®

Check for
updates

Amalgam: Hardware Hacking for Web
Developers with Style (Sheets)

Jorge Garza®)®, Devon J. Merrill®, and Steven Swanson

Department of Computer Science and Engineering,
University of California San Diego, San Diego, CA, USA
{jgarzagu,djmerrill, swanson}@eng.ucsd.edu

Abstract. Web programming technologies such as HTML, JavaScript,
and CSS have become a popular choice for user interface design due to
their capabilities: flexible interface, first-class networking, and available
libraries. In parallel, driven by the standards set by the mobile compa-
nies, embedded devices manufacturers now want to replicate these capa-
bilities. As a result, embedded devices that use web technologies for their
graphical interface have started to emerge. However, the programming
effort required to integrate web technologies with embedded software
hinders its adaption. In this paper, we introduce Amalgam, a system
that facilitates the development of embedded devices that use web pro-
gramming technologies. Amalgam does this by translating the physical
interface of embedded hardware components found (e.g., a push button)
directly into the HTML and CSS syntax. Our system reduces the pro-
gramming effort required to develop new embedded devices that use web
technologies, as well as adds new interesting capabilities to the design
of these. We show Amalgam’s capabilities by exploring three embedded
devices built using web programming technologies. Also, we demonstrate
how Amalgam reduces programming effort by comparing two traditional
approaches of building one of these devices against Amalgam. Results
show our system reduces the lines of code required to integrate hard-
ware elements into an embedded device application to a line of code per
hardware component added to the device.

Keywords: Rapid development - Embedded devices - 10T -
Web user interface - CSS - HTML

1 Introduction

With the rise of the Internet of Things (IoT) and smart, connected devices in
the home, workplace, and environment, the web and its underlying technologies
are pushing up against the real world in a wide range of domains. Connected
sensors, web-enabled appliances, and personal electronics all require software
that interacts seamlessly with the physical world (e.g., the user or the environ-
ment), cloud-based services, and local compute resources. The growing demand
for these devices means they need to be easy to program.

© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 315-330, 2019.
https://doi.org/10.1007/978-3-030-19274-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_23&domain=pdf
http://orcid.org/0000-0002-1174-510X
http://orcid.org/0000-0001-8327-1874
http://orcid.org/0000-0002-5896-1037
https://doi.org/10.1007/978-3-030-19274-7_23

316 J. Garza et al.

Building these smart, connected devices requires programmers to manually
bridge the gap between tangible user interfaces (e.g., buttons, knobs, and dis-
plays), sensors (e.g., temperature, light, and movement), and actuators (e.g.,
servos, motors, and lab equipment) and software.

On the software side, web technologies — Javascript, CSS, HTML and the
universe of libraries available for them — are state-of-the-art for developing rich
user interfaces, provide deep integration network services, and are the languages
of choice for a large population of developers.

Web programming technologies provide a clean separation between program
logic, interface structure, and appearance. They make it simple to re-style an
interface for a new device or adapt an existing interface to a new form factor
(such as desktop to mobile). These tools are so powerful that they have become
the default user interface design tools for fixed-function mobile devices, desktop
applications, and mobile applications.

For hardware, the tools of choice remain C and C++ which can easily handle
controlling hardware components (e.g., interrupts, pin assignments, and device
drivers). However, they make building user interfaces and networking communi-
cation more cumbersome.

Creating a seamless experience that blends on-screen, soft controls, sensors,
and actuators is challenging because the elegant separation that HTML, CSS,
and JavaScript have does not extend across the hardware/software boundary. In
practice, the tools available for hard and soft elements differ in syntax, operation
philosophy, and requirements.

This problem is ubiquitous in modern devices. The interfaces to embedded
devices — from personal fitness monitors to home appliances — have sophisti-
cated, polished, and powerful user interfaces. Even small devices (e.g., the Apple
Watch) typically run full-blown operating systems that can support high-level
languages for graphical user interfaces. According to an annual industry sur-
vey of embedded designers, 67% of new embedded designs utilize an operating
system, and 49% use graphical interfaces [17].

