
Effect-Driven Selection of Web of Things
Services in Cyber-Physical Systems Using

Reinforcement Learning

KyeongDeok Baek(B) and In-Young Ko

School of Computing, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea

{kyeongdeok.baek,iko}@kaist.ac.kr

Abstract. Recently, Web of Things (WoT) expands its boundary to
Cyber-physical Systems (CPS) that actuate or sense physical environ-
ments. However, there is no quantitative metric to measure the quality
of physical effects generated by WoT services. Furthermore, there is no
dynamic service selection algorithm that can be used to replace services
with alternative ones to manage the quality of service provisioning. In
this work, we study how to measure the effectiveness of delivering vari-
ous types of WoT service effects to users, and develop a dynamic service
handover algorithm using reinforcement learning to ensure the consistent
provision of WoT services under dynamically changing conditions due to
user mobility and changing availability of WoT media to deliver ser-
vice effects. The preliminary results show that the simple distance-based
metric is insufficient to select appropriate WoT services in terms of the
effectiveness of delivering service effects to users, and the reinforcement-
learning-based algorithm performs well with learning the optimal selec-
tion policy from simulated experiences in WoT environments.
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1 Introduction

Cyber-physical systems (CPS) are the systems in which computational resources
lie on abstract cyberspace and physical devices lie on physical spaces are con-
nected and coordinated with each other to provide complex services that are nec-
essary to accomplish users’ goals [5]. Already there are many types of CPS that
have been deployed in our urban environments such as smart homes, vehicle-
to-everything (V2X), and smart factories. In particular, CPS has become an
important part of Web of Things (WoT) because their key components are con-
nected with each other via the Web, and it is essential to effectively find, access
and utilize physical WoT resources that are necessary to accomplish users’ goals.
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Fig. 1. WoT environments based on Cyber-physical Systems

Figure 1 shows an example of CPS-based WoT environment, that is divided
in two layers, namely, cyber and physical layer, where traditional Web and WoT
services are lied on the cyber layer, and physical devices and users are lied
on the physical layer. Via actuating devices such as displays and speakers, a
video-playing service in the cyber layer can deliver video contents to users by
generating light and sound effects to the physical layer. Obviously, it is neces-
sary to define the metrics to measure the quality of delivering service effects by
WoT services to support users accomplishing their goals by providing services in
required quality. Moreover, service selection problem, which is to select the most
appropriate services among available candidates, becomes more challenging in
WoT environments because of its physical-aware and highly dynamic nature.

In this work, we identify the essential characteristic of CPS that need to be
considered to make WoT services to effectively interact with physical environ-
ments and human users while generating or sensing physical effects such as lights
and sounds via physical media that are deployed over the physical environments.
Especially, there are effect-generating services that produce and deliver physical
effects to users, such as news-delivery and music-playing services as shown in
Fig. 1. The quality of such effect-generating services affects users’ satisfaction,
so the selection of services should be done in a user-centric manner by evaluating
how well the generated effects are delivered to the user. However, existing works
on Web service selection only considers network-level quality of services (QoS)
attributes, such as latency that affect the general quality perceived by users, but
cannot reflect the quality of physical effects of the effect-generating services.

2 Research Issues

2.1 Service Effectiveness

Figure 2 shows an example categorization of WoT services, where solid boxes
indicate categories and dashed boxes indicate an example service for each cat-
egory. Most of the WoT services that interact with physical environments can
be categorized as actuating or sensing services. In this work, we mainly focus
on actuating services because actuating services can contribute directly to the
accomplishment of users’ goals by generating effects in physical environments,
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Fig. 2. Example categorization of WoT services

while the role of sensing services is simply about collecting information. Obvi-
ously, the effectiveness of such actuating services need to be evaluated differently
according to their physical effects. However, to the best of our knowledge, there
is no quantitative measure proposed to evaluate the quality of physical effects
generated by WoT services, which we call service effectiveness. Therefore, it is
necessary to model a specific effectiveness metric for each type of physical effects.

In addition, the physical effects generated by the actuating services may
cause constructive or destructive interference when there are more than one
effect generated in the same space. Moreover, in users’ perspective, there can
be service-level interference. For instance, the effectiveness of a movie-playing
service increases if the associated display and speaker devices are located cohe-
sively to each other in a space [1]. Another example is that if there is a service
that generates bright illumination, it may cause glare and degrades the user’s
satisfaction on watching movies. Although there are some work done on ana-
lyzing the correlations among QoS attributes [4], there have been no efforts on
modeling and measuring service-level interference in terms of delivering physical
effects.

