Skip to main content

Application of Multi-objective Genetic Algorithm (MOGA) Optimization in Machining Processes

  • Chapter
  • First Online:
Optimization of Manufacturing Processes

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Multi-objectives Genetic Algorithm (MOGA) is one of many engineering optimization techniques, a guided random search method. It is suitable for solving multi-objective optimization related problems with the capability to explore the diverse regions of the solution space. Thus, it is possible to search a diverse set of solutions with more variables that can be optimized at one time. Solutions of MOGA are illustrated using the Pareto fronts. A Pareto optimal set is a set of solutions that are non-dominated solutions frontier. With the Pareto optimum set, the corresponding objective function’s values in the objective space are called the Pareto front. The conventional methods for solving multi-objective problems consist of random searches, dynamic programming, and gradient methods whereas modern heuristic methods include cognitive paradigm as artificial neural networks, simulated annealing and Lagrangian approcehes. Some of these methods are managed in finding the optimum solution, but they have tendency to take longer time to converge so that need much computing time. Thus, by implementing MOGA approach that based on the natural biological evaluation principle will be used to tackle this kind of problem. In this chapter authors attempts to provide a brief review on current and past work on MOGA application in few of the most commonly used manufacturing/machining processes. This chapter will also highlights the advantages and limitations of MOGA as compared to conventional optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta K, Gupta MK (2019) Developments in non-conventional machining for sustainable production: a state of art review. Proc Inst Mech Eng C J Mech Eng. https://doi.org/10.1177/0954406218811982

    Google Scholar 

  2. Aggarwal A, Singh H (2005) Optimization of machining technique—a retrospective and literature review. Sadhana-Acad Proc Eng Sci 30: 699–711

    Article  Google Scholar 

  3. Mukherjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34

    Article  Google Scholar 

  4. Magabe R, Sharma N, Gupta K, Davim JP (2019) Modeling and optimization of wire-EDM parameters for machining of Ni55.8-Ti shape memory alloy using hybrid approach of Taguchi and NSGA-II. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03287-z

    Article  Google Scholar 

  5. Sekulic MA, Pejic VB, Brezocnik MC, Gostimirović MA, Hadzistevic MA (2018) Prediction of surface roughness in the ball-end milling process using response surface methodology, genetic algorithm, and grey wolf optimizer algorithm. Adv Prod Eng Manag 13:18–30

    Google Scholar 

  6. Shukla R, Singh D (2016) Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization technique. Swarm Evol Comput 32:167–183

    Article  Google Scholar 

  7. Sangwan KS, Kant G (2017) Optimization of machining parameters for improving energy efficiency using integrated response surface methodology and genetic algorithm approach. Procedia CIRP 61:517–522

    Article  Google Scholar 

  8. Kumar KP, Manikandan K, Nandhakumar M, Rajendran KL (2015) Optimisation of machining parameters in aluminium alloy composite using genetic algorithm. Int J Sci Eng 1(1)

    Google Scholar 

  9. Kant G, Sangwanb KS (2015) Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm. Procedia CIRP 31:453–458

    Article  Google Scholar 

  10. Li J, Yang X, Ren C, Chen G, Wang Y (2015) Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II. Int J Adv Manuf Technol 76:941–953

    Article  Google Scholar 

  11. Santos MC Jr, Machado MR, Barrozo MAS, Jackson MJ, Ezugwu EO (2015) Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075-T6 grades) using genetic algorithm. Int J Adv Manuf Technol 76:1123–1138

    Article  Google Scholar 

  12. Mahesh G, Muthu S, Devadasan SR (2014) Prediction of surface roughness of end milling operation using genetic algorithm. Int J Adv Manuf Technol 77:369–381

    Article  Google Scholar 

  13. Sahali MA, Belaidi I, Serra R (2015) Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. Int J Adv Manuf Technol 77:677–688

    Article  Google Scholar 

  14. Sangwan KS, Saxenaa S, Kanta G (2015) Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Procedia CIRP 29:305–310

    Article  Google Scholar 

  15. Shivasheshadri M, Arunadevi M, Prakash PS. Simulation approach and optimization of machining parameters in CNC milling machine using genetic algorithm. Int J Eng Technol 1(10):1–10

    Google Scholar 

  16. Agarwal A, Varma SN (2015) Optimization of machining parameters for milling operations using a genetic algorithm approach. Int J Eng Technol Res 3(1)

    Google Scholar 

  17. Durairaja M, Gowri S (2013) Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm. Procedia Eng 64:878–887

    Article  Google Scholar 

  18. Petkovic D, Radovanovic M (2013) Using genetic algorithms for optimization of turning machining process. J Eng Stud Res 19(1):47–55

    Google Scholar 

  19. Selvam MD, Shaik Dawood AK, Karuppusami G (2012) Optimization of machining parameters for face milling operation in a vertical CNC milling machine using genetic algorithm. Eng Sci Technol Int J (ESTIJ) 2(4):2250–3498