Embedded devices with graphical interfaces can have a blending of soft and
hard components that provide information to or from the user. Examples of soft
components can be on-screen buttons, range sliders, and indicators in the form
of text or graphics. Hard or physical components include tactile buttons, knobs,
and sensors (such as temperature, heart rate, and so forth), actuators (such as
servo motors) and hardware indicators (for example, status lights).

Previous attempts to address this problem simply translate the same com-
plex interfaces into higher-level languages, rather than deeply integrating hard
elements into the idioms and tools high-level languages provide. This does not
solve the problem: Programmers must still treat physical interface components
differently than their soft counterparts.

Indeed, several projects [21,23] provide JavaScript libraries for controlling
robots [6] and general embedded systems [18], but they leave behind the power
of CSS and HTML, preventing deeper integration with existing programming
toolkits and tools.

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 317

As a result, web programmers that want to build software that deeply inte-
grates software and hardware cannot leverage their own experience; the wealth of
training, documentation, and message boards; or the myriad web programming
frameworks that are available. Instead, they must develop custom solutions to
bridge the gap.

We propose Amalgam, a toolkit that extends web programming technolo-
gies across the hardware/software boundary by seamlessly including hardware
devices into Javascript, CSS, and HTML. Amalgam exposes the interfaces of
hardware components like buttons, sensors, lights, and motor as document object
model (DOM) objects with the same interface as their analogous HTML elements
(e.g., <button>, <input type=range>, etc.).

Amalgam lets programmers harden conventional DOM objects into hard-
ware device components using a simple CSS directive. The directive controls
whether a particular component appears on-screen or as a physical component,
and describes how the device connects physically to the computing platform.

As a result, moving a button from on-screen to the real world requires just
editing a CSS property and physically connecting the button. Application logic
does not change because the interface remains the same. More important, exist-
ing frameworks like Angular [1] and JQuery [15] work just as well with hard
elements as soft.

This paper makes the following contribution: By integrating hardware com-
ponent interfaces into the web user interface syntax, our system allows for rapid
development and prototyping of complex embedded devices. To the best of our
knowledge, this is the first work that explores the integration of hardware inter-
faces directly into the HTML and CSS syntax. Furthermore, with our system,
extra capabilities are observed.

For instance, hardware components can inherit CSS capabilities. For exam-
ple, the programmer can create complex lighting effects by using CSS to animate
the color of an RGB LED. Likewise, setting the HTML content of a that
has been hardened into a display can change the contents of the display.

We have implemented Amalgam as a Javascript framework and developed a
small but useful library of hardware components. We demonstrate Amalgam’s
capabilities by using these components to create three embedded devices with
rich hardware/software interfaces. We demonstrate that Amalgam works seam-
lessly with existing web-programming frameworks and libraries to build complex,
responsive interfaces for these devices. We also describe Amalgam’s implemen-
tation and measure how Amalgam makes it easier to develop these kinds of
devices.

Therest of this paper is organized as follows. Section 2 gives a overview of Amal-
gam, and Sect. 3 illustrates Amalgam’s capabilities by describing three Amalgam
devices. Section 4 evaluates the impact of Amalgam on developer effort. Finally,
Sect. 5 describes related work, and Sect. 6 presents our conclusions.

318 J. Garza et al.

2 Amalgam

Amalgam is a Web API that integrates hardware components into web program-
ming tools in a natural and transparent way. It provides a new style attribute
(hardware) that convert on-screen elements of web-based interfaces into a hard-
ware device. We call this process hardening the on-screen element. Hardening
allows, for instance, the replacement of an on-screen button with a physical but-
ton. The element’s interface remains the same, so the application software does
not need to change.

We have implemented Amalgam as a JavaScript library. It leverages Web
Components [11] and Web Assembly [13] to build DOM elements that interface
with hardware, and it provides a simple compiler that parses a web page’s CSS
style sheets and hardens elements according the hardware directives it finds.

This section describes Amalgam’s programming interface, presents a simple
example of Amalgam in action, describes the library of physical components we
have implemented, and what is required to create a new one.

