
Multi-device Adaptation with Liquid
Media Queries

Andrea Gallidabino(B) and Cesare Pautasso(B)

Software Institute, Faculty of Informatics, Università della Svizzera italiana (USI),
Lugano, Switzerland

andrea.gallidabino@usi.ch, c.pautasso@ieee.org

https://liquid.inf.usi.ch

Abstract. The design of responsive Web applications is traditionally
based on the assumption that they run on a single client at a time.
Thanks to CSS3 media queries, developers can declaratively specify how
the Web application UI adapts to the capabilities of specific devices. As
users own more and more devices and they attempt to use them to run
Web applications in parallel, we propose to extend CSS media queries so
that they can be used to adapt the UI of liquid Web applications while
they are dynamically deployed across multiple devices. In this paper we
present our extension of CSS media queries with liquid-related types and
features, allowing to detect the number of devices connected, the number
of users running the application, or the role played by each device. The
liquid media query types and features defined in this paper are designed
and suitable for liquid component-based Web architectures, and they
enable developers to control the deployment of individual Web compo-
nents across multiple browsers. Furthermore we show the design of liquid
media queries in the Liquid.js for Polymer framework and propose dif-
ferent adaptation algorithms. Finally we showcase the expressiveness of
the liquid media queries to support real-world examples and evaluate the
algorithmic complexity of our approach.

Keywords: Liquid software · Media queries ·
Multi-device adaptation · Responsive user interface ·
Complementary view adaptation

1 Introduction

Liquid software [14] stands for a metaphor [20] that associates the shape of liquids
with software: as a liquid is able to flow into and adapt its shape to any container,
liquid software is able to flow across and adapt itself to fit on all the devices it
is deployed on. Liquid software allows to seamlessly migrate at runtime parts of
an application (e.g. individual components of the user interface) or the whole
application from a device to another. Liquid applications are responsive (e.g.
they are able to adapt to any device running it), but more importantly they are

© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 474–489, 2019.
https://doi.org/10.1007/978-3-030-19274-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_33&domain=pdf
http://orcid.org/0000-0003-4191-7766
http://orcid.org/0000-0002-2748-9665
https://doi.org/10.1007/978-3-030-19274-7_33

Multi-device Adaptation with Liquid Media Queries 475

also able to adapt to the set of devices simultaneously running the application.
Finally liquid applications can share their state across multiple devices while
keeping it synchronized [18].

Nowadays, due to the improvement of Web technologies with the release of
new Web standards (e.g. supporting full-duplex, direct communication between
clients), we are witnessing the shift towards more complex and decentralized
Web architectures [3], which in turn enable developers to create Web applications
featuring support for the liquid user experience.

In our previous works we showed how we designed liquid abstractions for
the data and logic layers in liquid Web architectures [5]. In this paper we focus
on the user interface layer as we introduce liquid media queries, an upgrade to
standard CSS3 media queries [2] that allows the developers to create their own
CSS style sheets that get activated when their Web applications are deployed
across multiple devices. While as part of the liquid user experience, end users
can control which user interface components are deployed on each device (e.g.,
by swiping or drag and drop), developers can use liquid media queries to declar-
ative describe how their applications can automatically react to changes in their
deployment environment.

The developers of liquid applications should be able to offer to the users
an automatic rule-based deployment mechanism for populating all of the users’
devices with pieces of the application they are running, because a misuse of
the manual liquid user experience may lead to non-intuitive deployments which
contradict with the developer expectations and intent. For example, in case of
a picture sharing application, it should be possible to provide constraints for
placing the components for taking and selecting pictures on the phones, while
the picture viewer component gets deployed on a larger display. This way, users
can select which picture to display from their personal smartphone photo library
and take advantage of a public device to have a shared slideshow.

The rest of this paper is structured as follows. After reviewing related work in
Sect. 2, we present the design of liquid media queries in Sect. 3 and show how they
are encoded within the Liquid.js for Polymer [4] framework (Sect. 4). The queries
drive the algorithms outlined in Sect. 5, which are used to automatically adapt a
distributed user interface across multiple devices [13] – as shown in the example
scenarios of Sect. 6 – making it possible to shift from the traditional responsive
UI adaptation [12], to a complementary one [15] able to automatically migrate
Web components across the set of heterogeneous devices running a liquid Web
application simultaneously.

