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Abstract. This paper describes a technique for the position error estimations
and compensations of the modeless robots and manipulators calibration process
based on a shallow neural network fitting function method. Unlike traditional
model-based robots calibrations, the modeless robots calibrations do not need to
perform any modeling and identification processes. Only two processes, mea-
surements and compensations, are necessary for this kind of robots calibrations.
By using the shallow neural network fitting technique, the accuracy of the
position error compensation can be greatly improved, which is confirmed by the
simulation results given in this paper. Also the comparisons among the popular
traditional interpolation methods, such as bilinear and fuzzy interpolations, and
this shallow neural network technique, are made via simulation studies. The
simulation results show that more accurate compensation result can be achieved
using the shallow neural network fitting technique compared with the bilinear
and fuzzy interpolation methods.
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1 Introduction

The prerequisite requirement of the robotic modeless calibration is the successful self-
calibration of the camera [1, 2] or other measurement device, such as laser tracking
system [3]. Both internal and external parameters of the camera need to be calibrated
accurately [4, 5]. Then the modeless robot calibration is divided into two steps [6].

The first step is to measure the position errors for all grid points on a standard
calibration board, which is installed on the robot’s workspace. A calibrated camera is
used to find 4 neighboring position errors. This process can be considered as a mea-
surement process, which is shown in Fig. 1.

At each grid point, a calibrated camera is used to check the position errors of the
end-effector of the robot. In Fig. 1, the desired position of the grid point 0 is (x, Vo),
and the actual position of the robot end-effector is (x, ;). The position errors for this
grid point are e, = xo — x{,, and e, = yo — ;. The robot will be moved to all these grid
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Fig. 1. Setup of the modeless calibration.

points on the standard calibration board, and all position errors on these grid points will
be measured and stored in the memory for future usage.

In the second step, the robot’s end-effector is moved to a target position that is
located in the range of the workspace. The target position error could be found by an
interpolation technique using the stored 4-neighboring grid position errors around the
target position, which were obtained from the first step. Finally, the target position
could be compensated with the interpolation results to obtain more accurate positions.

Triantafilis and Suzana et al. reported approaches of using fuzzy interpolation
methods to estimate the soil layer and geographical distributions for GIS database [7,
8]. Song et al. described a fuzzy logic methodology for 4-dimensional (4D) systems
with optimal global performance using enhanced cell state space [9]. The most popular
interpolation techniques applied in the position compensations of the modeless robotic
calibration include the bilinear interpolation and fuzzy interpolation methods; both
methods can achieve satisfactory interpolation results for general calibration process [2,
10]. The bilinear interpolation technique assumes that the error of the target position is
located on the surface that is constructed by the position errors of 4-neighboring grid
points around the target position [9]. The fuzzy interpolation method assumes that the
workspace can be divided into a group of smaller cells, and the target positions can be
obtained by interpolating position errors on 4 neighboring grid points in cells via fuzzy
inference system [10]. Consequently, the target point’s errors are estimated according
to the equations of the error surface or fuzzy inference techniques. Since the actual
position errors are randomly distributed, and it is impossible to pinpoint a position on
the error surface at any given moment, the traditional interpolation technique is unable
to provide an accurate estimation of the position errors. Fuzzy error interpolation
technique utilizes the fuzzy inference system to estimate the position errors, which is
consistent with the random distributed nature of position errors. The position errors can
be considered as a fuzzy set at any given moment of the time. The fuzzification process
takes into account of a range of error rather only a crisp error value. Therefore, the
fuzzy error interpolation technique has the fundamentals to improve error estimation
results.

However, more and more robots calibration techniques developed by using artifi-
cial neural network (ANN) are reported in recent years [11-18].
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This study describes a technique for the position error estimations and compen-
sations of the modeless robots and manipulators calibration process based on a shallow
neural network (SNN) fitting function method. A feedforward neural network or called
shallow neural network fitting technique is utilized to estimate the position errors based
on errors on the 4 neighboring grind points. With this method, the calibration accuracy
can be significantly improved and the calibration process can also be greatly simplified.
A comparison among three different error interpolation methods, bilinear, fuzzy
interpolation and SNN, are performed, and the simulation results indicate that the SNN
method outperforms the other methods.

