
Localization of Epileptic Foci
by Using Convolutional Neural Network

Based on iEEG

Linfeng Sui1,2, Xuyang Zhao1,2, Qibin Zhao2,6, Toshihisa Tanaka2,3,4,5,7,
and Jianting Cao1,2,7(B)

1 Graduate School of Engineering, Saitama Institute of Technology, Fukaya, Japan
suilf0210@gmail.com, {e7001gct,cao}@sit.ac.jp

2 RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
qibin.zhao@riken.jp

3 Department of Electronic and Information Engineering,
Tokyo University of Agriculture and Technology, Tokyo, Japan

tanakat@cc.tuat.ac.jp
4 Faculty of Medicine, Juntendo University, Tokyo, Japan

5 Rhythm-Based Brain Information Processing Unit, RIKEN CBS, Wako, Japan
6 School of Automation, Guangdong University of Technology, Guangzhou, China

7 School of Computer Science and Technology, Hangzhou Dianzi University,
Hangzhou, China

Abstract. Epileptic focus localization is a critical factor for successful
surgical therapy of resection of epileptogenic tissues. The key challeng-
ing problem of focus localization lies in the accurate classification of
focal and non-focal intracranial electroencephalogram (iEEG). In this
paper, we introduce a new method based on short time Fourier trans-
form (STFT) and convolutional neural networks (CNN) to improve the
classification accuracy. More specifically, STFT is employed to obtain the
time-frequency spectrograms of iEEG signals, from which CNN is applied
to extract features and perform classification. The time-frequency spec-
trograms are normalized with Z-score normalization before putting into
this network. Experimental results show that our method is able to dif-
ferentiate the focal from non-focal iEEG signals with an average classi-
fication accuracy of 91.8%.
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1 Introduction

According to the World Health Organization, Epilepsy is one of the most com-
mon neurological diseases globally, approximately 50 million people worldwide
suffer from it [1]. Epilepsy is a chronic disorder of the brain which is a result
of excessive electrical discharges in a group of brain cells. Different parts of the
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brain can be the site of such discharges [1]. Recent studies have shown that up to
70% of patients can be successfully treated with anti-epileptic drugs (AEDs) [1].
For patients with drug-resistant focal epilepsy, resection of epileptogenic tissues
is one of the most promising treatments in controlling epileptic seizures. Hence,
it’s very important to determine the seizure focus in surgical therapy. The nature
that focal iEEG signal is more stationary and less random than non-focal iEEG
signal enable iEEG to be used for identification of location [2].

As it is not certain that symptoms will present in the EEG signal at all times,
interictal iEEG from epilepsy patients are monitored or recorded in long-term.
In this process, large amounts of data are generated that detection of seizure
from the iEEG recordings with visual inspection by neurological experts is time-
consuming. That can cause a delay of hours or even weeks in the patient’s course
of treatment. Therefore, many methods of automatic detection of epileptic foci
have been proposed to assist neurologists by accelerating the reading process
and thereby reducing workload, such as classification of normal, interictal and
seizure [3]. For drug-resistant focal epilepsy, automatic detection of seizure focus
localization from the interictal iEEG signal is required. In order to determine
the epileptic seizure focus according to the iEEG signals, it essential to extract
the most discriminative features, followed by classification of features into the
focal part or non-focal part.

For feature extraction, methods in common use are entropy, empirical mode
decomposition (EMD) [4] and time-frequency analysis such as Fourier transform,
wavelet transforms (WT) [5], etc. Particularly, it is demonstrated that the time-
frequency domain extracted with the aid of STFT is suitable for classifying EEG
signal for epilepsy [6]. For classification, in recent years, automatic classification
of EEG by machine learning techniques has been popular, including support
vector machines (SVM) [4], K-Nearest-Neighbor method (KNN) [7] and deep
learning, such as the CNN and recurrent neural network (RNN) [8]. Several
computer-aided solutions based on deep learning that used the raw iEEG time-
series signal as input had been proposed to localize seizure focus in epilepsy [9].
However, the performance of the combination of the time-frequency domain and
CNN has not been widely tested for this task.

In this paper, inspired by successes in CNN with the raw EEG time-series
signal [9], we propose a deep learning approach for the classification of focal and
non-focal iEEG signal combining time-frequency analysis and CNN, in which
simple features are extracted from the time-frequency domain with the use of
STFT, discriminative features are learned with convolutional layers and classi-
fication is performed with a fully connected layer.

2 Dataset

The iEEG signals used in this study are obtained from the publicly available
Bern-Barcelona iEEG dataset provided by Andrzejak et al. at the Department
of Neurology of the University of Bern [2], collected from five epilepsy patients
who underwent long-term intracranial iEEG recordings. All patients suffered
from long-standing drug-resistant temporal lobe epilepsy and were candidates
for surgery.
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Signals recorded at epileptogenic zones were labeled as focal signals, other-
wise, it was labeled as non-focal signals. The dataset consists of 3750 pairs of
focal iEEG signals and 3750 pairs of non-focal iEEG signals, and a pair of iEEG
signals from adjacent channels were recorded into each signal pair, sampled of
20 s at a frequency of 512 Hz. In order to guarantee to get rid of the seizure iEEG
signals, the iEEG signals recorded during the seizure and three hours after the
last seizure were excluded.

An example of a pair of the focal and non-focal iEEG signals are shown in
Fig. 1, respectively.

Fig. 1. An example of the focal and non-focal iEEG signals

3 Method

In this method, it is divided into two key parts. Firstly, the STFT and Z-score
normalization were successively deployed to preprocess the iEEG signal to get
feature arrays on the time-frequency domain. And then the feature arrays are
fed into the CNN to classify the iEEG signal into focal and non-focal.

The proposed method used to classify iEEG signals into focal and non-focal
is shown in Fig. 2.

Fig. 2. Proposed method of classification
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3.1 Short Time Fourier Transform (STFT)

Due to the instability of the iEEG signal, it is difficult to extract the key features
by Fourier transform [10], hence, STFT is one of the most commonly used time-
frequency analysis methods. Firstly, the time-frequency spectrogram of the iEEG
signal is transformed by STFT, and then the spectrogram is transformed into a
2D array which is input to CNN for training or testing.

For STFT, the process is to divide a longer time signal into shorter segments
of equal length and then use the Fourier transform to compute the Fourier spec-
trum of each shorter segment.

Given a determined signal x(t), the time-frequency domain at each time point
can be obtained by the following formula (1).

STFT{x(t)}(τ, ω) =
∫ ∞

−∞
x(t)w(t − τ)e−jωt dt (1)

where w(t) is the Hann window function centered around zero.
Examples of spectrogram of iEEG signals are shown in Fig. 3.

Fig. 3. STFT of focal and non-focal iEEG signals

3.2 Z-Score Normalization

Before feeding into the neural network, the data are normalized to improve the
accuracy of the network and increase convergence speed. Z-score normalization is
employed in this study based on the mean and standard deviation of the original
spectrogram array.
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The Z-score normalization defined as:

z =
x − x̄

S
(2)

where x̄ is the mean of the dataset and S is the standard deviation of the dataset.

3.3 Convolutional Neural Network (CNN)

The CNN architecture contains three different types of the layer: convolutional
layer, pooling layer, and fully connected layer.

Convolutional Layer: The ultimate preprocessed STFT data is used as input
to convolutional layers. In the convolutional layers, the input time-frequency
spectrogram is convoluted by the learnable filter (kernel) which is a matrix,
and the stride is set to control how much the filter convolves across the input
time-frequency spectrogram. The output of the convolution, also known as the
feature map, are obtained after additive bias and non-linear map by an activation
function.

Pooling Layer: In the pooling layer, also known as the down-sampling layer,
feature maps from the upper layer are down-sampled to lower the calculation
complexity and prevent overfitting. There are many kinds of pooling operation,
max-pooling is used in this study to obtain the maximum value of each region
of the feature map and consequently reducing the number of output neurons.

Fully Connected Layer: In the fully-connected layer, all the 2D feature maps
from the upper layer are represented by a one-dimensional feature vector as the
input of this layer. In this study, the output is obtained by doing dot products
between the feature vector and learnable weights vector, adding learnable bias
and then responding to the activation function.