Amalgam Application

Web App
a) Web Application HTML (Soft elements)

(]

o

<div id="display”>@</div> 3

<input id=“slider” type=“range” min=“0” max=“9” value=“0” Hard element Hard element =

oninput="“getElementById('display"').innerHTML = this.value”/> o
L A

b) Amalgam-enhanced CSS

-

!

#display { Amalgam Platform
hardware: physical-seven-segments (spi-port:

url('/dev/spideve.e'));
}

#slider {
hardware: physical-pot (adc-channel: 1, i2c-addr: @x48,
i2c-port: url('/dev/i2c-1"));

Web Browser

Al

}

c) Software components

Computing device (e.g., Raspberry Pi)

I
-

d) Hardware components

(SPI, 12, GPIO, etc) 4 | J

7 Hardware Components
u o @ &
\Potentiometer Tactile Push-Button Servo Motor J
Fig.1. Styling hardware with Fig.2. Amalgam Platform: An

Amalgam (a) Describes the inter-
face for a simple numerical display
controlled by a slider. Applying an
Amalgam-enhanced CSS style sheet
(b), produces the same on-screen ver-
sion of the interface (c) implemented
in hardware (d).

Amalgam application, a web app that
includes the Amalgam Web API, can
run on Amalgam Platforms which
includes a web browser engine that can
communicate with hardware through
the HAL.

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 319

2.1 Overview

Amalgam’s programming interface is simple by design. It lets programmers con-
vert existing DOM elements, which we call soft elements, into hardened elements
that exist in the real world.

Figure 1 shows a simple Amalgam application. In the figure, (a) shows the
HTML for a range <input> and a <div> along with the event callbacks to ensure
that the <div> displays the value of the <input>. (c) depicts the web page in
browser running on a Raspberry Pi [9].

The CSS code in (b) hardens both elements by setting their hardware
attribute. It converts the <div> into a seven-segment LED display and the
<input> into a rotary knob potentiometer. The photo (d) shows the hardware.
Turning the knob updates the display. No other changes are necessary to the
code.

The value of the hardware attribute describes what kind of hardware to use
(in this case, the knob and the display) and how the two components connect
to the Raspberry Pi. In this case, the display connects via SPI and the poten-
tiometer connects to the first channel of an analog-to-digital (ADC) integrated
circuit connected via 12C

Once hardened, the components continue to behave just like the original
soft components. It has the same DOM methods and emits the same events
(e.g., when the knob moves, the <input> emits onchange). If the hardened
component has a display capability (e.g., an RGB LED), the programmer can
style or animate it with CSS.

Since hard elements have the same interface as soft elements, existing applica-
tion code requires no modification. In particular, web programming frameworks
function as expected without any changes. Cleanly integrating hardware com-
ponents into web programming technologies offers multiple benefits.

— Easy Hardware Emulation. Amalgam decouples application design from
hardware design. Software developers can implement the software for a soft
version of a device long before the hardware is complete.

— Faster Design Iteration. Developers can rapidly explore different designs
by hardening different parts of a user interface without needing to modify the
application logic.

— Faster Development. Amalgam lets developers leverage the universe of
available JavaScript frameworks to quickly build complex applications.

— Automatic Web Integration. Because they are web applications, Amal-
gam applications have first-class access to web services, the cloud, etc.

Amalgam makes it easy for programmers to control hardware devices, but
they still need to assemble the device. Moreover, they need some familiarity
with the hardware and its limitations. Amalgam can replace any HTML ele-
ment with any hard component, but the programmer must be aware of potential
limitations. For example, setting the value attribute for <input>, used for set-
ting the slider position, when hardened into a normal potentiometer it will not
move the potentiometer. If the programmer needs that capability, he should use

320 J. Garza et al.

a rotary encoder or a motorized potentiometer. Likewise, the designer must be
aware of which pins connect the hardware components, and if those connections
change, the programmer must update the CSS.

2.2 Amalgam Platforms

Amalgam applications run an Amalgam platform. A platform includes a com-
puting device (e.g., a RaspberryPi), a web programming runtime that includes
JavaScript, DOM, and CSS (e.g., a web browser) that the applications run in
and a hardware abstraction layer (HAL) that provides low-level access to hard-
ware. A web server (running on the platform or remotely) serves the application.
Figure 2 shows the components of an Amalgam platform and their relationships
to an Amalgam application.

