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Abstract. Within the last decades, the dead-zone algorithms have
emerged as being highly performant on certain types of data. Such algo-
rithms solve the keyword exact matching problem over strings, though
extensions to trees and two-dimensional data have also been devised. In
this short paper, we give an overview of such algorithms.

1 Introduction and Related Work

In this paper, we present a new family of algorithms solving the single keyword
string pattern matching problem. This particular pattern matching problem can
be described as follows: given an input string S and a keyword p, find all occur-
rences of p as a continuous substring of S. The field of string pattern matching is
generally well-studied (some thought it to be exhausted by the end of the 1970’s),
however, it continues to yield new and exciting algorithms, as was seen in annual
conferences such as Combinatorial Pattern Matching and Stringology. In [8] (a
dissertation by the last author of this paper), a taxonomy of existing algorithms
was presented, along with a number of new algorithms. Any given algorithm may
have more than one possible derivation, leading to different classifications of the
algorithm in a taxonomy1. Many of the new derivations can prove to be more
than just an educational curiosity, possibly leading to interesting new families of
algorithms. This paper presents one such family, with some new algorithms and
also some alternative derivations of existing ones. The algorithms presented in
this paper have been extended to handle some more complex pattern matching
problems, including multiple keyword pattern matching, regular pattern match-
ing and multi-dimensional pattern matching. For some recent examples of this,
see [9–12].

1 This is precisely what happened with the Boyer-Moore type algorithms as presented
in the dissertation [8].
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2 Mathematical Preliminaries

While most of the mathematical notation and definitions used in this paper are is
described in detail in [4], here we present some more specific notations. Indexing
within strings begins at 0, as in the C and C++ programming languages. We
use ranges of integers throughout the paper which are defined by (for integers i
and j):

[i, j) = { k | i ≤ k < j }
(i, j] = { k | i < k ≤ j }

[i, j] = [i, j) ∪ (i, j]

(i, j) = [i, j) ∩ (i, j]

In addition, we define a permutation of a set of integers to be a bijective mapping
of those integers onto themselves.

3 The Problem and a First Algorithm

Before giving the problem specification (in the form of a postcondition to the
algorithms), we define a predicate which will make the postcondition and algo-
rithms easier to read. Keyword p (with the restriction that p �= ε, where ε is the
empty string) is said to match at position j in input string S if p = Sj···j+|p|−1;
this is restated in the following predicate:

Definition 3.1 (Predicate Matches): We define predicate Matches as

Matches(S, p, j) ≡ (p = Sj···j+|p|−1)

��
The pattern matching problem requires us to compute the set of all matches of
keyword p in input string S. We register the matches as the set O (for “output”)
of all indices j (in S) such that Matches(S, p, j) holds.

Definition 3.2 (Single keyword pattern matching problem): Given a
common alphabet V , input string S, and pattern keyword p, the problem is
defined using postcondition PM :

O = { j | j ∈ [0, |S|) ∧ Matches(S, p, j) }

Note that this postcondition implicitly depends upon S and p, even though we
do not make that explicit. ��
We can now present a nondeterministic algorithm which keeps track of the set
of possible indices (in S) at which a match might still be found (indices at which
we have not yet checked for a match). This set is known as the live zone. Those
indices not in the live zone are said to be in the dead zone. This give us our first
algorithm (presented in Dijkstra’s pseudocode [1,3,6]).
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�

The invariant specifies that live and dead are disjoint and account for all
indices in S; additionally, any match at an element of dead has already been
registered. Thanks to this relationship between live and dead , we could have
written the repetition condition live �= ∅ as dead �= [0, |S|), and the j selection
condition j ∈ live as j �∈ dead . It should be easy to see that the invariant and
the termination condition of the repetition implies the postcondition—yielding
a correct algorithm. Note that this algorithm is highly over-specified by keeping
both variables live and dead to represent the live and dead zones, respectively.
For efficiency, only one of these sets would normally be kept, as is seen in [9–11].

Some of the rightmost positions in S cannot possibly accommodate
matches—no match can be found at any point j ∈ [|S| − |p| + 1, |S|) since
|Sj···|S|−1| ≤ |S|S|−|p|+1···|S|−1| < |p| (the match attempt begins too close to the
end of S for p to fit). For this reason, we safely change the initializations of live
and dead to

live, dead := [0, |S| − |p|], [|S| − |p| + 1, |S|)
In the next section, give a more deterministic (more realistically imple-

mented) version of the last algorithm.