2.2 Predictive Service Selection and Dynamic Handover

Service provisioning in CPS environments needs to be done usually for a long
time, and therefore, it is essential to ensure the required quality of services for
a user task for a long period of time in a continuous and consistent manner.
However, most of the existing dynamic service selection algorithms consider the
quality of the candidate services at the time when they choose the services
rather than considering the future quality of the services [11]. Especially in
dynamic CPS environments, we cannot assume that the quality of a service
that is monitored at a time when the service is selected will be remained the
same throughout the service provisioning period. For instance, while a graphical
content is shown to a user by using a nearby display device, if the user moves
far from the device or the display suddenly blacked out, the content cannot be
perceived by the user effectively anymore.

To deal with the above problem, we have identified two research directions.
First, to maintain a certain level of service quality during a service provisioning
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period, dynamic service selection needs to be done in an iterative manner to
replace some of the services that show degradation of their quality with alterna-
tive ones. We call this process as dynamic service handover [1,2]. Second, service
selection should be done in a predictive manner, so that not only considering
the current quality of services but also we can predict the future quality of ser-
vices and make the service provisioning more stable. By performing predictive
service selection, the number of handovers, which may cause service-migration
overheads and service interruptions, can be minimized.

3 Previous Works

3.1 Service Effectiveness

In our previous works, we considered physical locations of mobile users and
devices, and selected services that are located in a spatially cohesive manner
centered by the user [1,2]. We defined a metric named spatio-cohesiveness to
measure how the user and the selected services are located cohesively in terms of
the devices associated with the services. However, one limitation of this method is
that the services that are located cohesively cannot guarantee the effectiveness of
delivering physical effects to users and improve the perceived service quality. As
a counterexample, if we consider only spatio-cohesiveness, the service selection
algorithm selects services based on the Euclidean distance between available
candidates and the user, so the WoT devices that are associated with the selected
services may be located behind a wall, and the user cannot perceive the effects
that are generated by the devices.

In our on-going work, we define a rule-based model of visual service effec-
tiveness, which evaluates whether the generated content can be perceived suc-
cessfully by a user or not. The model was designed based on domain knowledge
of the human vision system and simple physics of light, and contains three con-
straints. First, if the device is to far from the user, then the effectiveness is zero
because the user cannot recognize the content correctly. Second, if the device is
not in the Field of View (FoV) of the user, then effectiveness is zero because the
user cannot perceive the light from the device at all. Third, if the device is not
facing the user, then effectiveness is zero because the user would only see the
back of the device. Finally, service effectiveness is 1 if all constraints are passed.

3.2 Predictive Service Selection and Dynamic Handover

In our previous works, we adopted a reinforcement learning algorithm to effec-
tively select and dynamically handover services in a predictive manner [2]. Specif-
ically, we developed a service selection agent that makes decisions of selecting
services and trained the agent by using a reinforcement learning algorithm in a
simulated WoT environments. We found that the agent could learn the optimal
policy of selecting services in terms of spatio-cohesiveness. Our service selec-
tion agent is designed based on the Actor-Critic algorithm [7], Deep-Q Network
(DQN) [10], and Deep Reinforcement Relevance Network (DRRN) [6].
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Fig. 3. Research road map

4 Research Plans

Figure 3 shows the research road map of this work, and the shaded boxes indicate
the research issues that have been dealt in our previous works.

4.1 Service Effectiveness

Type-Specific Service Effectiveness Model. We have studied only the
visual service effects, and we plan to investigate the ways of measuring the effec-
tiveness of delivering acoustic effects. Furthermore, our current model of visual
service effectiveness is a simple rule-based model, so we plan to evaluate and
improve the practicality of the model by performing user-studies.

Service Interference. We plan to analyze service-level interference among the
services that generate similar or different types of physical effects, and develop a
service selection algorithm to choose cooperating services that have constructive
interference and avoid destructive interference.

4.2 Predictive Service Selection and Dynamic Handover

Ideally, the training of our service selection agent should be done in real-world
WoT environments, but we performed the training in simulated WoT environ-
ments. Training in real-world environments is known to be a challenging problem
for reinforcement learning researchers because collecting real-world samples costs
too much and difficult to make the agent experience the world in an iterative
manner. We have two research directions regarding to this issue.

Virtual Reality-Powered User Study. First, we will perform user-studies in
virtual WoT environments using Virtual Reality (VR) technologies. In some
recent works, VR technologies are used to mimic psychological experiments
through Web-based crowd sourcing platforms [9], and to let users experience
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elderly peoples’ sight by reducing visual acuity virtually [8]. Currently, we are
implementing virtual WoT environments using VR technologies to evaluate and
improve our visual service effectiveness model.

Learn from Human Preferences. Second, in a recent work, the researchers
studied how reinforcement learning agents can learn policies from guidance based
on human preferences rather than from reward signals [3]. We plan to adopt this
technique and conduct user studies to train our service selection agent following
human preferences data examined by real users.
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