CNN Architecture: The ultimate preprocessed spectrogram transformed by
STFT, which is a time-frequency spectrogram of size 257× 101, exploited by
the CNN architecture to conduct convolution operation. The local features are
extracted individually based on the local correlation among the time-frequency
domain. Overall features are built by connecting the local features. The CNN
architecture is proposed in Fig. 4. The network is trained by setting with five
pooling layers (P1 to P5) after each convolutional layers (C1 to C5), following
six fully connected layers, and output includes two neurons corresponding to the
focal iEEG signal and non-focal iEEG signal. And the training process builds
relationships between iEEG signals and labels. The specific training process is
as follows [11]:
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1. Time-frequency spectrogram of 257× 101 size is convoluted by a 3× 3 filter
sliding in C1 with stride 1 and set 10 feature maps, which are the same size
as the input to represent each input spectrogram.

2. The P1 is done pooling operation by a 3× 3 filter sliding with stride 2 and set
10 feature maps to represent the output of C1, and its output size is 129× 51.

3. The C2 to C5 and P2 to P5 are similar to C1 and P1, except that their sizes of
input and output are decided by former, and size of the feature map increase
exponentially. The final output obtained is 160 feature maps of size 9× 4.

4. The fully connected layer has 160× 9× 4 neurons connected to the feature
maps obtained from the P5, and the output layer has two neurons connected
to the fully connected layer for classification. Finally, each signal is trained
to correspond to one kind of label.

Fig. 4. CNN architecture in the method



Localization of Epileptic Foci by Using CNN Based on iEEG 337

4 Experimental Result and Discussion

The proposed algorithm was implemented on a workstation with 12 Intel Core
i7 3.50 GHz (5930K), a GeForce GTX 1080 graphics processing unit (GPU) and
128 GB random-access memory (RAM) using the Python programming language
on TensorFlow framework.

Ten-fold cross-validation is used in this study, 90% of the dataset is used
as the training set (including 10% as validation set), while the remaining 10%
as the test set. It requires a lot of computational overhead to use one iteration
of full training set to perform each epoch, therefore stochastic gradient descent
training is used in this paper. In each epoch of the training, 100 batches with a
size of 120 data are randomly fed into the network. And we validate the network
by using validation set after each epoch.

The accuracy of the validation set across classification all ten-folds is shown
in Fig. 5.

Compared with the published works record in Table 1 [12], although our
proposed method does not achieve the best in terms of classification accuracy,
it is still managed to obtain 91.8% accuracy. And the advantage of this method
is that it is less preprocessing for feature extraction and selection than other
methods such as EMD and entropy.

Fig. 5. Accuracy of the validation set classification
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Table 1. Detection results of focal and non-focal EEG signals of published journal
articles using the Bern-Barcelona EEG database

Author (Year) Techniques proposed Performance
(accuracy in %)

Sharma et al. [13] EMD, entropy, LS-SVM 87

Deivasigamani et al. [14] DT-CWT, mean, SD, ANFIS 99

Das et al. [15] EMD-DWT, entropy, KNN 89.4

Sharma et al. [16] TQWT, entropy, LS-SVM 95

Gupta et al. [17] FAWT, entropy, Kruskal-Wallis test,
LS-SVM

94.41

Bhattacharyya et al. [7] TQWT, entropy, LS-SVM 84.67

Sriraam et al. [18] Statistical, frequency-based, entropy,
FD, Wilcoxon test, SVM

92.15

Arunkumar et al. [19] Entropies, non-nested generalized
exemplars

98

5 Conclusion

Since manual visual inspection of iEEG is a time-consuming process, an effective
classifier that automates detection of epileptic focus will have the potential to
reduce delays in treatment. We propose a new recognition method for iEEG-
based localization of epileptic focal based on STFT and CNN with additional
preprocessing and we implement a 15-layer CNN model for automated iEEG
signal classification in this paper. The results with 91.8% accuracy demonstrates
that this method is effective with much efficient and fast preprocessing step for
localization of focal epileptic seizure area.
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