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Abstract. Insects use visual cues to control their flight behaviours. By
estimating the angular velocity of the visual stimuli and regulating it
to a constant value, honeybees can perform a terrain following task
which keeps the certain height above the undulated ground. For mimick-
ing this behaviour in a bio-plausible computation structure, this paper
presents a new angular velocity decoding model based on the honey-
bee’s behavioural experiments. The model consists of three parts, the
texture estimation layer for spatial information extraction, the motion
detection layer for temporal information extraction and the decoding
layer combining information from pervious layers to estimate the angu-
lar velocity. Compared to previous methods on this field, the proposed
model produces responses largely independent of the spatial frequency
and contrast in grating experiments. The angular velocity based control
scheme is proposed to implement the model into a bee simulated by the
game engine Unity. The perfect terrain following above patterned ground
and successfully flying over irregular textured terrain show its potential
for micro unmanned aerial vehicles’ terrain following.

Keywords: Insect vision · Flight control · Angular velocity ·
Terrain following

1 Introduction

The detection of visual motion has been researched for decades to understand
how insects, like honeybees and locusts, use visual information to guide their
flight behaviours [14,17,19]. Executing a visually guided terrain following is one
of the most challenging parts in visual flight control for flying insects. To accom-
plish this, the insect might either measure the flight speed and adjust the height
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accordingly, or estimate the flight height directly. However, it is hard for their
tiny brains, with insufficient computation resources, to measure the flight speed
and the distance to surface. So a much simpler strategy, holding the angular
velocity (the ratio of forward speed and distance) constant, is taken by honey-
bees for this visual control task [4,16,18].

The angular velocity can be measured by the angular displacement Δφ in a
small time interval Δt, that is ω = Δφ

Δt . In terrain following scenario, denoting
vx as the forward flight speed and d as the distance to the surface, the angular
velocity of the image motion perceived by ventral part of the compound eyes can
also be expressed as ω = vx

d . If the forward speed is maintained by a constant
forward thrust, then the flight altitude will change automatically as the distance
to ground varies by regulating the angular velocity to a constant value. Problems
therefore arise as how insect estimates the angular velocity and keeps it constant.

Biological experiments show that honeybees can fly in the central path of the
patterned tunnel by balancing the angular velocity of the image motion on both
eyes. What’s more, the estimation of the angular velocity is largely independent
of the spatial frequency and the contrast [1,18]. Further, the spike recordings also
show that the responses of some descending neurons in the honeybee’s central
nerve cord grow as the angular velocity of the image motion increases [9,10].
Both indicate that honeybees are capable of estimating the angular velocity.
However, the neural mechanism underlying this ability is still elusive.

Due to the limitation of the computation ability of insect’s tiny brain, the differ-
ential techniques, matching or feature-based approaches [3] which are widely used
in computer vision are not working here. Hassenstein and Richardt propose a clas-
sic elementary motion detecting model describing the mechanism of the motion
sensing for animals [7]. The Hassenstein-Reichardt (HR) motion detector pro-
duces a much higher response when a progressive motion movement presents (see
Fig. 1(a)). HR-balanced detector which has a mirror symmetrical structure with a
balance parameter can detect motion from both directions [22] (see Fig. 1(b)).
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Fig. 1. HR detector and HR-balanced detector. (a) HR detector uses the multiplication
(M) of the delayed signal from left photoreceptor and the non-delay signal from right
to enhance the response of a preferred direction motion [7]. (b) HR-balanced detector
can detect both preferred and opposite direction motions [22].
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An angular velocity sensor based on the HR model is designed [12] to accom-
plish visual guided aircraft terrain following by Franceschini and Ruffier [4,13].
However, both the HR model and the HR-balanced model are tuned for par-
ticular temporal frequency (number of gratings passed over the photoreceptor
per second) rather than angular velocity [22]. So the output of their sensor
shows a large variance when tested by patterned ground in flight [12]. Therefore,
an angular velocity specific model is needed to improve the terrain following
performance.

According to numerical calculations, Zanker et al. [22] point that the ratio of
two HR-balanced detectors is angular velocity tuned. Based on this idea, Cope
et al. [2] propose C-HR model, using the ratio of two HR-balanced detectors with
different temporal delays. Their model perform well especially around 100◦/s.
However, this is different from the fact that the honeybees usually keep a con-
stant angular velocity around 300◦/s [1]. Riabinina and Philippides [11] build up
the R-HR model, using a fully temporal dependent channel as the denominator
to produce angular velocity tuned responses. But the response of their model
slightly depend on the spatial frequency of the moving grating and the depen-
dence increases as the angular velocity grows. Wang et al. [20] propose a model
based on the neural structure of Drosophila’s visual system which compares the
results from detectors with different sampling rates, to get a spatial independent
response. Nevertheless, the independence still needs to be more significant before
guiding the terrain following.

Previous mentioned models use ratio of two channels to get a angular velocity
tuned response, but the spatial independence of the response is not strong enough
to reproduce honeybees’ flight behaviours. At the same time, the performance is
affected when the angular velocity is small or large due to the division. To address
this issue, this paper presents a new model using texture estimation layer to
estimate the spatial frequency of the image. The proposed model preforms better
by combining both texture and temporal information to decode the angular
velocity of the image motion.

2 Methods

2.1 Angular Velocity Decoding Model

The model mainly contains 3 parts, the texture estimation part for spatial infor-
mation extraction, the motion detection part for temporal information extrac-
tion and the decoding part for angular velocity estimation. The structure of the
model is shown in Fig. 2 explaining how these parts are connected with each
other. In the proposed model, every motion detector receives the light intensity
change from the neighbouring photoreceptors. And the light intensity change is
separated into ON and OFF pathways and then processed by two HR-balanced
detectors. The texture information and the motion information from the aver-
age of the detectors across the whole vision field are combined. Then angular
velocity is decoded from this composite information.
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Fig. 2. The proposed angular velocity decoding model. The visual information of the
grating movement is received by photoreceptors. The global spatial frequency and
image contrast information is estimated by texture estimation part, and the temporal
information is processed by motion detectors. Angular velocity decoding layer combines
both texture and temporal information to estimate the angular velocity.

(1) Texture Estimation Layer. The simulated input signals received by ven-
tral part of the compound eye are processed by a texture estimation layer where
the image contrast and the spatial frequency of the gratings are estimated by the
light intensities of different locations. This is based on a hypothesis that insects
can have a basic sense of complexity of the texture. And the estimation method
requires only low computation ability to give the global texture information of
the spatial frequency and image contrast. Here we use Michelson contrast which
is defined as the following:

C =
Imax − Imin

Imax + Imin
(1)

where the Imax and Imin (Imax, Imin ≥ 0) indicate the highest and the lowest
light intensities of the input signal in vision filed.

Then in order to decrease the cost of computing, binarization of the input
image is performed using the relative intensity threshold Ithre = (Imax−Imin)/2.
The spatial frequency is estimated by counting the number of boundary lines
of the binary image in whole visual field. This simple method works well for
sine-wave and check-board gratings in our simulations. For more complex back-
ground, boundary number also indicates the complexity to some extent.
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(2) Motion Detection Layer. Motion detection layer mainly captures the
motion information. The input image frames are first processed by the lamina
layer where the light intensity change, which insects interest more than the
intensity itself, are computed to get the primary information of visual motion.
The output of a cell in this layer is defined by the following:

P (x, y, t) = I(x, y, t) − I(x, y, t − 1) +
m∑

i=1

piP (x, y, t − i) (2)

where P (x, y, t) corresponds to the luminance change of pixel (x, y) at time t;
m denotes the maximum number of the time steps that the persistence of the
luminance change can last and the persistence coefficients pi ∈ (0, 1) is defined
as following equation respectively [21]:

pi = (1 + eμi)−1 (3)

Then the luminance changes are separated into two pathways, ON pathway
and OFF pathway [5,6]. Specifically, the ON pathway deals with light intensity
increments; whilst the OFF pathway processes brightness decrements. Denoting
f+ = max(0, f) and f− = min(0, f), then we can express the outputs of the
cells in this two pathways as following:

PON (x, y, t) = P+(x, y, t), POFF (x, y, t) = P−(x, y, t). (4)

Considering the delay of the visual signals received by neighbouring cells,
we denote DON (x, y, t) and DOFF (x, y, t) as the output of the ON and OFF
detectors for horizontal motion which are computed by following the structure
of the HR-balanced detector (Fig. 1(b)). Using a pure time delay of magnitude
τ , then we have the following expression:

DON (x, y, t) =P+(x, y, t − τ) · P+(x, y + 1, t)

− αP+(x, y, t) · P+(x, y + 1, t − τ)
(5)

where α is chosen from Zanker’s paper [22] setting as 0.25 forming a partial
balanced model. And DOFF (x, y, t) can be expressed similarly. Then the output
of all motion detectors are averaged to give a response containing the motion
information.

(3) Angular Velocity Decoding Layer. In order to decode angular velocity of
the image motion from texture information and response of the motion detection
layer, here we take only one detector for example to analyse how the response is
affected by the input signals. Let S1, S2 denote the input signal of photoreceptor
A (left) and B (right), and SD

1 , SD
2 denote the temporal delayed signal of A

and B, then according to the structure of HR-balanced detector (Fig. 1(b)), the
response of the detector R0 can be expressed as SD

1 · S2 − αSD
2 · S1, where the
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bar means the response is averaged over a time period to remove fluctuation
caused by oscillatory input.

If the input signals are simulated using the following sinusoidal grating frames
(6) with spatial period λ moving at an angular velocity ω:

I(x, y, t) = (sin(
2πω

λ
(t − ϕ(y − 1)

ω
)) + 1/C)/(1/C + 1) (6)

where (x, y) denotes the location of the ommatidium, t indicates the time and
C ∈ (0, 1] denotes the image contrast. Then we can get the output of each
detector by (5). It can be roughly expressed in theoretical [22] as the following
equation:

R0 ≈ 1 − α

(1 + C)2
+

C2

2(1 + C)2
[sin(

2π(ϕ − τω)
λ

) − α sin(
2π(ϕ + τω)

λ
)]. (7)

In fact, the angular velocity of the background moving is caused by the flying
of the insects. Considering when a simulated bee performing terrain following,
the consistency of the image motion speed in vision field helps us simplify the
problem so that we can average the output signals from all ON and OFF detec-
tors in visual field to get the final response R(ω, λ) which encodes the angular
velocity.

However, it is hard to derive angular velocity directly from (7). But we
can decode the angular velocity information from the response R(ω, λ) using
an approximation method. Though there is an inevitable fitting error, we can
decrease it into an acceptable level if the fitting function is chosen well. One
decoding function can be chosen as following to approximate the actual angular
velocity:

ω̂ = a∗λ̂b∗ 1 + Ĉ

2Ĉ

√
R (8)

where ω̂ denotes the decoded angular velocity, λ̂ is the estimated spatial period
and Ĉ is the estimated contrast from texture estimation layer. Parameters a∗

and b∗ can be learned by minimizing the difference from the ground truth using
alternate iteration method:

(a∗, b∗) = arg min
a,b

(ω − aλb 1 + C

2C

√
R(ω, λ)). (9)

2.2 Control Scheme for Automatic Terrain Following

The proposed model can be used to simulate the automatic terrain following of
the honeybees by maintaining a constant angular velocity. Using AVDM, we can
estimate the angular velocity in flight. By regulating it accordingly to a constant
value, the altitude will change automatically even without the exact altitude or
forward speed in flight.

The close loop control scheme for terrain following is given in Fig. 3. For
simplicity, we assume the forward flight speed is maintained the same by a proper
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constant forward thrust. So we only need to adjust the vertical lift according to
the difference between the preset angular velocity and the estimated value by
AVDM to control the altitude correspondingly. Here, the preset angular velocity
is also estimated by the AVDM in the beginning phase when the vertical lift is
set to the same value as the gravity and where the ground is flat. After that,
when the ventral angular velocity varies caused by terrain undulates, the vertical
lift controller will change the lift according to the difference ε between ventral
angular velocity estimated and the preset value. If the difference ε is positive,
the lift will increase and vice versa.

Fig. 3. The AVDM-based close loop control terrain following scheme. The vertical lift
controller is triggered by the difference ε between preset angular velocity ωset and the
estimated angular velocity ωest.

During the terrain following approach, the vertical speed vz is relatively
small, and the air resistance can be approximated as f = kvz. Then the vertical
dynamics can be described using the following differential equations:

m
dvz

dt
= T − kvz − mg (10)

T = ρ(ωest − ωset) (11)

vz =
dz

dt
(12)

where m is the mass of the simulated bee, g is the gravity acceleration and T
is the vertical lift. Given the initial conditions, then the flight trajectory can be
computed step by step. In our simulation, this process can be achieved by the
physics engine of Unity.

2.3 Parameter Setting

Parameters of the proposed model and the control scheme are shown in Table 1.
Parameters are mainly tuned manually based on our empirical knowledge and
stay the same in the following simulations unless particularly stated.
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Table 1. Parameters of the model and the control scheme

Eq. Parameters

(2) m = 10

(3) μ = 1

(5) τ = 0.08 s, α = 0.25

(6) ϕ = 2◦

(8) a∗ = 48.84, b∗ = 1

(10) k = 0.1, g = 9.81

(11) ρ = 0.04

3 Experiments and Results

Within this section, we present the experiments and results. The proposed model
is first tested by synthetic grating stimuli to show its spatial independence in
Matlab ( c© The MathWorks, Inc.). Then the model is implemented into a vir-
tual bee using Unity ( c© Unity Technologies) to simulate the automatic terrain
following behaviours of honeybees.

3.1 Moving Grating Experiments

In the first kind of experiments, we aimed to inspect the spatial frequency inde-
pendence of the proposed angular velocity decoding model. Therefore, the spatial
period of the grating is chosen widely from 12◦ to 72◦ and the model is tested
by these gratings moving at different angular velocities to get a general result.
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Fig. 4. The estimated angular velocity curves from decoding under different angular
velocities when tested by moving gratings of different spatial periods (12◦, 19◦, 38◦,
54◦ and 72◦).
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As you can see from Fig. 4, the proposed model show indeed the expected
independence of spatial frequency when tested by gratings of different spatial
periods. The angular velocities are well decoded with little variance except when
the grating is too narrow. This is caused by the much higher temporal frequency
when the angular velocity is larger than 700◦/s for grating of 12◦. Actually it
does not affect the honeybee’s flight in most of the cases since honeybees tend
to maintain a constant angular velocity of 300◦/s [1], around which our model
shows pretty enough spatial independence.

3.2 Terrain Following Simulations

In the second kind of experiments, the proposed model is implemented in a
simulated bee in terrain following simulations where the ground is covered with
different textures. The flight trajectories and the ventral responses are recorded
to see if the simulated bee can perform automatic terrain following by estimating
the angular velocity of the image motion and regulating it to a constant value.

The simulated bee with AVDM implemented is first tested on a regular ter-
rain covered with sinusoidal gratings. The simulated bee is released around a
given height at a certain forward speed. In beginning phase, the agent is set to
fly forward without changing its altitude (by setting the vertical lift equals grav-
ity), and the preset angular velocity value is estimated using AVDM after the
first few frames. Then the control scheme described in previous section starts to
take over the control of the vertical lift according to the difference between the
angular velocity estimated and the preset value. The result is shown in Fig. 5.

Fig. 5. The bee trajectory (blue line), terrain height (black line) and the angular
velocity (red line) estimated by the ventral eye are shown in the same graph. A demo
video can be found at https://youtu.be/jaYSuCJGAfc. (Color figure online)

From the flight trajectory, we can see the flight altitude changes automatically
to keep a distance from ground using only visual information. This result is
similar to the experiments on regular terrain with gratings [12,13]. Using Unity
engine, the images received by ventral camera can be processed in real time to
estimate the image motion angular velocity. Neither the flight speed nor the
flight altitude is necessary to perform this visual guided task.

https://youtu.be/jaYSuCJGAfc
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In order to see whether the model is stable under more complex terrain,
we also tested the simulated bee above an irregular mountain terrain covered
with sinusoidal gratings. The result is shown in Fig. 6. The flight trajectory of
the agent undulates above the mountain shape ground which indicates that the
flight altitude changes automatically according to the distance to ground using
only visual information. Whenever the distance is close to ground, the increasing
angular velocity will trigger the controller to provide a high vertical lift to help
the agent get away from ground.

Fig. 6. The bee trajectory (blue line) and the angular velocity (red line) estimated by
the ventral eye are shown above the mountain terrain covered with gratings. The sim-
ulated bee can adjust its flight height by regulating the angular velocity to a constant
value. (Color figure online)

Further, the model is also tested using mountain terrain covered with white
snow and black rock in our simulations. In this scenario, the texture information
captured by ventral camera is irregular. Especially when there is too much snow
in the vision field, the response will drop due to the low contrast. In order to
inspect the terrain following ability in this situation, several simulations are
performed (see Fig. 7). Though not all flight trajectories follow the terrain well,
they all complete the flight tests without crashing. The result is obviously not
robust as the terrain following using grating patterns. This is mainly caused
by the lack of contrast and in accordance with the phenomenon that bees can
plunge straight into calm water where low contrast provided [8].

4 Conclusion and Discussion

We proposed a bio-plausible model, the angular velocity decoding model
(AVDM), for estimating the image motion velocity to perform automatic ter-
rain following with only visual information. The model combines both spatial
and temporal information from moving frames received by ventral camera to
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Fig. 7. The simulated bee released around the given height in four times. The flight
trajectories are shown above the snow mountain terrain in the same graph. Whenever
the distance to ground decreases, the angular velocity increases causing the vertical lift
goes up, and so does the flight altitude to help it fly over the terrain.

give a relatively accurate image motion angular velocity. The response curves
show large spatial independence in grating simulations which is in accordance
with the biological experiments. It also provides a possible explanation of how
insects’ visual circuits detect image motion speed.

The close loop control scheme based on angular velocity estimation is also
proposed to simulate the terrain following of honeybees in game engine Unity.
And the result indicates that the model is well capable of guiding the flight course
using only visual information. Similar strategy can be used in simulations of the
honeybee’s wall following behaviour [15]. The control scheme proposed mainly
accounts for vertical lift regulating using only ventral part of the panoramic
compound eye. In fact, similar strategy can be used to control forward thrust by
lateral visual information. Combining both may give a more complete control
scheme which can deal with more complex visual flight tasks. The proposed
model will be implemented on UAV and be tested in a real environment in the
near future.

Acknowledgments. This research is funded by the EU HORIZON 2020 project,
STEP2DYNA (grant agreement No. 691154) and ULTRACEPT (grant agreement No.
778062); the National Natural Science Foundation of China (grant agreement No.
11771347).

References

1. Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed
in honeybees. J. Exp. Biol. 208(20), 3895–3905 (2005)

2. Cope, A.J., Sabo, C., Gurney, K., Vasilaki, E., Marshall, J.A.: A model for an
angular velocity-tuned motion detector accounting for deviations in the corridor-
centering response of the bee. PLoS Comput. Biol. 12(5), e1004887 (2016)

3. Fleet, D.J.: Measurement of Image Velocity, vol. 169. Springer, Heidelberg (2012)



608 H. Wang et al.

4. Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on
insect piloting abilities. Curr. Biol. 17(4), 329–335 (2007)

5. Fu, Q., Hu, C., Peng, J., Yue, S.: Shaping the collision selectivity in a looming
sensitive neuron model with parallel ON and OFF pathways and spike frequency
adaptation. Neural Netw. 106, 127–143 (2018)

6. Fu, Q., Yue, S.: Modeling direction selective visual neural network with on and off
pathways for extracting motion cues from cluttered background. In: Proceedings
of the IEEE International Joint Conference on Neural Networks, pp. 831–838.
Anchorage, AK, USA (2017)

7. Hassenstein, B., Reichardt, W.: Systemtheoretische analyse der zeit-, reihenfolgen-
und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chloro-
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