The HAL exposes a standard software interface (i.e., function calls) to com-
mon hardware interfaces (i.e., electrical connections to the platform hardware).
For the HAL in Amalgam we implemented a version of the Arduino Reference
Language [2] for Linux, we call it Linuxduino [7]. Linuxduino accesses low-level
hardware through Linux’s standard drivers, so it should be portable across the
many Linux-based embedded systems that are available. Since it is Arduino-
compatible, it supports a huge array of hardware components. Linuxduino was
implemented in C++ and compiled to web assembly, so it runs directly in the
JavaScript runtime.

The main difference between different Linux-based platforms is the set of
electrical interfaces they provide. For instance, Raspberry PI provides 26 digital
IO pins, two 12C interfaces, and two SPI interfaces, but no analog inputs or
outputs. In addition, the platforms use different naming schemes for their pins.

These differences are visible to Amalgam programmers so moving an Amal-
gam program between platforms requires adjustments to the CSS that hardens
the components. Likewise, if the hardware designer changes which pins connect
a particular device to the platform, the CSS must change as well.

2.3 The Amalgam Library

To explore Amalgam’s ability to accelerate the design of complex hard/soft inter-
faces, we built seven hard elements that match existing soft elements HTML
interfaces. Table 1 summarizes the elements Amalgam currently supports.

The range of possible hard elements is broader than the set of elements that
HTML provides, because many different hardware devices can replace a single
HTML element, and even similar hardware devices may connect to the system
through different interfaces.

For instance, the example in Fig. 1 hardened the <input> into a potentiome-
ter (or “pot”) that connected via one ADC channel. It could have instead used
a “rotary encoder” that connects via two digital IO lines or a “motorized slide
pot” that requires an ADC line and three digital 1O lines, two lines to control
the motor direction and one to get the user slider touch feedback.

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 321

The Amalgam library has entries for each of these alternatives. Their internal
software implementations are quite different despite appearing the same to the
application (i.e., as a range <input>).

Adding new hard elements to Amalgam requires two steps. The first is creat-
ing a web component that will interface with the hardware device. The compo-
nent encapsulates the firmware (written in JavaScript) that controls the hard-
ware via the HAL.

For example, Listing 1.1 is a class that implements a hard button by extend-
ing HTMLElement and providing three methods: get_observedAttributes()
defines the attributes this element supports. Whenever an attribute changes,
including when an element is hardened, attributeChangedCallback () runs and
gets updated. Finally, the runtime invokes connectedCallback() once after the
attributes are updated, indicating that the web component is ready. Here initial-
ization and configuration of hardware is carried out. In this case, a given GPIO
number, set in the GPIO attribute value, is configured as input and is physically
connected to a button. After that, another function sets up a call back that polls
the IO pin every 200 ms, which is enough to detect a button press, and emulates
a click when it detects a physical button press (lines 13-18). For this example,
the GPIO number can only be initialized once but it works for our embedded
device prototypes requirements.

1 class PHYSICAL_BUTTON extends HTMLElement A{

2 constructor () { super(); this.gpio; 1}

3

4 // Monitor attribute changes.

5 static get observedAttributes () {

6 return ['onclick', 'gpio'l;

7 }

8

9 connectedCallback () {

10 // Initialize GPIO

11 Linuxduino.pinMode (this.gpio, Linuxduino.INPUT);
12 // Start Reading GPIO

13 setInterval (() => {

14 // Call 'onclick' if physical button pressed
15 if (Linuxduino.digitalRead(this.gpio) == Linuxduino.HIGH) {
16 this.click();

17 }

18 },200);

19 }

20

21 // Respond to attribute changes.

22 attributeChangedCallback (attr, oldValue, newValue){
23 if (attr == 'gpio') {

24 this.gpio = parseFloat(newValue);

25 }

26 ¥

27

28 |}

29 | customElements.define('physical-button',PHYSICAL_BUTTON) ;

Listing 1.1. A hard element button code example which consist of a typical web
component code plus calls to hardware using the Linuxduino HAL library.

322 J. Garza et al.

a) Soft element
<input iype=“r‘ange” min=“0” max=“100” step=“1" id=“slider‘)”>

Y
soft HTML attributes

b) Amalgam-enhanced CSS
#slider {
hardware: physical-pot (adc-channel: 1, i2c-addr: 0x48,
i2c-port: url('/dev/i2c-1"));
}

c) Hard element -
<physical-pot type="range" min="0" max="100" step="1" id="slider"
adc-channel="1" i2c-addr="0x48" i2c—port="/dev/i2c—%;>
N

soft HTML attributes
A

</physical-pot> hard HTML attributes
Fig. 3. Amalgam compiler hardening of soft elements, (a) Shows a soft element

selected by an Amalgam-enhanced CSS property in (b). After compilation (c) shows
the hard element HTML which replaces (a).

Table 1. Amalgam’s hard elements

Hard element tag Amalgam version Compatible Notes
soft element
tag
<physical-pot> Rotary Potentiometer | <input Triggers ‘oninput’ when
(or “pot”) type=“range” > | potentiometer input

value is changed

<physical-encoder> Rotary encoder <input Triggers ‘oninput’ when
type=“range” > | potentiometer input
value is changed

<physical-motorized-pot> | Linear motorized pot | <input Triggers ‘oninput’ when
type=“range” > | potentiometer input
value is changed, also
setting the ‘value’
attribute can set the
slider position

<physical-rgb-led> RGB LED <div> Color is set to the CSS
background-color
property

<physical-button> Tactile push-button <button> Triggers ‘onclick’ event

at button press

<physical-servo-motor> Servo motor <div> Servo angle is set to
angle rotation of CSS
transform property

<physical-led> LCD text display Text is set with a hard
attribute
<physical-seven-segments> | LED numerical <spa> Numbers are set with a
display hard attribute
<physical-weight-sensor> Load cell <input Measured weight is

type=“range” > | available via Angular
ng-bind attribute

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 323

The final step is to register the new class with Amalgam so the program-
mer can use it to harden elements. The code in Listing1.1 defines a new
HTML tag called <physical-button> that the programmer can use directly
(e.g., <physical-button onclick="foo()" gpio="1"></physical-button>)
to create a hard button. The registration process makes the Amalgam CSS com-
piler aware of the class so it can replace an existing tag (e.g., a <button>) with
a <physical-button>.

2.4 Amalgam-Enhanced CSS Style

The hardware CSS style attribute controls if and how Amalgam hardens a DOM
element. The value of hardware describes which hard component should replace
the software component and describes which electrical interfaces the correspond-
ing hardware device will connect to.

Figure 3 exemplifies the Amalgam compiler. There (b) shows the CSS code
required to harden a soft element (a). Each value for hardware starts with the
name of the hard component that Amalgam will use to replace the soft element.
The remaining arguments are of the form attr(value) that Amalgam uses to
set the hard HTML attributes on the hard element (c) it creates. The hard
element as well will inherit soft HTML attributes from the soft element in (a) to
keep the same web application functionality without any changes. Our prototype
implementation uses a JavaScript CSS processor to scan a pages style sheets for
hardware declarations, and then harden the elements appropriately.

3 Examples

To demonstrate Amalgam, we built three devices': A video player, an commer-
cial food scale, and a dancing speaker. Each device started with an on-screen,
soft prototype. We hardened some of the soft components and built a physical
prototype of the device. The Amalgam platform used is Raspberry Pi running
Linux and Electron [3]. Electron is used to allow web applications to access the
file system and hardware through Node.js [8].

3.1 Video Player

The video player appliance (Fig. 4) demonstrates Amalgam’s ability to transform
an existing web page into the firmware for a physical device. The left side of the
figure shows the soft video player built with the Youtube Player API [14]. It
provides a familiar on-screen interface for playing videos, including the slider
that both displays and controls the playhead location.

! The code is available at https://github.com/NVSL/amalgam.

https://github.com/NVSL/amalgam

324 J. Garza et al.

The right side of the figure shows the appliance we built. Videos appear on
the screen, but all the rest of the interface is hard. The only difference in software
the CSS directives to hardened the three buttons, the volume control, and slider
(Listing 1.2). The appliance mimics all the behavior of the original, including
the progress bar. We hardened it into a motorized potentiometer that both the
software and the user can actuate.

3.2 Commercial Scale

The scale appliance (Fig. 5) shows Amalgam’s ability to simplify and accelerated
prototyping iterations. The scale has two users: the customer and the salesperson.
The salesperson can select products from an illustrated list, see the price per
pound, weigh the item, and adjust the scale by zeroing it or setting a tare weight
(to account for the weight of a container), and show the total. The customer can
see the item’s name and the total price displayed on a second display on the
reverse side.

Play/Pause _Prev || Next

Fig.4. Video Player: At left, a demo of a video player which provides a familiar
on-screen interface for playing videos. At right, Amalgam allows the same demo to
drive a fully-tactile interface, the only difference being the style sheet.

The soft version (at left) implements the application logic and these interfaces
and via soft elements. The developer can perfect the application logic (includ-
ing varying the weight on the virtual scale) in a web browser without access
to any hardware. The hardware prototype in the center provides a completely
soft salesperson interface. While the one at right uses hard components for the
buttons and numeric displays. Both of them have a hard customer display. The
only software difference between all three versions is a few lines of CSS.

We implemented the soft version using Angular [1], a sophisticated model-
view-controller library. Angular makes it trivial to “bind” the output of the
load cell to the weight display. Since Amalgam’s hard elements have the same
interface as normal DOM elements, this works just as easily with hard elements.

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 325

1 | <link rel="import" href="amalgam/amalgam.html">

2 A

3 |<!-- Soft elements -->

4 | <body>

5 | <button onclick="playPause ()" id="playPause">Play/Pause</button>

6 | <input type="range" min="0" max="10" step="1" value="0" id="progressBar">

7 | </body>

8 |<!-- Amalgam-enchanced CSS -->

9 | <style>

10 | #playPause {

11 hardware: physical-button(gpio:var(--gpio5));

12 |}

13 | #progressBar {

14 hardware: physical-motorized-pot (motora:var(--gpio23), motorb:var (
--gpio24),

15 touch:var (--gpio25), adc-channel: 2, i2c-addr: 0x48, i2c-port:url("
/dev/i2c-1"));

16 |}

17 | </style>

Listing 1.2. Video Player Code. At the top we show only two of the software
components of the Video Player web application, the play-pause button and the
progress bar. At the bottom the Amalgam-enhanced CSS required to harden the
software elements, process that is carried out by the compiler at run-time.

Customer Display

Weightg Price$ |Total $

250 15 438

VA= e}

"~ Avocado Total; 4:38

Simulated Simulated Internal Load Cell Zero and Tare Weight, Price and
Customer Display Weight Buttons Total Indicators.

Fig. 5. Evolving Scale: Amalgam allows a spectrum of different implementations
with minimal developer effort. From left to right: a software-only mock-up includes
a virtual, on-screen load cell and supports software development; a “soft” interface
version that uses a touch screen for the main screen and buttons and an LCD for the
rear screen; and hybrid version that uses 7-segment displays and tactile buttons.

3.3 Dancing Speaker

Our dancing speaker is a simple demo that (Fig.6) highlights the power of CSS
animations to control hardware. The speaker plays and “dances” to music by
waving its arms and flashing lights in time to music. It is a fanciful design that
a “maker” might assemble as a hobby project.

326 J. Garza et al.

Assembling the hardware for the dancing elements is simple, but writing the
software for control (e.g., beat detection and complex coordinated transitions)
is complex. Instead of writing that code from scratch, our design leverages an
unmodified, third-party library called Rythm.js [10] that can make any website
dance in time to the music. Rythm.js uses CSS classes (e.g. “rythm twist1”) to
represent background color and angle rotation changes to <div> tags. Applying
those classes to the servos and LEDs makes them dance just as well. Listing 1.3
shows the HTML and CSS implementation of our dancing speaker.

4 Impact on Development Time

Amalgam’s goal is to make it easier for developers to build physical devices with
rich interfaces. To quantify its effectiveness, we built two other versions of the
video player: One using pure JavaScript and another using JavaScript and C.

The “C+JS” version uses a simple server implemented in C that exposes
hardware components via a TCP socket. The JavaScript that implements the
application logic communicates with it via TCP sockets. The “Pure JS” version
calls the HAL directly to control the hardware and implements the same func-
tionality that Amalgam’s hard elements implement internally. We refer to this
as glue code.

— =

—_— ==
? = =

=

Fig. 6. Our dancing speaker

1 <link rel="import" href="amalgam/amalgam.html">

2 .

3 | <body>

4 <button onclick="playPause ()" id="playPause"

5 style="hardware: physical-button(gpio: var(--gpio5))"> playPause
6 </button> <!-- Play/Pause button -->

7 | <button onclick="prevSong ()" id="prev"

8 style="hardware: physical-button(gpio: var(--gpio6))"> Prev

9 | </button> <!-- Previous Song button -->

10 | <button onclick="nextSong()" id="next"
11 style="hardware: physical-button(gpio: var(--gpiol2))"> Next
12 </button> <!-- Next Song button -->
13 <input type="range" min="0" max="1" step="0.1" value="1" id="slider"

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 327

14 style="hardware: physical-pot(adc-channel: 1, i2c-port: url('/dev/i2c-1'),

15 i2c-addr: 0x48"> <!-- Volume -->

16 <div class="rythm colorl"

17 style="hardware: physical-rgb-led(spi-port: url('/dev/spidev0.0'))">

18 </div> <!-- RGB LEDs -->

19 <div class="rythm twistl"

20 style="hardware: physical-servo-motor(servo-channel: 0, i2c-port: url('/dev/i2c-1
'), i2c-addr: 0x48)">

21 </div> <!-- Servo Motor 1 -->

22 <div class="rythm twist2"

23 style="hardware: physical-servo-motor(servo-channel: 3, i2c-port: url('
/dev/i2¢c-1"'), i2c-addr: 0x40)">

24 </div> <!-- Servo Motor 2 -->

25 </body>

Listing 1.3. Dancing speaker code implementation using Amalgam-enhanced CSS.

Figure 7 compares the lines of code (LOC) required to integrate the hard-
ware components into each version of the application. The measurements do
not include the frameworks, libraries, or the server and communication code for
C+JS. We also include the lines of code added or changed in the application
code to accommodate the change from soft element to hard elements (labeled as
“invasive” changes).

The figure shows that Amalgam vastly reduces the effort required to harden
components: five lines of CSS in one file compared to over eighty lines of
JavaScript and CSS spread throughout the application for Pure JS and C+JS.
Amalgam avoids invasive changes completely.

100
N HTML/JS GLUE
90 === INVASIVE APP CODE
@ CSS
v 80
T
(o]
O 70
—
(o]
30 \
5¢
‘37:’ 50
T
<L %
©
L
5 30
Q
< 20
10
C+JS Pure JS Amalgam

Fig. 7. Programming Effort: Deeply integration of hardware components interfaces
into the web languages allows Amalgam to reduce the lines of code needed to integrate
these components into web application based electronic devices, therefore reducing
development time.

328 J. Garza et al.

5 Related Work

Amalgam seamlessly integrates hardware components into HTML, CSS, and
JavaScript to reduce development effort and facilitate faster prototyping. Below,
we place Amalgam in context with other projects with similar goals.

5.1 Integration of Hardware to Web Technologies

Several previous projects have focused on the integration of hardware to web
technologies. In particular, the Web of Things [20], and IoT protocols such as
MQTT [22] and SOAP [16]. These IoT protocols use web programming tech-
nologies (e.g., HT'TP, Web Sockets, XML, etc.) to interface remotely with hard-
ware devices which have integrated sensors and actuators. As hardware devices
become more powerful at a reduced cost [24] embedded developers are look-
ing to use web programming technologies to also interface locally with hard-
ware. Related efforts adapt JavaScript to run on constrained devices (e.g Jer-
ryScript [18]).