This paper is organized in 4 sections. After this introduction section, the principle
of the fuzzy interpolation technique is provided in Sects. 2. A simulation is given in
Sect. 3 to illustrate the effectiveness of the SNN technique. Section 4 presents the
conclusion.

2 Fuzzy Error Interpolation Method

2.1 Overview of the Fuzzy Interpolation System

Figure 2 shows the definition of the fuzzy error interpolation inference system.

Each square that is defined by 4 grid points is called a cell; and each cell is divided
into 4 equal smaller cells, which are NW, NE, SW and SE, respectively (Fig. 2a). The
position error at each grid point is defined as Py, P,, P; and P,.
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Fig. 2. Definition of the fuzzy error interpolation system

For the fuzzy inference system, we apply the fuzzy error interpolation method in
two dimensions separately, so the inputs to the fuzzy inference system are e, and e, and
the outputs are ee, and ee,, (Fig. 2b). The control rules are shown in Fig. 2c, and will be
discussed following the discussion of membership functions.

2.2 Membership Functions

In this study, the distance between two neighboring grid points on the standard cali-
bration board is 20 mm in both x and y directions, which is a standard value for a mid-
size calibration workspace. The calibration board includes a total of 20 by 20 cells,
which is equivalent to a 400 by 400 mm space.
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Fig. 3. Input and output membership functions.

The input membership functions for both x and y directions and the predefined
output membership functions are shown in Fig. 3. The predefined output membership
functions are used as a default one, and the final output membership function will be
obtained by shifting the default one by the actual error values on the grid points.

The gaussian-bell waveforms are selected as the shape of the membership functions
for both inputs (Fig. 3a) in x and y directions. The ranges of inputs are between
—10 mm and 10 mm (20 mm intervals). Zhuang and Wu reported a histogram method
to estimate the optimal membership function distribution [19]. However in our case, a
gaussian-bell shape is selected due to the fact that most errors in real world match this
distribution. We use W and E to represent the location of inputs in x direction, N and S
to represent the location of inputs in y direction.

Figure 3b shows an example of the output membership functions, which are related
to the simulated random errors at neighboring grid points. Each P,; and Py; correspond
to the position error at the ith grid point in x and y directions, respectively. During the
design stage, all output membership functions are initialized to a gaussian waveform
with a mean of 0 and a range between —0.5 and 0.5 mm, which is a typical error range
for this workspace in robotic calibration (Fig. 3c). These output membership functions
will be determined based on the errors of the neighboring grid points around the target
in the workspace as mentioned above. For example, during the compensation process if
the input position in the x direction is in the NW area of a cell, the associated output
membership function should be modified based on the position error in the NW grid
point P;. This modification is equivalent to shifting the P,; Gaussian waveform
(Fig. 3b) and allowing the center of that waveform to be located at xy = the position
error value of the P in the x direction. A similar modification should be performed for
the position error in the y direction. It can be seen from Fig. 3b that for the position
compensation process, the performance loss would be significant if the default mem-
bership function is utilized, which is shown in Fig. 3c.
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2.3 Control Rules

The control rules shown in Fig. 2c can be interpreted as follows after the output
membership functions are determined:

elfe,isWandeyisN, ee,is Py and eey is Py; (NW).
elfe,isWandeyisS, ee,is Py3 and eey, is Py3 (SW).
elfe;isEande,isN, ee,is Py, and ee, is Py, (NE).
olfe.isEande,is S, ee,is Pys and eey is Pys (SE).

(1)

Each P; should be considered as a combination of two error components, P,; and P,;,
which are corresponding to errors in both x and y directions. The error on NW grid
point should take more weight if the target position (input) is located inside the NW
area on a cell. Similar conclusion can be derived for errors on SW, NE and SE grid

points.

2.4 Fuzzy Inference System

The fuzzy inference system implemented in this study is an on-line one. This means
that output of the fuzzy system is not obtained from the pre-defined lookup table, but
from a real time fuzzy inference calculation that utilizes the pre-defined input mem-
bership functions and the real time position errors. The input error variables can be
expressed as a label set L(E), where E is a linguistic input variable:

L(E) = {NW,NE, SW, SE} (2)

Assume that u; is the membership function, U; the universe of discourse and m the
number of contributions, the traditional output of the fuzzy inference system can be
represented as [21]:

(ui X Ui)
w=" (3)

m

> Ui
i=1

s

Il
-

where u is the current crisp output of the fuzzy inference system. Equation (3) is
obtained by using the Center-Of-Gravity method (COG). In this study, both u; and U; in
the output membership functions are randomly distributed variables and the actual
values of these variables depend upon the position errors of four neighboring grid
points around the target position. These relationships can be expressed as:

Ui :Fi(Pl7P27P3aP4) (4)

Ui = Qi(P17P27P37P4) (5)
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where F; and Q; are randomly distributed functions. Substituting (4) and (5) into (3),
we obtain:

ZFi(Pla Py, P3, Py) x Qi(P1, P2, P3, Py)
u="=! (6)

m

> Fi(P1, P2, P3, Py)
=1

In (6), both F; and Q; will not be determined until the fuzzy error interpolation
technique is applied in an actual compensation process, which means that this fuzzy
inference system is an on-line process.

3 Simulation Results

Extensive simulation study has been performed to illustrate the effectiveness of the
proposed SNN technique in comparison to bilinear and fuzzy interpolation methods.
The uniform distributed random error is used for the simulation study due to its
popularity. We estimate the valid workspace of the robot to be 400 x 400 mm. We
choose the size of each cell to be 20 x 20 mm after taking into consideration the
repeatability of the robot. Consequently, the workspace consists of 20 cells in each
direction. In our simulation, we simulate actual position based on in this format:

P, = (xiayi) +A*rand(x,y) (7)

where (x;, y;) is the nominal position, and A is the amplitude of the uniformly dis-
tributed noise in the interval (—0.5, 0.5) for the random component.

We implemented MATLAB® Neural Network Toolbox® to perform these simu-
lation studies [20]. Figure 4 shows the training, validation and testing process of this
fitting SNN. The Levenberg-Marquardt algorithm is used for this training.

Best Validation Performance is 0.0096352 at epoch 1

N

Train
Validation
Test

Best

Mean Squared Error (mse)
3

7 Epochs

Fig. 4. Performance of the used SNN (training, validation and testing).
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After the first epoch training process, the mean square error (MSE) is reduced
below 0.01, and the best validation result is in the first epoch (0.0096). The testing
result is also good with all errors being about 0.01. Figure 5 shows a comparisons in
mean error, maximum error and STD values among bilinear, fuzzy interpolation and
SNN technique in the histograms.

It can be seen that both mean errors and maximum errors of SNN are much smaller
than those of fuzzy interpolation and bilinear methods. For the uniform distributed
error, the mean error of the SNN method is approximately 60% to 70% smaller
compared with those of bilinear and fuzzy interpolation methods. The maximum errors
of the SNN technique is about 40% to 50% smaller than those of bilinear and fuzzy
interpolation techniques.

The simulated results show the effectiveness of the SNN fitting method in reducing
the position errors in the modeless robot compensation process.
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Fig. 5. Comparison among bilinear, fuzzy interpolation and SNN.

4 Conclusion and Summary

A shallow neural network fitting method is presented in this paper. The compensated
position errors in a modeless robot calibration can be greatly reduced by the proposed
technique. Simulation results demonstrate the effectiveness of the proposed shallow
neural network (SNN) fitting method. One typical error model, uniform distributed
error, is utilized for comparison and simulation study purpose. This SNN technique is
ideal for the modeless robot position compensation, especially the high accuracy (<10
pum) robot calibration process.
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