4 A More Deterministic Algorithm

In the last algorithm, our comparison of p with Sj···j+|p|−1 is embedded within
the evaluation of predicate Matches. In this section, we make this comparison
explicit. We begin by noting that p = Sj···j+|p|−1 is equivalent to comparing
the individual symbols pk of p with the corresponding symbols Sj+k of S (for
k ∈ [0, |p|)). In fact, we can consider the symbols in any order whatsoever. To
determine the order in which they will be considered, we introduce match orders:

Definition 4.1 (Match order): We define a match order mo as a permutation
on [0, |p|). ��
Using mo, we can restate our match predicate.
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Property 4.2 (Predicate Matches): Predicate Matches is restated as

Matches(S, p, j) ≡ (∀ i : i ∈ [0, |p|) : pmo(i) = Sj+mo(i))

��
This rendition of the predicate will be evaluated by a repetition which uses a new
integer variable i to step from 0 to |p|−1, comparing pmo(i) to the corresponding
symbol of S. As i increases, the repetition has the following invariant:

(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k))

and terminates as early as possible.
In the following algorithm, we use the match order mo, the new repetition

and our previous optimization to the initializations of dead and live.

�

The operator P cand Q appears in the guard of the inner loop of the above
algorithm. This operator is similar to conjunction P ∧ Q except that if the
first conjunct evaluates to false then the second conjunct is not even evaluated.
This proves to be a useful property in cases such as the loop guard since, if
the first conjunct (i < |p|) is false (hence i >= |p|, and indeed i = |p|), then
the term mo(i) appearing in the second conjunct is not even defined. Note that
the implication within the second conjunct of the loop postcondition is derived
from the loop guard, forcing the implication operator to be conditional as well
(that is, if i < |p| is determined to be false, then pmo(i) �= Sj+mo(i) is not even
evaluated).
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5 Reusing Match Information

On each iteration of the outer repetition, index j is chosen and eliminated from
the live zone in the statement:

live, dead := live \ {j}, dead ∪ {j}

The performance of the algorithm can be improved if we remove more than just j
in some of the iterations. To do this, we can use some of the match information,
such as i, which indicates how far through mo the match attempt proceeded
before finding a mismatching symbol. The information most readily available is
the postcondition of the inner repetition:

(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) ∧ (i < |p| ⇒ pmo(i) �= Sj+mo(i))

We denote this postcondition by Result(S, p, i, j). Since this postcondition holds,
we may be able to deduce that certain indices in S cannot possibly be the site of
a match. It is such indices which we could also remove from the live zone. They
are formally characterized as:

{x | x ∈ [0, |S|) ∧ (Result(S, p, i, j) ⇒ ¬Matches(S, p, x)) } (1)

Determining this set at pattern matching time is inefficient and not easily imple-
mented. We wish to derive a safe approximation of this set which can be pre-
computed, tabulated and indexed (at pattern matching time) by i. In order to
precompute it, the approximation must be independent of j and S. We wish to
find a strengthening of the range predicate since this will allow us to still remove
a safe set of elements from set live, thanks to the property that, if P ⇒ Q (P is
a strengthening of Q, and Q is a weakening of P ), then

{x | P (x) } ⊆ {x | Q(x) }

As a first step towards this approximation, we can normalize the ideal set (Eq. (1)
above), by subtracting j from each element. The resulting characterization will
be more useful for precomputation reasons:

{x | x ∈ [−j, |S| − j) ∧ (Result(S, p, i, j) ⇒ ¬Matches(S, p, j + x)) }

Note that this still depends upon j, however, it will make some of the derivation
steps shown shortly in Sect. 5.1 easier. Because those steps are rather detailed,
they are presented in isolation. Condensed, the derivation appears as:

(Result(S, p, i, j) ⇒ ¬Matches(S, p, j + x))
⇐ { Section 5.1 }

¬((∀ k : k ∈ [0, i) ∧ mo(k) ∈ [x, |p| + x) : pmo(k) = pmo(k)−x)
∧ (i < |p| ∧ mo(i) ∈ [x, |p| + x) ⇒ pmo(i) �= pmo(i)−x))

≡ { De Morgan’s Law }
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¬(∀ k : k ∈ [0, i) ∧ mo(k) ∈ [x, |p| + x) : pmo(k) = pmo(k)−x)
∨ ¬(i < |p| ∧ mo(i) ∈ [x, |p| + x) ⇒ pmo(i) �= pmo(i)−x)

≡ { De Morgan’s Law on the universal quantification }
(∃ k : k ∈ [0, i) ∧ mo(k) ∈ [x, |p| + x) : pmo(k) �= pmo(k)−x)
∨ ¬(i < |p| ∧ mo(i) ∈ [x, |p| + x) ⇒ pmo(i) �= pmo(i)−x)

≡ { De Morgan’s Law on the implication, which is conditional }
(∃ k : k ∈ [0, i) ∧ mo(k) ∈ [x, |p| + x) : pmo(k) �= pmo(k)−x)
∨ (i ≥ |p| ∨ mo(i) �∈ [x, |p| + x) cor pmo(i) �= pmo(i)−x)

≡ { define the predicate Approximation(p, i, x) }
Approximation(p, i, x)

Note that we define the predicate Approximation(p, i, x) which depends only on
p and i and hence can be precomputed and tabulated. It should be mentioned
that this is one of several possible useful strengthenings which could be derived.
We could even have used the strongest predicate, false, instead of Approxima-
tion(p, i, x). This would yield the empty set, ∅, to be removed from live in
addition to j (as in the previous algorithm).

We can derive a smaller range predicate of x for which we have to check if
Approximation(p, i, x) holds. Notice that choosing and x such that [x, |p| + x) ∩
[0, |p|) = ∅ has two important consequences:

• The range of the quantification in first conjunct of Approximation(p, i, x) is
empty (hence this conjunct is true, by the definition of universal quantification
with an empty range).

• The range condition of the second conjunct (the ‘implicator’) is false—hence
the whole of the second conjunct is true since false ⇒P for all predicates P.

With this choice of x, we see that predicate Approximation(p, i, x) always
evaluates to false, in which case we need not even consider values of x such
that [x, |p| + x) ∩ [0, |p|) = ∅. As a result, we characterize those x for which
[x, |p| + x) ∩ [0, |p|) �= ∅ as follows:

[x, |p| + x) ∩ [0, |p|) �= ∅

≡ { for integers u, v, y, z: [u, v) ∩ [y, z) = ∅ ≡ (v − 1 < y ∨ u > z − 1) }
¬(|p| + x − 1 < 0 ∨ x > |p| − 1)

≡ { arithmetic }
¬(x < 1 − |p| ∨ x > |p| − 1)

≡ { De Morgan’s Law }
x ≥ 1 − |p| ∧ x ≤ |p| − 1

≡ { definition of ranges }
x ∈ [1 − |p|, |p| − 1]

Clearly we can use the restriction x ∈ [1−|p|, |p|−1]. Intuitively (and information
theoretically), we know that there must be such a range restriction since we can
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not possibly know from a current match attempt whether or not we will find a
match of p in S more than |p| symbols away.

Finally we have the following algorithm (in which we have added the addi-
tional update of live and dead below the inner repetition). Note that we introduce
the set nogood to accumulate the indices for which Approximation(p, i, x) holds.
Also note that we renormalize the set nogood by adding j to each of its members
and ensuring that it is within the valid range of indices, [0, |S|).

�

5.1 Range Predicate Strengthening

Here, we present the derivation of a strengthening of the range predicate

Result(S, p, i, j) ⇒ ¬Matches(S, p, j + x)

Being more comfortable with weakening steps, we begin with the negation of
part of the above range predicate, and proceed by weakening:

¬(Result(S, p, i, j) ⇒ ¬Matches(S, p, j + x))

≡ {definition of ⇒ }
¬(¬Result(S, p, i, j) ∨ ¬Matches(S, p, j + x))

≡ {De Morgan’s Law }
Result(S, p, i, j) ∧ Matches(S, p, j + x))

≡ {definition of Result and Matches }
(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) ∧ (i < |p| ⇒ pmo(i) �= Sj+mo(i))

∧ (∀ k : k ∈ [0, |p|) : pmo(k) = Smo(k)+j+x)

≡ { change range predicate in second quantification and definition of mo }
(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) ∧ (i < |p| ⇒ pmo(i) �= Sj+mo(i))
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∧ (∀ k : mo(k) ∈ [0, |p|) : pmo(k) = Smo(k)+j+x)

⇒ { change dummy (mo(k′) = mo(k) + x), restrict range }
(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) ∧ (i < |p| ⇒ pmo(i) �= Sj+mo(i))

∧ (∀ k′ : mo(k′) − x ∈ [0, |p|) : pmo(k′)−x = Smo(k′)+j)

≡ { simplify range predicate of second quantification }
(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) ∧ (i < |p| ⇒ pmo(i) �= Sj+mo(i))

∧ (∀ k′ : mo(k′) ∈ [x, |p| + x) : pmo(k′)−x = Smo(k′)+j)

⇒ { one-point rule: second conjunct and second quantification }
(∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k))

∧ ((i < |p| ∧ mo(i) ∈ [x, |p| + x)) ⇒ pmo(i) �= pmo(i)−x)

∧ (∀ k′ : mo(k′) ∈ [x, |p| + x) : pmo(k′)−x = Smo(k′)+j)

⇒ { combine two quantifications and remove dependency on S and transitivity of = }
(∀ k : k ∈ [0, i) ∧ mo(k) ∈ [x, |p| + x) : pmo(k) = pmo(k)−x)

∧ ((i < |p| ∧ mo(i) ∈ [x, |p| + x)) ⇒ pmo(i) �= pmo(i)−x)

6 Choosing j from the Live Zone

In this section, we discuss strategies for choosing the index j (from the live zone)
at which to make a match attempt. In the last algorithm, the way in which j
is chosen from set live is nondeterministic. This leads to the situation that live
(and, of course, dead) is fragmented, meaning that an implementation of the
algorithm would have to maintain a set of indices for live. If we can ensure that
live is contiguous, then an implementation would only need to keep track of the
(one or two) boundary points between live and dead . There are several ways to
do this, and we discuss some of them in the following subsections section. Each
of these represents a particular policy to be used in the selection of j.