    Google Scholar 

  20. Rai JK, Brand D, Slama M, Xirouchakis P (2011) Optimal selection of cutting parameters in multi-tool milling operation using a genetic algorithm. Int J Prod Res 49(10):3045–3068

    Article  Google Scholar 

  21. Zeng HY, Qiang EJ, Yang XP, Li HM (2011) Soft-sensing model on the roughness of machining surface under the numerical control and its application. Appl Mech Mater 48–49:1077–1085

    Article  Google Scholar 

  22. Gao DQ, Li ZY, Mao ZY (2011) Study of high speed machining parameters on nickel-based alloy GH2132. Adv Mater Res

    Google Scholar 

  23. An I, Feng I, Lu C (2011) Cutting parameters optimization for multi-pass milling operations by genetic algorithms. Adv Mater Res 160–162:1738–1743

    Google Scholar 

  24. An I (2011) Optimal selection of machining parameters for multi-pass turning operations. Adv Mater Res 156–157:956–960

    Google Scholar 

  25. Kilickap E, Huseyinoglu M, Yardimeden A (2011) Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 52:79–88

    Article  Google Scholar 

  26. Kuruvila N, Ravindra HV (2011) Parametric influence and optimization of wire EDM of hot die steel. Mach Sci Technol 59:142–145

    Google Scholar 

  27. Ganesan H, Mohankumar G, Ganesan K, Ramesh Kumar K (2011) Optimization of machining parameters in turning process using genetic algorithm and particle swarm optimization with experiment verification. Int J Eng Sci Technol (IJEST) 3:1091–1102

    Google Scholar 

  28. Xie S, Guo Y (2011) Intelligent selection of machining parameters in multi-pass turning using a GA-based approach. J Comput Inf Syst 7(5):1714–1721

    Google Scholar 

  29. Zain AM, Haron H, Sharif S (2010) Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst Appl 37:4650–4659

    Article  Google Scholar 

  30. Zain AM, Haron H, Sharif S (2011) Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimizing surface roughness in end milling Ti-6Al-4V. Int J Comput Integr Manuf 24(6):574–592

    Article  Google Scholar 

  31. Zain AM, Haron H, Sharif S (2012) Integrated ANN-GA for estimating the minimum value for machining performance. Int J Prod Res 50(1):191–213

    Article  Google Scholar 

  32. Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38:8316–8326

    Article  Google Scholar 

  33. Sultana I, Dhar NR (2010) GA based multi-objective optimization of the predicted models of cutting temperature, chip reduction co-efficient and surface roughness in turning AISI 4320 steel by uncoated carbide insert under HPC condition. Paper presented at the proceedings of 2010 international conference on mechanical, industrial, and manufacturing technologist, MIMT, 2010, pp 161–167

    Google Scholar 

  34. Yongzhi P, Jun Z, Xiuli F, Xing A (2010) Optimization of surface roughness based on multi-linear regression model and genetic algorithm. Adv Mater Res 97–101:3050–3054

    Google Scholar 

  35. Pasam VK, Battula SB, Valli PM, Swapma M (2010) Optimizing surface finish in WEDM using Taguchi parameter design method. J Braz Soc Mech Sci Eng 32(2):107–113

    Article  Google Scholar 

  36. Ansalam Raj TG, Namboothiri VN (2010) An improved genetic algorithm for the prediction of surface finish in dry turning of SS 420 materials. Int Adv Manuf Technol 47:313–324

    Article  Google Scholar 

  37. Zolpakar NA, Ghazali NM, Hassan El-Fawal M (2016) Performance analysis of the standing wave thermoacoustic refrigerator, review. Renew Sust Energ Rev 54:626–634

    Article  Google Scholar 

  38. Deb K (2001) Multi-objective optimization using evolutionary algorithm. Wiley, London

    Google Scholar 

  39. Alberto I, Azcarate C, Mallor F, Mateo PM (2003) Multiobjective evolutionary algorithms. Pareto rankings. Monogfias del Senim. Matem. Gracia de Galdeano. 27:27–35

    MathSciNet  MATH  Google Scholar 

  40. Pathak S, Jain NK, Palani IA (2016) Investigations on surface quality, surface integrity and specific energy consumption in finishing of straight bevel gears by PECH process. Int J Adv Manuf Technol 85 (9–12):2207–2222

    Article  Google Scholar 

  41. Pathak S, Jain NK, Palani IA. (2014) On use of pulsed-electrochemical honing to improve micro-geometry of bevel gears. Mater Manufact Process 29 (11–12):1461–1469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zolpakar, N.A., Lodhi, S.S., Pathak, S., Sharma, M.A. (2020). Application of Multi-objective Genetic Algorithm (MOGA) Optimization in Machining Processes. In: Gupta, K., Gupta, M. (eds) Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-19638-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19638-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19637-0

  • Online ISBN: 978-3-030-19638-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics