R. By (a‖b) we denote the concatenation of two

vectors a and b. We write s
U←− S to denote the process of sampling s uniformly

at random over S; when the set S is clear from the context, we will write e ← χ
to denote the process of sampling e according to the probability distribution χ
over S.

2.2 The BGV Scheme

A FHE scheme is a public-key cryptographic scheme that includes two operations
(+, ·) on ciphertexts such that: Dec(Ca + Cb) = a + b, Dec(Ca · Cb) = a · b. The
BGV scheme [3] is a widely used FHE scheme for practical applications, which
is implemented in the FHE library HElib [16]. The security of the scheme is
based on the standard assumptions of the Learning with Error (LWE) problem
[23] or Ring-LWE (RLWE) problem [21]. This is in contrast to the earlier FHE
constructions [11,12] which were based on ad-hoc average-case assumptions on
ideal lattice problems.

The Basic Encryption Scheme. BGV is a public-key cryptography scheme
E = (E.Setup, E.SecretKeyGen, E.PublicKeyGen, E.Enc, E.Dec) defined as follows.

– Setup(1λ). Given the security parameter λ as input, set an integer m = m(λ)
that defines the cyclotomic polynomial Φm(x), and the odd modulus q = q(λ).
If R = Z[x]/Φm(x), the underlying working ring is Rq = Zq[x]/Φm(x).
Set a plaintext modulus p that is relatively prime to q, with the plaintext
space given by Rp = Zp[x]/Φm(x). Set a noise distribution χ = χ(λ) over
the underlying working ring, and N = N(λ) = polylog(q). Output params =
(R,m, q, p, χ,N).

– SecretKeyGen(params). Sample s ← χ. Output the secret key sk = s :=
(1, s) ∈ R2

q .
– PublicKeyGen(params, sk). Take as input the secret key sk = s = (1, s) and

params. Sample a
U←− RN

q and e ← χN . Set b := sa + pe ∈ RN
q , and

output the public key defined as pk = A := (b,−a) ∈ RN×2
q . Notice that

A · s = b − sa = pe, from the definition of b.
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– Enc(params, pk,m). To encrypt a message m ∈ Rp, set m = (m, 0) ∈ R2
p,

sample r
U←− RN

p and output the ciphertext c := m + r�A ∈ R2
q .

– Dec(params, sk, c). Output the message m := [[〈c, s〉]q]p.
The decryption works because

[[〈c, s〉]q]p = [[(m + r�A) · s]q]p = [[m + pr�e]q]p = [m + pr�e]p = m,

where the third equality holds since r and e have small enough entries so that
the value m + pr�e is smaller than the modulus q.

The FHE Scheme. As a FHE scheme, the BGV scheme supports addition and
multiplication over the plaintext and ciphertext spaces. Let ca and cb be cipher-
texts of plaintexts a and b under the same key sk, respectively. The addition of
two ciphertexts is simply a component-wise addition, i.e.

ca + cb = (ca[0], ca[1]) + (cb[0], cb[1]) = (ca[0] + cb[0], cb[1] + ca[1]) = ca+b,

which is a ciphertext of a+b ∈ Rp. The homomorphic multiplication is performed
by the tensor product of two ciphertexts. The tensor product of ciphertexts

ca·b := ca ⊗ cb := (ca[0]cb[0], ca[0]cb[1] + ca[1]cb[0], ca[1]cb[1]) (1)

is a ciphertext of a · b ∈ Rp under the new secret key s′ := s ⊗ s. In this way,
the homomorphic multiplication increases the size of ciphertexts exponentially.
In order to deal with this expanding ciphertext, the BGV scheme features key
switching. The key switching function SwitchKey(τs′→s , c

′, q) takes the ciphertext
c′ under s′ and outputs a new ciphertext c that encrypts the same message under
the secret new key s. Using this function, we can reduce the size of ciphertext
ca·b ∈ R3

q to ca·b ∈ R2
q ← SwitchKey(τs′→s , ca·b). The BGV scheme also features

modulus switching techniques, which reduce the magnitude of the noise of the
ciphertext by switching the modulus from q to the smaller modulus q′. The
modulus switching function Scale(c, q, q′, p), takes a ciphertext c for modulus q
and outputs a ciphertext under same secret for modulus q′.

We now briefly describe the BGV FHE scheme. The scheme is a levelled FHE
scheme.

– FHE.Setup(1λ, 1L). Takes as input the security parameter λ and a number of
levels L. Set an integer m = m(λ,L) that defines the cyclotomic polynomial
Φm(x). Let μ = μ(λ,L, b) = θ(log λ + log L) be a parameter to define the bit
size of the moduli. For j = L (input level of circuit) to 0 (output level), run
paramsj ← E.Setup(1λ, 1(j+1)·μ, b) to obtain a list of parameters, including a
list of moduli {qL ((L + 1) · μ bits), qL−1, . . . , q0 (μ bits)}.

– FHE.KeyGen(paramsj). For j = L down to 0, do the following:
1. Run the basic schemes sj ← E.SecretKeyGen(paramsj), and Aj ←

E.PublicKeyGen(paramsj , sj).
2. Set s′

j ← sj ⊗ sj .
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3. Run τs′
j→sj−1 ← SwitchKeyGen(s′

j , sj−1), where SwitchKeyGen is a gen-
erator function of auxiliary information τs′

j→sj−1 that will be used for
SwitchKey. (Note that we omit this step when j = 0.)

4. Output sk := {sj}L
j=0, pk = {Aj}L

j=0.

– FHE.Enc(params, pk,m). Take a message m in Rp. Run c ←
E.Enc(paramsL,AL,m) of the basic scheme.

– FHE.Dec(params, sk, c). Suppose that the input ciphertext c is under key sj .
Here, we know the level (the index j) of the ciphertext from its augmented
information. Run E.Dec(paramsj , sj , c).

– FHE.Eval(pk, f, c1, . . . , cl). Take as input a circuit f for ciphertexts c1, . . . , cl.
It is assumed that f is a levelled circuit composed of layers of alternating addi-
tion and multiplication gates. FHE.Eval will invoke FHE.Add and FHE.Mult,
which is described next, to compute the circuit. The ciphertext refreshing
procedure FHE.Refresh (described later) is invoked after every multiplication
layer, in order to reduce the noise in the ciphertexts and move it to a different
level.

• FHE.Add(pk, c1, c2). Takes two ciphertexts encrypted under the same sj .
If they are not under the same key, use FHE.Refresh to make one of them,
the level of which is higher than the other, to be encrypted under sj .
Output c3 ← c1 + c2 mod qj .

• FHE.Mult(pk, c1, c2). Takes two ciphertexts encrypted under the same
sj . If they are not under the same key, use FHE.Refresh to make one of
them, the level of which is higher than the other, to be encrypted under
sj . Multiply the two ciphertexts, then obtain the new ciphertext c3 under
the long secret key s′

j = sj⊗sj . c3 is the coefficient vector of 〈c⊗c,x⊗x〉.
Then, output c4 ← FHE.Refresh(c3, τs′

j→sj−1 , qj , qj−1).
– FHE.Refresh(c, τs′

j→sj−1 , qj , qj−1). Takes a ciphertext encrypted under s′
j , the

auxiliary information τs′
j→sj−1 for key switching, and the current and next

moduli qj and qj−1. Perform the following.
1. (Key switching.) Set c1 ← SwitchKey(τs′

j→sj−1 , c, qj), a ciphertext under
the key sj−1 for modulus qj .

2. (Moduli switching.) Set c2 ← Scale(c1, qj , qj−1, p), a ciphertext under the
key sj−1 for modulus qj−1. Output c2.

Multiplicative Depth and Level Parameter L. As mentioned in [3], we do
not need to perform FHE.Refresh after addition. We do not perform SwitchKey
after addition either, since addition does not increase the size of the ciphertext.
Moreover, since addition increases the noise much more slowly than multiplica-
tion, we do not need to perform Scale after addition either. Finally we also note
that in HElib, FHE.Refresh is performed only after FHE.Mult is performed.

The parameter L, which indicates the number of levels of arithmetic circuit
that the scheme is capable of evaluating, is very important when we estimate
the complexity of the FHE circuit. Every time we perform FHE.Mult, we per-
form SwitchKey and move the index j to j − 1. Thus, basically, we set the level
parameter L according to the multiplicative depth of the circuit. The level L is
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Table 1. Basic interfaces for homomorphic evaluation in HElib.

HElib interface Abbreviation we use

Ctxt::addCtxt FHE.Add(c, c′)

Ctxt::multiplyBy FHE.Mult(c, c′)

Ctxt::addConstant FHE.addConst(c, m′)

Ctxt::multByConstant FHE.multConst(c, m′)

related with the complexity of FHE.Add or FHE.Add. Brakerski et al. [3] showed
the order of complexity is O(λL3).

2.3 HElib

HElib [16] is a software library that implements the BGV scheme in C++. HElib
is based on the number theory library NTL [24]. In addition to the basic scheme,
HElib also supports the SIMD feature proposed by Smart and Vercauteren [26].
The SIMD feature enables packing multiple plaintexts into a single element of
Rp with the Chinese Remainder Theorem; it also enables parallel component-
wise evaluation of the plaintexts in the SIMD “slots”. It produces a much better
amortised performance, due to parallelisation.

HElib has an interface for the “constant” evaluation, where addition or mul-
tiplication by a plaintext is performed for ciphertext. Note that Table 1 shows
basic interfaces for homomorphic evaluation in the HElib. These constant eval-
uations are efficient when the addend or multiplier are not encrypted values. In
particular, constant multiplication is quite efficient compared to the homomor-
phic multiplication; the constant multiplication does not increase the dimension
of the ciphertext, and we do not need to perform SwitchKey after the constant
multiplication.

2.4 Polynomial Interpolation and Integer-Wise Secure Comparison

The first integer-wise homomorphic comparison algorithm was proposed in [22].
We refer to the algorithm as Algorithm 1, which is based on the polynomial
interpolation technique.

Polynomial interpolation is a process of constructing a polynomial f(x) of
degree at most n which satisfies yi = f(xi), i ∈ {0, 1, . . . , n}, where {xi, yi} is
given for n + 1 data points such that xi �= xj when i �= j. We can calculate the
polynomial f(x) by

f(x) =
n∑

i=0

⎛

⎝
∏

0≤j≤n,j �=i

x − xj

xi − xj

⎞

⎠ yi. (2)

Note that in Algorithm 1, the polynomial intepolation technique is used to con-
struct the Heaviside step function (i.e, comparison with 0). Our sub-algorithms
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Algorithm 1. Comp(Ca, Cb): Integer-wise Homomorphic Comparison [22]
Input: Ciphertexts Ca, Cb.

Output: C(a≥b), such that C(a≥b) =

{
C0 (a ≥ b),

C1 (a < b).

1: (Precomputation): Using the polynomial interpolation algorithm, find polynomial
f(x) ∈ Zp[x] that satisfies

f(x) =

{
0 (x = 0, 1, 2, . . . , � p

2
�),

1 (x = −� p
2
�, . . . , −2, −1).

For example, with plaintext modulus p = 7, the interpolation polynomial f(x) of
degree 6 is calculated such that

f(−3) = 1, f(−2) = 1, f(−1) = 1, f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 0.

For this example, f(x) = 4x6 − x5 − 6x3 − 4x ∈ Z7[x].
2: Homomorphically computes Ca−b = Ca − Cb.
3: Calculate and output C(a≥b) = f(Ca−b).

ConstDiv and ConstEq are also constructed based on the polynomial interpola-
tion, as discussed in the next section.

3 Our Algorithm for Integer-Wise Homomorphic Division

In this section we present our integer-wise secure division algorithm. In the
algorithm, the polynomial interpolation technique is used as a precomputation,
similar to the integer-wise comparison algorithm from [22] (Algorithm 1).

In the following, we present in Sect. 3.1 the overview of the algorithms
employed in our secure homomorphic division. We describe the algorithms in
detail in Sect. 3.2. Finally, we analyse their complexity and provide empirical
results in Sect. 3.3.

3.1 Overview

Our integer-wise homomorphic division algorithm Div(Ca, Cd) is given in Algo-
rithm 2, and is constructed based on the following subroutines:

– (Algorithm 3) Pows(Ca): Computes powers of a ciphertext Ca.
– (Algorithm 4) ConstDiv(Cpow

a , y): Integer-wise division by public divisor y.
– (Algorithm 5) ConstEq(Cpow

d , y): Integer-wise equality check with a public
input y.

ConstDiv(Cpow
a , y) homomorphically computes the ciphertext of a quotient

	a/y
 denoted as C�a/y	, from the ciphertext of a ∈ Zp denoted as Ca, and public
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Algorithm 2. Div(Ca, Cd): Integer-wise Homomorphic Division
Input: Ciphertexts Ca, Cd.
Output: C�a/d�
1: Csum = 0
2: Cpow

a = Pows(Ca) � Cpow
a := {Ca, C2

a, C3
a, . . . , Cp−1

a }
3: Cpow

d = Pows(Cd) � Cpow
d := {Cd, C

2
d , C3

d , . . . , Cp−1
d }

4: for i = 0 to (p − 1) do
5: C�a/i� = ConstDiv(Cpow

a , i)
6: C(d=i) = ConstEq(Cpow

d , i)
7: Csum = Csum + FHE.Mult(C�a/i�, C(d=i)) � FHE.Mult(C�a/i�, C(i=d)) =
8: end for � C�a/d� if i = d; C0 otherwise
9: Output C�a/d� = Csum

divisor y ∈ Zp. ConstEq(C
pow
d , y) homomorphically computes the ciphertext of

the Boolean value (y = d) denoted as C(y=d), where

C(y=d) :=

{
C1 if y = d;
C0 otherwise.

Note that given Ca, Cd for unknown a, d ∈ Zp, then for an arbitrary public value
y ∈ Zp, we have

C�a/y	 ∗ C(y=d) =

{
C�a/d	 if y = d;
C0 otherwise.

Our main algorithm for homomorphic division of a by d is then based on a simple
idea: calculate C�a/y	 ∗ C(y=d) for all public values y and sum them:

Csum :=
∑

y∈Zp

C�a/y	 ∗ C(y=d) = C�a/d	.

3.2 Algorithms

Main Algorithm. Algorithm 2 shows the integer-wise secure division algo-
rithm Div(Ca, Cd). The algorithm takes two ciphertexts Ca and Cd, which are
ciphertexts of a and d, respectively, then homomorphically calculates a cipher-
text C�a/d	, the decryption of which gives 	a/d
.

The algorithm first calls Pows for both inputs Ca and Cd, to obtain the list
of powers Cpow

a and Cpow
d . This part performs a high number of homomorphic

multiplications, but we store these values and can reuse them. Next, in the for
loop, for all i ∈ {0, 1, 2, . . . , p − 1}, we exhaustively calculate C�a/i	 and C(d=i)

with ConstDiv and ConstEq, then perform the homomorphic multiplication of
C�a/i	 ∗ C(i=d) := FHE.Mult(C�a/i	, C(i=d)). Recall that C�a/i	 ∗ C(i=d) equals to
C�a/d	 if y = d, and C0 otherwise. Thus, at the end of the algorithm we obtain
C�a/d	 = Csum.
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Algorithm 3. Pows(Ca): Computation of powers of Ca

Input: Ciphertexts Ca

Output: Cpow
a := (Ca, C2

a, C3
a, . . . , Cp−1

a )
1: Let l := �log p�.
2: for i = 0 to (l − 1) do
3: for j = 1 to 2i do

4: Calculate C
(2i+j)
a := FHE.Mult(C

(2i)
a , Cj

a).
5: end for
6: end for � Here, we have Ca, C2

a, C3
a . . . , C2l

a .
7: if 2l < p − 1 then
8: for j = 1 to p − 1 − 2l do

9: Calculate C
(2l+j)
a := FHE.Mult(C

(2l)
a , Cj

a).
10: end for
11: end if � Here, we obtain C2l+1

a , . . . , Cp−1
a .

12: Output Cpow
a := (Ca, C2

a, C3
a, . . . , Cp−1

a ).

Pows(Ca). Algorithm 3 shows the sub-algorithm Pows(Ca). The algorithm
takes a ciphertext Ca as an input and homomorphically calculates the pow-
ers of Ca, returning the list of powers Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a ). This

sub-algorithm is the most complex part of the main division algorithm Div.
In Div, this algorithm is called only once per ciphertext. Note that the multi-
plicative depth of Pows(Ca) is �log (p − 1). For example, when p = 17, since
C2

a = FHE.Mult(Ca, Ca), C4
a = FHE.Mult(C2

a , C2
a), C8

a = FHE.Mult(C4
a , C4

a), and
C16

a = FHE.Mult(C8
a , C8

a), multiplicative depth is log(16) = 4. See Sect. 3.3 for a
more detailed complexity analysis.

ConstDiv(Cpow
a , d). Algorithm 4 shows the sub-algorithm ConstDiv(Cpow

a , d).
The algorithm takes a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a )

and a plaintext divisor d as input, then homomorphically calculates a cipher-
text C�a/d	, the decryption of which gives 	a/d
. Note that this algorithm does
not perform homomorphic multiplication, it only requires multiplication by con-
stant multConst, which can be performed efficiently without increasing the size
of the ciphertexts and SwitchKey. Moreover we note that line 1 of Algorithm 4
is performed before the algorithm start, i.e. we precompute coefficient vectors
{afd

}d∈Zp
, which appear in (3), of the interpolation polynomial.

ConstEq(Cpow
a , y). Algorithm 5 shows the sub-algorithm ConstEq(Cpow

a , y). The
algorithm takes a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a )

and a plaintext input y as inputs, then homomorphically calculates a ciphertext
C(a=y), the decryption of which gives 1 when a = y, or 0 when a �= y. This
algorithm is similar to ConstDiv, except that the values of the precomputed
coefficient vectors afy

are different. Thus, the complexity of the algorithm is
almost the same as the ConstDiv, and there is no homomorphic multiplication.
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Algorithm 4. ConstDiv(Cpow
a , d): Integer-wise Constant Division

Input: Cpow
a : Powers of ciphertexts Ca. d: public divisor.

Output: C�a/d�
1: (Precomputing): We define a function for dividing by the fixed constant d as

gd(x) :=
⌊x

d

⌋
.

Given points {gd(x)}x∈Zp , calculate the interpolation polynomial fd(x) that sat-
isfies ∀x ∈ Zp, fd(x) = gd(x). For example, when plaintext modulus p = 7 and
public divisor d = 2, an interpolation polynomial fd(x) is calculated given that

fd(0) = 0, fd(1) = 0, fd(2) = 1, fd(3) = 1, fd(4) = 2, fd(5) = 2, fd(6) = 3.

And we obtain fd(x) = −2x+3x3+x5−2x6. We define aConstDiv
fd

:= (a1, . . . , ap−1) =
(−2, 0, 3, 0, 5, −2) as a coefficient vector of fd(x).

2: Output

C�a/d� := (aConstDiv
fd )�Cpow

a :=

p−1∑
i=1

FHE.multConst(Ci
a, ai). (3)

Note. We note that aConstDiv
fd

is dependent on d, and we precompute aConstDiv
fd

for all

d ∈ Zp: We have a list of coefficient vector {aConstDiv
f0 , . . . ,aConstDiv

fp−1
} as constant.

Algorithm 5. ConstEq(Cpow
a , y): Integer-wise Constant Equality test

Input: Cpow
a : Powers of ciphertexts Ca. y: public constant.

Output: C(a=y)

1: (Precomputing): We define a function for testing the equality to the fixed constant
y as

gy(x) :=

{
1 (x = y),

0 (x �= y).

Given points {gy(x)}y∈Zp , calculate the interpolation polynomial fy(x) that satis-
fies ∀y ∈ Zp, fy(x) = gy(x). For example, when p = 7 and y = 3, an interpolation
polynomial fy(x) is calculated given that

fy(0) = 0, fy(1) = 0, fy(2) = 0, fy(3) = 1, fy(4) = 0, fy(5) = 0, fy(6) = 0.

And we obtain fy(x) = 2x + 3x2 + x3 − 2x4 − 3x5 − x6, the coefficient vector of
which is aConstEq

fy
:= (a1, . . . , ap−1) = (2, 3, 1, −2, −3, −1).

2: Output

C(a=y) := (aConstEq
fy

)�Cpow
a :=

p−1∑
i=1

FHE.multConst(Ci
a, ai).

Note. Note that, as with ConstDiv, we precompute the first step and we have a list
{aConstEq

f0
, . . . ,aConstEq

fp−1
} as constant.
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Table 2. The multiplicative depth and the number of calls of Mult, Add and multConst
in our algorithms for l-bit size input.

Multiplicative depth Mult Add multConst

Pows O(l) O(2l) 0 0

ConstEq 0 0 O(2l) O(2l)

ConstDiv 0 0 O(2l) O(2l)

Div O(l) O(2l) O(22l) O(22l)

3.3 Complexity Analysis and Experiments

Complexity. Although Algorithm 2 might seem exhaustive and inefficient due
to its for loop, this homomorphic computation can be performed efficiently.
This is mainly because:

– ConstDiv and ConstEq do not include FHE.Mult, but include FHE.multConst.
Thus, ConstDiv and ConstEq do not increase the multiplicative depth.

– The most complex part Pows is executed only once for each input ciphertext
Ca and Cd before the for loop.

In the following, we analyse the multiplicative depth and the total complexity
of our algorithm Div. Table 2 shows a summary. In our analysis we denote by l
the bit length of the input integers.

Multiplicative Depth. The multiplicative depth of Pows is O(log p) = O(l), as
shown in Sect. 3.2. The multiplicative depth of Div is also O(l), because we
perform only one FHE.Mult after Pows in one loop in the Div algorithm, and
ConstDiv and ConstEq do not include FHE.Mult. Chen et al. showed that the
multiplicative depth of their bit-wise division algorithm [9] is O(l2). The other
bit-wise division algorithms [8,28] are the same as that of [9], the idea of which is
based on the non-restoring division, since their improvements are mainly for bit-
wise addition and multiplication. Therefore, our algorithm provides quadratic
improvement in regard to the multiplicative depth of homomorphic division.

Total Complexity. It is not trivial to adequately analyse the total complexity of
the FHE circuit, because the cost of the homomorphic calculation depends on
the level parameter L: the order of the cost of the homomorphic calculation is
O(λL3), as we mentioned in Sect. 2.2. Moreover, as mentioned in FHE.Setup, the
level L also defines the parameter m. The parameter m defines the cyclotomic
polynomial Φm(x), which in turn defines the ciphertext space. HElib has a bound
on the value L, and HElib halts if we set L too high because of the bound on
the size of the cyclotomic polynomial, as noted in [9,28]. Probably based on this
fact, the existing works [8,9,28] do not show the results on higher (>4) bits input
integers (see Table 3).

Although ConstDiv and ConstEq do not include homomorphic multiplication
and do not increase the multiplicative depth, we perform them exhaustively
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Table 3. Performance comparison.

l (bits) p L nslots Time (s) Type Method

4 2 21 720 67.94 Bit-wise [9]

4 2 21 720 14.63 [28]

4 2 21 720 7.74 [8]

4 17 9 108 3.15 Integer-wise Our (Div)

5 37 11 340 15.11

6 67 13 165 51.34

7 131 15 138 198.92

8 257 17 396 795.84

in the for loop (from i = 0 to p − 1), and thus we cannot ignore their cost.
However, since this for loop is parallelisable, this issue could be decreased by
parallelisation. In contrast, existing secure division algorithms are not suitable
for parallelisation because of their full-adder circuit (e.g. Ripple Carry adder),
as discussed in [8].

We also note that the memory complexity of our algorithm is relatively high.
In the precomputation of polynomial interpolation, we generate the coefficient
vectors and store them as a matrix, the space for which is Z

p×p
p .

Experiments. We implemented our secure division algorithm on HElib [16],
and compared timings with existing secure division algorithms based on FHE
schemes. We can compare the results only for 4-bit size input, since all the exist-
ing works report only for 4-bit integer division. We also implement for higher bit
values l = 5, . . . , 8, and observe that the results follow our complexity analysis.

Parameters. We set the security parameter λ = 80, following the existing works
of the secure division algorithm [8,9,28]. Let l be a the bit size of the input
integer. Since our algorithm is integer-wise and stores an input integer in Z into
Zp, we define the size p of the plaintext space Rp as p = nextprime(2l). We
set the Hamming weight of the secret vector w = 64. For the level parameter L,
which is related to the multiplicative depth of the circuit, we search the minimum
level by trial and error. As L is the lower level, we can perform the circuit faster.
However, setting L too small leads to incorrectness of the outputs. For the rest
of the parameter including “nslots”, which means the number of the SIMD slots,
we use the default values automatically calculated by HElib. For further details,
we refer the reader to [16].

Results. Table 3 shows our timing results, in addition to results given in existing
work for bit-wise integer division. All timings were generated on a PC with
a 3.4 GHz Intel Core i5 and 16 GB RAM. To the best of our knowledge, the
work by Chen et al. [8] provides the fastest results for 4-bit size input integers;
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Algorithm 6. ConstFunc(Cpow
a , y, g(·, ·)): Integer-wise Constant Function

Input: Cpow
a : Powers of ciphertexts Ca. y: public constant. g(·, ·): 2-variable function.

Output: Cg(a,y) = g(Ca, y)
1: (Precomputing): In this algorithm, fix y. Thus, we consider the input 2-variable

function g(x, y) : Zp × Zp → Zp as 1-variable function gy(x) := g(x, y). For a
fixed y, an interpolation polynomial fy(x) for gy(x) is calculated given the values
g(0, y), g(1, y), . . . , g(p − 1, y). And we can write the interpolation polynomial as
follows: fy(x) = a{1,y} · x + a{2,y} · x2 + a{3,y} · x3 + · · · + a{p−1,y} · x6 mod p.

2: Calculate Cg(a,y) = fy(Ca) = a�
fyC

pow
a mod p, where afy = {a{1,y}, a{2,y}, a{3,y},

. . . , a{p−1,y}}.

thus our algorithm is the fastest secure division algorithm. While existing works
report only for l = 4, we implemented our algorithm also for the higher bit sizes
l = 5, . . . , 8. We can observe that our algorithm requires only L = O(l), following
our analysis given in Sect. 3.3. Moreover, we can observe that required L of our
algorithm is lower than that of the bit-wise algorithm for l = 4. Based on this
fact, and that the bit-wise algorithm requires L = O(l2), we can expect that L
of our algorithm is globally less than that of the bit-wise algorithm.

We also note that nslots of our algorithm, which are automatically calculated
by HElib depending on the other parameters, is lower than in bit-wise algorithms.
This means that the amortised cost of our algorithm might be larger than existing
algorithms.

4 Integer-Wise Homomorphic Evaluation of Arbitrary
2-variable Function

We show that our secure division algorithm can be generalised to integer-wise
secure computation of any 2-variable function with the same computation cost.

4.1 Algorithms

Our integer-wise homomorphic evaluation algorithm of any (predefined) 2-
variable function Func(Ca, Cd) given in Algorithm 7 is constructed based on
Div, by replacing ConstDiv with ConstFunc(Cpow

a , y, g(·, ·)) (Algorithm 6), which
performs 1-variable function gy(x) := g(x, y) over a ciphertext Ca.

ConstFunc. Algorithm 6 shows the ConstFunc algorithm. The algorithm takes
a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a ), a plaintext y and

a 2-variable function g(·, ·) (i.e., coefficient vectors of its interpolation polyno-
mial), and then homomorphically calculates a ciphertext Cg(a,y), the decryption
of which gives g(a, y). Recall that, in the ConstDiv(Cpow

a , d), we used polyno-
mial interpolation to construct a function fd(x) = 	x

d 
 for all d ∈ Zp, giving
data points {fd(0), fd(1), . . . , fd(p − 1)}. We can simply generalise ConstDiv as
a general function: in ConstFunc, we use polynomial interpolation to construct a
required function gy(x) defined by given data points {gy(0), gy(1), . . . , gy(p−1)},
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Algorithm 7. Func(Ca, Cb, g(·, ·)): Integer-wise Homomorphic 2-variable function

Input: Ciphertexts Ca, Cb. 2-variable function g.
Output: Cg(a,b) = g(Ca, Cb)
1: Csum = 0
2: Cpow

a = Pows(Ca) � Cpow
a := {Ca, C2

a, C3
a, . . . , Cp−1

a }
3: Cpow

b = Pows(Cb) � Cpow
b := {Cb, C

2
b , C3

b , . . . , Cp−1
b }

4: for i = 1 to (p − 1) do
5: Cg(a,i) = ConstFunc(Cpow

a , i, g) � Cg(a,i) = g(Ca, i)
6: C(i=b) = ConstEq(Cpow

b , i) � C(i=b) = C1 if i = b, C(i=b) = C0 otherwise.
7: Csum = Csum + FHE.Mult(Cg(a,i), C(i=b)) � FHE.Mult(Cg(a,i), C(i=b)) = Cg(a,b) if

i = b, C0 otherwise.
8: end for
9: Output Cg(a,b) = Csum

for all y ∈ Zp. Only the data points (or, coefficient vectors) are different between
ConstDiv and ConstFunc. Thus, the order of multiplicative depth of ConstFunc is
exactly the same as ConstDiv. Note that we precompute the coefficient vectors
afy

for all y ∈ Zp using the polynomial interpolation, as with ConstDiv.

Func. Algorithm 7 shows our algorithm for integer-wise homomorphic evaluation
of the arbitrary 2-variable function, Func. The algorithm takes two ciphertexts
Ca and Cb, which are ciphertexts of a and b, respectively, and a 2-variable func-
tion g(·, ·) (i.e., coefficient vectors of its interpolation polynomial) as inputs. It
then homomorphically calculates a ciphertext Cg(a,b), which decrypts to g(a, b).
This algorithm is almost the same as Div (Algorithm 2), except that ConstDiv
is replaced by ConstFunc. Since the order of multiplicative depth of ConstFunc
is exactly the same as ConstDiv, that of Func is exactly the same as Div.

5 Conclusion

We propose a first secure integer-wise homomorphic division algorithm on fully
homomorphic encryption schemes. We implemented the algorithm on HElib, and
show that our algorithm is over twice as fast as the fastest existing algorithm
given in [8]. We also showed that the multiplicative depth of our algorithm is
O(l) for l-bit size integer, while that of existing division algorithms is O(l2).

Furthermore, we generalise our secure division algorithm and propose an
algorithm for secure calculation of general 2-variable functions. We showed that
the complexity of the algorithm is the same as our division algorithm. This means
that the homomorphic calculation of any 2-variable functions taking integer
inputs can be performed with multiplicative depth O(l).



Linear Depth Integer-Wise Homomorphic Division 105

References

1. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS Symposium 2015, p. 04 1 2. Internet Society (2015).
https://doi.org/10.14722/ndss.2015.23241

2. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM (2012).
https://doi.org/10.1145/2090236.2090262

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pp. 97–106. IEEE Computer Soci-
ety (2011). https://doi.org/10.1109/FOCS.2011.12

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

6. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Pro-
ceedings of the 5th Conference on Innovations in Theoretical Computer Science,
ITCS 2014, pp. 1–12. ACM (2014). https://doi.org/10.1145/2554797.2554799
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