6.1 Minimal Element—Towards the Classical Boyer-Moore
Algorithm

We could use the policy of always taking the minimal element of live. In that
case, we can make some simplifications to the algorithm (which, in turn, improve
the algorithm’s performance):

• We need only store the minimal element of live, instead of sets live and dead .
We use ̂live to denote the minimal element.

• The dead zone update could be modified as follows: we will have considered
all of the positions to the left of j and so we can ignore the negative elements
of the update set:

{x | x ∈ [1 − |p|, 0) ∧ Approximation(p, i, x) }
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Indeed, we can just add the maximal element (which is still contiguously in
the update set and greater than j) of the update set to ̂live for the new version
of our new update of live and dead .

Depending upon the choice of weakening, and the choice of match order, the
above policy yields variants of the classical Boyer-Moore algorithm (see [2,7,8]):

Algorithm 6.1:

̂live := 0;
O := Ø;
do ̂live ≤ |S| − |p| →

j := ̂live;
̂live := ̂live + 1;
i := 0;
{ invariant: (∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) }
do i < |p| cand pmo(i) = Sj+mo(i) →

i := i+ 1
od;
{ postcondition: Result(S, p, i, j) }
if i = |p| → O := O ∪ {j}
[] i < |p| → skip
fi;

̂nogood := (MAX x : x ∈ [0, |p| − 1] ∧ (∀ h : h ∈ [0, x] : Approximation(p, i, x)) : x);
̂live := ̂live + ̂nogood

od{ postcondition: PM }

�

6.2 Recursion

We could also devise a recursive version of the algorithm as a procedure. This
procedure receives a contiguous range of live indices (live)—initially consisting
of the range [0, |S| − |p|].

If the set it receives is empty, the procedure immediately returns. If the set is
non-empty, j is chosen so that the resulting dead zone would appear reasonably
close to the middle of the current live zone2. This ensures that we discard as little
information as possible from the nogood index set. After the match attempt, the
procedure recursively invokes itself twice, with the two reduced live zones on
either side of the new dead zone. This yields the following procedure:

2 The algorithm given in this section makes a simple approximation by taking the
middle of the live zone it receives, and subtracting �|p|/2�.



A Brief Overview of Dead-Zone Pattern Matching Algorithms 217

Algorithm 6.2:

proc mat(S, p, live, dead) →
{ live is contiguous }
if live = Ø → skip
[] live �= Ø →

live low := (MIN k : k ∈ live : k);
live high := (MAX k : k ∈ live : k);
j := �(live low + live high − |p|)/2	;
i := 0;
{ invariant: (∀ k : k ∈ [0, i) : pmo(k) = Sj+mo(k)) }
do i < |p| cand pmo(i) = Sj+mo(i) →

i := i+ 1
od;
{ postcondition: Result(S, p, i, j) }
if i = |p| → O := O ∪ {j}
[] i < |p| → skip
fi;
new dead := ({x | x ∈ [1 − |p|, |p| − 1] ∧ Approximation(p, i, x) } + j) ∩ [0, |S|);
dead := dead ∪ new dead ;
mat(S, p, [live low , (MIN k : k ∈ new dead : k)), dead);
mat(S, p, ((MAX k : k ∈ new dead : k), live high], dead)

f i
corp

�

This procedure is used in the algorithm:

Algorithm 6.3:

O := Ø;
mat(S, p, [0, |S| − |p|], [|S| − |p| + 1, |S|))
{ postcondition: PM }

�

Naturally, for efficiency reasons, the set live can be represented by its minimal
and maximal elements (since it is contiguous). Note that the dead zone need not
be contiguous. This recursive algorithm is presented in [9], and with benchmark-
ing data in [10].

7 Conclusions

We have shown that there are still many interesting algorithms to be derived
within the field of single keyword pattern matching. The correctness preserving
derivation of am entirely new family of such algorithms demonstrates the use of
formal methods and the use of predicates, invariants, postconditions and pre-
conditions. It is unlikely that such a family of algorithms could have be devised
without the use of formal methods.
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