2 Related Work

In the literature we can find several research topics concerning adaptive multi-
device user interfaces [19] such as Distributed User Interfaces (DUI) [11] or
Cross-Device Interfaces [17]. All deal with distributed component-based user
interfaces deployed across multiple devices [1]. User interface elements can be
distributed across the devices either synchronously or asynchronously: when we

476 A. Gallidabino and C. Pautasso

talk about asynchronous distribution the devices do not need to be connected
in parallel when the UI elements are moved, while for synchronous distribution
the devices need to be simultaneously connected [1].

In this paper we deal only with synchronous distribution, and design the
automatic complementary view adaptation for the components of liquid web
applications. In our scenario multiple devices are used together to accomplish a
common task, however each device may play a different role and thus display
different and complementary visual components. If the set of connected devices
changes, then the distributed user interface should flow and adapt accordingly
to the new configuration of the environment [10].

In the literature there are several attempts to use rules to describe cross-
device user interfaces. Most of them rely on centralised architectures for com-
puting the configuration and then the distribution of the components across
multiple device. Zorrilla et al. [21] discuss a centralized custom rule-based app-
roach that allows to assigns properties both to components and devices, it scores
the best targets for distribution, and then shows and hides the corresponding
components depending on the devices they are deployed on. Liquid media queries
are also rule-based as they extend the CSS3 media query standard. However, the
implementation of our algorithm is meant to be decentralized and involve every
device on which the application is running.

Husmann et al. [7] implement cross-device user interfaces in a decentralized
environment and define a similar rule-based approach. They do not associate
the rules to CSS media queries, nor they support multiple CSS style sheets that
need to be enabled or disabled on the target devices. Their approach instead
deploys the whole application on all the connected devices and then hides the
components that should not be displayed. Our approach is more fine-grained
as it moves across the devices only the components that need to be deployed,
migrating them directly from the device they are currently running on, instead
of deploying the whole application from a centralized server.

3 Liquid Media Types and Features

CSS3 media types and features can be used to adapt the user interface of an
application to multiple devices by associating a CSS style sheet with some
expected device characteristics. Standard media features consider qualities of
the Web browser and its environment (e.g., the screen size and resolution, the
output media, the device orientation). If the media query matches what the
device supports, the corresponding style is activated.

Standard CSS3 media queries are at the foundation for responsive user inter-
faces that adapt the Web application user interface layout to a single device at
the time. However, they lack sufficient expressive power to describe the user inter-
face adaptation in a multi-device environment. For this reason in this Section
we introduce and describe new media types and features for liquid web appli-
cations (Table 1). Together they enable developers to perform cross-device user
interface adaptation by declaratively constraining on which devices a component

Multi-device Adaptation with Liquid Media Queries 477

should be deployed on and by controlling which style sheets should be applied
depending on properties of the set of devices connected to their application.

Table 1. Proposed media types and features for liquid media queries.

Name Description

Features

liquid Shortcut for min-liquid-devices: 2

liquid-devices The number of connected devices

liquid-users The number of connected users

liquid-device-ownership Whether the device is private, shared or public

liquid-device-role The application-specific role of a device

Types

liquid-device-type The type of device(s) running the application

liquid and liquid-devices - Liquid software is strongly tied to multi-device
environments, especially when parallel screening scenarios are considered [5]. In
these scenarios liquid applications must be deployed on multiple devices in par-
allel. Understanding when the liquid application is running on multiple devices is
required for the adaptation. The liquid feature refers to any environment with at
least two connected devices, while the liquid-devices feature allows to tune this
value for specific uses cases. Similarly to CSS3 media queries, it is also possible
to define the minimum and maximum values for the liquid-devices feature by
setting the values for min-liquid-devices and max-liquid-devices (e.g. it is possi-
ble to dynamically change the view of the liquid application when there are at
least three connected devices instead of two, or create different views for specific
number of connected devices).

liquid-users - In multi-user parallel scenarios [5] the liquid application
is deployed across multiple devices and multiple users can interact with it at
the same time. The liquid-users media feature allows to adapt a user interface
depending on the number of users connected to the application. The features
min-liquid-users and max-liquid-users can also be used for creating styles for
single user applications (e.g. max-liquid-users: 1) and multi-user application
(e.g. min-liquid-users: 2).

liquid-device-ownership - The types of access granted to devices can be
either private, shared, or public. A private device is owned and used exclusively
by one user. Shared devices are owned by one user, but they can be used by
another. Public devices (e.g. public displays [16]) can be used by both registered
and authenticated users or anonymous guests.

liquid-device-role - The device role is an application-specific feature. In
Liquid.js for Polymer is possible to configure the connected devices and assign
roles to them (e.g. controller, console, multimedia display). When the role of
a device in a liquid application is not tightly bound to the type of device, the

478 A. Gallidabino and C. Pautasso

Listing 1.1. Liquid-style element

1 <liquid-style

2 liquid // Default: "true"

3 devices="" min-devices="" max-devices="" // Default: ""

4 users="" min-users="" max-users="" // Default: ""

5 device-ownership="" device-role="" // Default: ""

6 device-type="" // Default: ""

7 priority="" // Default: "1"

8 clone="" // Default: ""

9 css-media="" // Default: ""

10 > <!-- CSS Stylesheet --> </liquid-style>

device-role can be used by the developers to assign specific styles to the user
interface. When using the liquid-device-role feature, any device connected to
the application must be configured with the chosen role. The role meta data
associated with the device can change at any time, thus activating or deactivating
the corresponding media query.

liquid-device-type - The latest standard media types only distinguish
between screen, print, or speech devices. Depending on the context of the applica-
tion, it can be useful to distinguish the types of screen devices connected so that
they can be assigned to perform certain kind of tasks (e.g. desktop computers are
used more for working in an office) [9], while other devices are more convenient
in certain social situations (e.g., smartphones as opposed to laptops are more
convenient during meals) [8]. In our current implementation liquid-device-type
can be set to Desktop, Laptop, Tablet, Phone.

4 Liquid Style Element

CSS3 media queries do not allow us to define new query types or features, nor
they support customizing existing ones1. The solution we designed for extending
the standard media queries is to create a new Web component labeled as liquid-
style inside the Liquid.js for Polymer framework [4].

The liquid-style element shown in Listing 1.1 allows developers to write their
own liquid media queries and encapsulate a standard CSS style sheet that is auto-
matically activated when the media query expression is accepted by the device.
The liquid-style component allow developers to assign values to their attributes
(e.g., device-role) that are mapped to the previously defined liquid media types
and features by adding the liquid- prefix (e.g., liquid-device-role). Devel-
opers define new liquid media queries by assigning values to the corresponding
attributes, as shown in Listings 1.2 and 1.3.

1 https://drafts.csswg.org/mediaqueries-4.

https://drafts.csswg.org/mediaqueries-4

Multi-device Adaptation with Liquid Media Queries 479

Listing 1.2. Liquid media query expression mapped to liquid-style component
attributes

1 @media liquid and (liquid-device-type:phone) {

2 body { flex-direction: row; }

3 }

4 <!-- Maps to --->

5 <liquid-style device-type="phone">

6 body { flex-direction: row; }

7 </liquid-style>

Listing 1.3. Liquid media query expression including standard CSS media features
mapped to liquid-style component attributes

1 @media liquid and

2 (liquid-device-role:controller) and

3 (min-liquid-users :3) and

4 (min-height :900px) {

5 :root { background-color : red; }

6 }

7 <!-- Maps to --->

8 <liquid-style device-role="controller" min-users="3"

css-media="min-height :900px">

9 :root { background-color : red; }

10 </liquid-style>

In the first example, the liquid media query expression contains both the
liquid feature and the liquid-device-type type. Inside the liquid-style component
is not necessary to explicitly set the liquid feature to true, since it is the default
value for the element, while liquid-device-type maps to the attribute device-type.

The second media query expression contains the liquid media features liquid-
device-role and min-liquid-users, which map directly to the attributes device-role
and min-users. Furthermore the expression also contains the standard media
feature min-height, which is set into the css-media attribute as any non-liquid
part of the query expression.

4.1 Automatic Component Migration and Cloning

Automatic complementary view adaptation is achieved through the liquid media
query expressions that both define when styles should be enabled on a device
and constrain where the components should be migrated if any device with the
appropriate features connects to the application. The liquid-style component is
designed to be attached directly to a Liquid.js liquid-component [4] and bundled
with a standard Polymer component. The framework extracts the liquid media
query expressions from within every instantiated component and shares them
with all other connected devices so that they can check whether they would
satisfy the liquid media queries. Whenever a query is accepted on a device,
that device becomes a possible target for the migration of the corresponding
component. Since it is possible to define multiple liquid-style elements inside

480 A. Gallidabino and C. Pautasso

a component, each can have a different priority (see Listing 1.1). The priority
attribute helps the developers to define multiple styles for different environments,
while still being able to influence the migration process, as described in Sect. 5.

In addition to the migration, the liquid-style component provides another
liquid user experience primitive for deploying components across multiple devices
[5] called cloning, in which components are copied and kept synchronized across
two or more devices. Migration enables to redistribute pre-existing user interface
components across multiple devices, however it does not allow developers to
create adaptive user interfaces with rules for instantiating new components like
“component X needs to be instantiated in all public displays” or “component Y
needs to be instantiated on phones devices, but only once per user”. While the
migration of a component is obtained by simply adding a liquid-style element,
cloning components requires additional configuration.

The attribute labeled clone in Listing 1.1 is used to enable multiple instances
of the same source component to be cloned across multiple devices instead of just
migrating it on one of them. The clone attribute accepts values in the form of N−
feature, where N is a positive non-zero integer or the symbol ∗, and feature ∈
{user, device, phone, tablet, desktop, laptop, shared, public, private, role = X}.

The value N specifies the maximum number of instances of the source com-
ponent which should be cloned across the set of available devices which match
the liquid media query constraints in relation to the chosen feature. Their com-
bination allows to write cloning rules such as:
1-user, clone the component once per user, picking one of their available devices;
1-device, the component is cloned at most once per device type;
2-tablet, up to two component instances are cloned among all available tablets;
*-public, the component is cloned on all available public devices.
*-role=dashboard, the component is cloned on all devices playing the dash-
board role;

The clone attribute works in conjunction with the other attributes of the
liquid-style component, so that the liquid media query expression mapped from
the attributes must be accepted on the device so that it is considered a valid
cloning target.

5 Liquid UI Adaptation Algorithm

The UI adaptation algorithm operates on three distinct phases: constraint-
checking and priority computation, migration and cloning, and local component
adaptation. First it decides which devices are suitable for displaying a component
encapsulating the liquid media query, then it migrates or clones the component
on the highest priority device and activates the corresponding style sheet as soon
as the component is loaded on the target device.

5.1 Phase 1: Constraint-Checking and Priority Computation

The constraint-checking phase decides if there is a suitable device in the pool of
connected devices that satisfies the liquid media query expressions encapsulated
inside the components.

Multi-device Adaptation with Liquid Media Queries 481

Algorithm 1. Incremental Constraint-checking and Priority Computation
Data: Input: priorityMatrix, cloneMatrix
Data: Shared global state: components, devices, users, deviceConfigurations
Data: Event

1 if Event == component c created then
2 Add a new row in the priorityMatrix ;
3 forall d ∈ devices do
4 forall liquid-style in the created component do
5 Check if the device accepts the liquid-style and save the highest

priority in priorityMatrix[c][d] and in cloneMatrix[c][d];

6 else if Event == component deleted then
7 Remove the corresponding component row from the priorityMatrix ;
8 else if Event == device d configuration changed then
9 forall c ∈ components do

10 forall liquid-style in the component do
11 Check if the device accepts the liquid-style and save the highest

priority in priorityMatrix[c][d] and in cloneMatrix[c][d];

12 else if Event == device connected ‖ Event == device disconnected ‖ Event ==
user connected ‖ Event == user disconnected then

13 forall c ∈ components do
14 forall d ∈ devices do
15 forall liquid-style in the component do
16 Check if the device accepts the liquid-style and save the highest

priority in priorityMatrix[c][d] and in cloneMatrix[c][d];
Result: updated priorityMatrix and cloneMatrix

Algorithm 1 computes the matrix of valid target devices in which at least
one liquid media expression is accepted. The matrix has size #components ×
#devices. Each element represents with a positive integer the highest priority
value of all the accepted liquid media queries encapsulated in the component, or
zero if there are no accepted queries.

The matrix shown in (1) is the priorityMatrix produced by Algorithm1 dur-
ing the example scenario shown in Fig. 2, when both UserA and UserB are con-
nected. There are four instantiated components and seven devices connected to
the application. cvideo’s liquid media queries (see Sect. 6) are accepted by device
dlaptop, dtv. At least one query of priority 2 was accepted by device dlaptop and
at least one query of priority 4 was accepted by devices dtv. dphone1 accepts at
least one query encapsulated in components cvideoController, csuggestedV ideo, the
first one with priority 2 and the latter with priority 1.

priorityMatrix =

⎛
⎜⎜⎝

dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dtv

cvideo 0 0 0 0 2 2 4
cvideoController 2 2 2 0 0 0 0
csuggestedV ideo 1 1 1 3 0 0 0

ccomments 0 0 0 0 1 1 0

⎞
⎟⎟⎠ (1)

482 A. Gallidabino and C. Pautasso

cloneMatrix =
(dphone1 dphone2 dphone3 dtablet dlaptop1 dlaptop2 dtv

cvideoController 2 2 2 0 0 0 0
)

(2)

Algorithm 1 also computes the cloneMatrix shown in (2), which has a similar
structure to the priorityMatrix, but stores only the information about the com-
ponents that define at least one clone rule in the attributes of the liquid-style
elements they encapsulate. The matrix has size #componentsclone × #devices
where #componentsclone ≤ #components.

Liquid.js runs the Algorithm1 whenever one of the following events occurs:

– A component is created or deleted from a device. Creating or deleting
a components does not affect the acceptance of the liquid media queries of
any other components. When a new component is created (or removed), a row
is added (or removed) to the priorityMatrix and the algorithm recomputes
the highest priority score. If the component defines a liquid media query with
the clone attribute, then the highest priority value between the clone styles
is also stored in the cloneMatrix.

– The meta-configuration of a device is changed. When the device type,
ownership, and role change, the priority values of the corresponding column
are updated for both matrices.

– A device joins or leaves the current session. These events affect the
devices, min-devices, and max-devices features of the liquid media queries,
which triggers the recomputation of the whole priorityMatrix and cloneMatrix.

– A user connects or disconnects from the application. Changes to the
users, min-users, and max-users features also require a complete recomputa-
tion of the priorityMatrix and cloneMatrix.

5.2 Phase 2: Migration and Cloning

The migration and cloning phase uses the previously computed priorityMa-
trix and cloneMatrix to determine on which device each component should be
migrated or cloned on. The algorithm prepares a migration plan where each com-
ponent is assigned a given target device. The choice follows a best fit algorithm
so that the number of components running on each device is minimized, thus
spreading the liquid Web application across as many devices as possible. If the
component instances outnumber the available devices, some of the components
will be co-located on the same device still according to their priority. Equa-
tion (3) shows the resulting migrationPlan computed by the algorithm. cvideo is
migrated to dtv with the highest priority, ccomments is migrated to dlaptop with
the lowest. Once it is ready, Liquid.js uses the migration plan to redeploy the
components across the set of devices.

migrationPlan = [{cvideo, dtv}, {csuggestedV ideo, dphone1},
{cvideoController, dtablet}, {ccomments, dlaptop2}]

(3)

clonePlan = [{cvideoController, dphone3}] (4)

Multi-device Adaptation with Liquid Media Queries 483

After the migration step is complete, the cloning routine can start. This pro-
cess exploits the cloneMatrix computed in phase 1 and the clone rules associated
to the components that need to be cloned. All the devices that were not used in
the previous migration step are flagged as candidates for running a cloned com-
ponent. The candidates are grouped and prioritized following the clone rules,
the device that contains the source component that needs be cloned is never
considered as a possible target of the cloning, and every component which can
be cloned is associated with a list of target devices on which it can be copied.
Similarly to the previous step, the algorithm prepares a clone plan that is used
by Liquid.js for cloning components. Equation (4) shows the output clonePlan
computed with the matrix shown in Eq. (2) under the constraints of the liquid
media queries of the scenario depicted in Fig. 2 (see Sect. 6 for the constraints).

The algorithm that computes the migration plan attempts to minimize the
number of component instances running on each device. Also, it resolves ties by
selecting components based on the order of instantiation. This could be improved
by prioritising components with higher score values that have the least number
of possible targets devices. This approach works with an initial configuration
where all components are initially running on one devices, so the outcome does
consider the overall migration cost, seen in terms of the number of migration
operations to be performed and the time required to migrate a given component
instance. Minimizing such cost would become important when the algorithm
is applied to an input configuration of components already instantiated across
multiple devices.

5.3 Phase 3: Component Adaptation

The component adaptation phase happens once the migration and cloning is
complete. Each device checks for each instantiated component which liquid media
queries are accepted and activates the associated style sheet. The standard CSS
mechanisms for dealing with overlapping selectors take over.

5.4 Run-Time Complexity

The complexity of the algorithm we discussed in Sect. 5 depends on three fac-
tors: the number of devices (D), the number of the components (C), and the
number liquid-style elements (S). In the worst case, the run-time complexity of
Algorithm 1 is O(D ∗ C ∗ S). However, the actual run-time complexity depends
on the event that triggered the incremental version of the algorithm: – O(D ∗S)
for newly created components; – O(C) for deleted components; – O(C ∗ S) for
changed device configurations; – O(D ∗C ∗S) for all other events. The run-time
complexity of the migration and cloning phase is O(C ∗D2), and the adaptation
algorithm explained in Subsect. 5.3 has complexity O(S).

The execution for Algorithm 1 can be parallelized as the responsibility for com-
puting the priority Matrix columns can be offloaded on each device, assuming that
they all have access to the component liquid style definitions. Each device takes
care of updating their columnswhenever an event occurs and stores the result in the
application shared state, which is automatically synchronized among all devices.

484 A. Gallidabino and C. Pautasso

Video

Comments

Suggested
Videos Video Controller

Fig. 1. Liquid video player user interface split into four components: video, video con-
troller, suggested videos, comments

6 Liquid UI Adaptation Example

We show the expressiveness of liquid media queries by designing the liquid-style
components on a realistic multi-device video player application.

The video player is built with four components (see Fig. 1): – the video com-
ponent which displays and plays the video; – the video controller component
which allows the user to play/pause and seek to a specific time in the selected
video; – the suggested videos component that displays a list of recommended
videos, which can be selected to be played; – the comments component where
the user can read or post comments about the video.

These components can be deployed across different devices (phones, tablets,
laptops, and televisions) owned by one or multiple users.

Listing 1.4. The liquid-style elements defined for the video component.

1 <liquid-style device-ownership="shared" min-users="2"

priority="4">

2 <!-- CSS Style Sheet --> </liquid-style>

3 <liquid-style device-role="display" priority="3">

4 <!-- CSS Style Sheet --> </liquid-style>

5 <liquid-style device-type="laptop" priority="2">

6 <!-- CSS Style Sheet --> </liquid-style>

Listing 1.5. The liquid-style element defined for the comments component.

1 <liquid-style device-type="laptop">

2 <!-- CSS Style Sheet --> </liquid-style>

Listing 1.6. The liquid-style element defined for the video controller component.

1 <liquid-style device-type="phone" priority="2"

2 clone="1-user">

3 <!-- CSS Style Sheet --> </liquid-style>

Multi-device Adaptation with Liquid Media Queries 485

Listing 1.7. The liquid-style elements defined for the suggested videos component.

1 <liquid-style device-type="phone">

2 <!-- CSS Style Sheet --> </liquid-style>

3 <liquid-style device-type="tablet" priority="3">

4 <!-- CSS Style Sheet --> </liquid-style>

It is best to display the video component (see Listing 1.4) on the
devices with big screens, for this reason we define three liquid media query
expressions including the attributes device-type: laptop, device-role:
display, and device-ownership: shared with different priorities. The rule for
device-type: laptop has an higher priority over the rule defined for the com-
ments component (see Listing 1.5) so that whenever a laptop device is available,
the video component is migrated to the laptop. If the user configures the role of
any device and assigns the role display to it, then this device will have priority
over the laptop. Finally, if there are multiple users connected to the application
(attribute min-users:2), the priority for deploying the video component is given
to shared devices (e.g., a television).

Fig. 2. When a second user connects to the application the video component is
migrated to the shared device and a new instance of the video controller is deployed
on the new user’s phone.

The video controller component (see Listing 1.6) defines a liquid media query
expression with the attribute clone:1-user. The clone rule migrates the compo-
nent to a phone owned by a user, then it clones the component for every other
user, if they connect at least another phone to the application.

486 A. Gallidabino and C. Pautasso

The suggested video component (see Listing 1.7) defines two styles: one for
tablets and the other for phones. The tablet style has an higher priority with
respect to the phone style.

Scenario 1: Second User Connects a Phone. In Fig. 2 we show the component
redistribution for a set of devices before and after a second user connects to
the application. The initial configuration with only devices owned by UserA is
obtained following the priorities associated with the liquid-style elements of each
component. Starting from the suggested video component, which migrates to the
tablet, then the video component migrates to a laptop device, because the higher
priority rules it holds are not accepted by any other device. The video controller
migrates to a phone device, but it is not cloned on both available phones because
of the clone rule set to 1-user. Finally, the comments component migrates to
the second laptop device.

After UserB logs in the application and connects an additional phone device,
the user interface is redistributed as follows. The video component is migrated
to the television device because of the ownership and min-users rules have now
higher priority 4. The video controller component is cloned to UserB’s phone.

Fig. 3. After the television device changes role configuration, the video and comments
components are swapped following different priorities.

Scenario 2: Dynamic Device Role Change. In Fig. 3 we show an example of
dynamic change in the metadata configuration of the connected devices. The
initial device configuration is not accepted by at least one liquid media query
defined in the video controller component, and the target device for the video
and comments components points the same laptop. Starting from the highest

Multi-device Adaptation with Liquid Media Queries 487

priority, the suggested video component is deployed on the tablet and the video
component is deployed on the laptop. Since the laptop component is already
the target of the video component, the comments component migrates to the
television, which was ranked as the next possible target for migration. The video
controller component is deployed on the tablet device with the lowest priority.

When UserA assigns the role display to the television, the device metadata
changes. The user interface is redistributed and the video component migrates
to the television, because the liquid-style that defines the property device-role is
now accepted by the device with an higher priority. The comment component
migrates to the now available laptop device.

7 Conclusion and Future Work

This paper describes a rule-based approach that can be used by developers to
declaratively specify how the components within a liquid web application can
dynamically and automatically be deployed across multiple devices. The liquid
media query concept allows developers to define CSS style sheets for Web compo-
nents in relation to the dynamic multi-device environment they are expected to
be deployed on. We identify the main features defining the liquid environment
properties (e.g., the number of connected devices, their types, the number of
users, various kinds of device ownership, and the application-specific role played
by a device). The liquid-style element we designed takes care of encoding the
liquid media queries so that the Liquid.js for Polymer framework can automat-
ically choose where to deploy a component by evaluating which devices accept
the corresponding liquid media query constraints.

The algorithms in this paper are designed under the assumption that the
number of devices running a liquid Web application is limited and small. While
this is true for single user environments, in which the number of devices owned
by one user is small (3 on average [6]), further work is needed to assess the
scalability of the approach to deal with a large number of devices in a multi-user
collaborative scenario where it may become impractical to declare liquid media
queries matching all possible device combinations.

Another direction for future work concerns the use of logical operators such as
not and only found in standard CSS media queries but which are not supported
by the proposed encoding using attributes of the liquid-style element.

Acknowledgements. This work is supported by the SNF with the “Fundamentals of
Parallel Programming for PaaS Clouds” project (Nr. 153560).

488 A. Gallidabino and C. Pautasso

References

1. Elmqvist, N.: Distributed user interfaces: state of the art. In: Gallud, J., Tesoriero,
R., Penichet, V. (eds.) Distributed User Interfaces. HCIS, pp. 1–12. Springer, Lon-
don (2011). https://doi.org/10.1007/978-1-4471-2271-5 1

2. Frain, B.: Responsive Web Design with HTML5 and CSS3. Packt Publishing (2012)
3. Gallidabino, A., Pautasso, C.: Maturity model for liquid web architectures. In:

Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp.
206–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1 12

4. Gallidabino, A., Pautasso, C.: The liquid user experience API. In: Companion of
the The Web Conference 2018, Developers Track (TheWebConf2018), pp. 767–774
(2018)

5. Gallidabino, A., Pautasso, C., Mikkonen, T., Systa, K., Voutilainen, J.P., Taival-
saari, A.: Architecting liquid software. J. Web Eng. 16(5&6), 433–470 (2017)

6. Google: The connected consumer (2015). http://www.google.com.sg/publicdata/
explore?ds=dg8d1eetcqsb1

7. Husmann, M., Spiegel, M., Murolo, A., Norrie, M.C.: UI testing cross-device appli-
cations. In: Proceedings of the 2016 ACM on Interactive Surfaces and Spaces
(ISS2016), pp. 179–188. ACM (2016)

8. Jokela, T., Ojala, J., Olsson, T.: A diary study on combining multiple information
devices in everyday activities and tasks. In: Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI2015), pp. 3903–3912.
ACM (2015)

9. Kawsar, F., Brush, A.: Home computing unplugged: why, where and when people
use different connected devices at home. In: Proceedings of the 2013 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing (UbiComp2013),
pp. 627–636. ACM (2013)

10. Levin, M.: Designing Multi-device Experiences: An Ecosystem Approach to User
Experiences Across Devices. O’Reilly, Sebastopol (2014)

11. Luyten, K., Coninx, K.: Distributed user interface elements to support smart inter-
action spaces. In: Seventh IEEE International Symposium on Multimedia. IEEE
(2005)

12. Marcotte, E.: Responsive Web Design. Editions Eyrolles (2011)
13. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.: A toolkit for peer-to-

peer distributed user interfaces: concepts, implementation, and applications. In:
Proceedings of the 1st ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, pp. 69–78. ACM (2009)

14. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In: Cimi-
ano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 134–143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19890-3 10

15. Mori, G., Paterno, F., Santoro, C.: Design and development of multidevice user
interfaces through multiple logical descriptions. IEEE Trans. Softw. Eng. 30(8),
507–520 (2004)

16. Müller, J., Alt, F., Michelis, D., Schmidt, A.: Requirements and design space for
interactive public displays. In: Proceedings of the 18th ACM International Confer-
ence on Multimedia, pp. 1285–1294. ACM (2010)

17. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.: Interactive development of
cross-device user interfaces. In: Proceedings of the 32nd Annual ACM Conference
on Human Factors in Computing Systems, pp. 2793–2802. ACM (2014)

https://doi.org/10.1007/978-1-4471-2271-5_1
https://doi.org/10.1007/978-3-319-60131-1_12
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
http://www.google.com.sg/publicdata/explore?ds=dg8d1eetcqsb1_
https://doi.org/10.1007/978-3-319-19890-3_10
https://doi.org/10.1007/978-3-319-19890-3_10

Multi-device Adaptation with Liquid Media Queries 489

18. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: a framework for near real-
time P2P shared editing on arbitrary data types. In: Cimiano, P., Frasincar, F.,
Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 675–678.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19890-3 55

19. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, pp. 45–50. ACM (2012)

20. Taivalsaari, A., Mikkonen, T., Systa, K.: Liquid software manifesto: the era of
multiple device ownership and its implications for software architecture. In: 38th
Computer Software and Applications Conference (COMPSAC 2014), pp. 338–343
(2014)

21. Zorrilla, M., Borch, N., Daoust, F., Erk, A., Flórez, J., Lafuente, A.: A web-based
distributed architecture for multi-device adaptation in media applications. Pers.
Ubiquit. Comput. 19(5–6), 803–820 (2015)

https://doi.org/10.1007/978-3-319-19890-3_55

	Multi-device Adaptation with Liquid Media Queries
	1 Introduction
	2 Related Work
	3 Liquid Media Types and Features
	4 Liquid Style Element
	4.1 Automatic Component Migration and Cloning

	5 Liquid UI Adaptation Algorithm
	5.1 Phase 1: Constraint-Checking and Priority Computation
	5.2 Phase 2: Migration and Cloning
	5.3 Phase 3: Component Adaptation
	5.4 Run-Time Complexity

	6 Liquid UI Adaptation Example
	7 Conclusion and Future Work
	References