Web Browsers have become an extensively used platform that can run across
heterogeneous hardware and software platforms, and they provide access to a
limited number of hardware components like cameras and microphones [5] via
standardized JavaScript APIs.

As web technologies are becoming popular on embedded, mobile devices,
other standards for interfacing with hardware components have been included,
such as Bluetooth low energy [12] and sensors like accelerometers, gyroscopes
and ambient light detection [4]. Still, web browsers standards have not been able
to keep up with the myriads of hardware components currently available.

Developers who want to use non-standard (or less common) hardware compo-
nents with web technologies must do so in an ad hoc manner by developing cus-
tom communication protocols or “glue” libraries to provide access in JavaScript.
Projects like Jhonny-Five [6] provide these facilities for some hardware devices,
but it does not integrate cleanly CSS or HTML. It also does not provide easy
access to generic interfaces like 12C and SPI, limiting its generality.

5.2 Rapid Development of Embedded Devices

Many tools exist for the rapid software development of embedded devices. The
Arduino Language [2], minimizes the time to develop of embedded software on
microcontroller platforms by hiding their low level complexity behind a simple
library. TinyLink [19] reduces the lines of code by providing tools that generate
the underlying hardware interfaces and binaries required for a target platform.
Microsoft .NET Gadgeteer [25] uses a modular hardware platform that is deeply
integrated into the Microsoft Visual Studio IDE. Gadgeteer provides hardware
abstraction libraries for each supported module and facilitate development by
using C# as its main programming language.

Amalgam: Hardware Hacking for Web Developers with Style (Sheets) 329

Amalgam is similar in some respects to both Arduino and the software sup-
port in Gadgeteer: All three projects aim to integrate hardware support into the
host language (C for Arduino, C# for Gadgeteer, and Javascript/CSS/HTML
for Amalgam). Amalgam, however, improves on the usability of the others by
leveraging the flexibility and power of web programming technologies.

6 Conclusions

In this paper, we present Amalgam, a toolkit that deeply integrates hardware
devices into web programming technologies. Amalgam enables rapid develop-
ment and more flexible design iteration for embedded devices. Amalgam lets
developers replace soft interface components with hardware components just by
changing a CSS file. We implemented Amalgam and evaluated its capabilities
by prototyping three devices in a web browser and then “hardening” them into
standalone devices. Our results show that Amalgam can significantly reduce the
programmer effort required to implement the software for electronic devices.

References

1. AngularJS - Superheroic JavaScript MVW Framework. https://angularjs.org/

Arduino Reference. https://www.arduino.cc/reference/en/

Electron—Build Cross Platform Desktop Apps with JavaScript, HTML, and CSS.

https://electronjs.org/

Generic Sensor API. https://www.w3.org/TR/generic-sensor

HTML Media Capture. https://www.w3.org/TR/html-media-capture/

Johnny-Five: The JavaScript Robotics & IoT Platform. http://johnny-five.io/

Linuxduino - A JavScript Library for Communicating with Hardware in a Arduino

Style Programming for Any Linux Platform. http://www.w3.org/TR/html5

Node.js. https://nodejs.org/en/

9. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. https://www.

raspberrypi.org/

10. Rythm.js - GitHub Pages. https://okazari.github.io/Rythm.js/

11. Specifications - webcomponents.org. https://www.webcomponents.org/specs

12. Web Bluetooth Community Group. www.w3.org/community /web-bluetooth

13. WebAssembly. https://webassembly.org/

14. YouTube Player API Reference for iframe Embeds - Google Developers. https://
developers.google.com/youtube/iframe_api_reference

15. Volder, K.: JQuery: a generic code browser with a declarative configuration lan-
guage. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 88-102.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603023_7

16. Diirkop, L., Imtiaz, J., Trsek, H., Jasperneite, J.: Service-oriented architecture for
the autoconfiguration of real-time ethernet systems. In: 3rd Annual Colloquium
Communication in Automation (KommA) (2012)

17. EETimes: 2017 Embedded Markets Study: Integrating IoT and Advanced Tech-
nology Designs, Application Development Processing Environments, April 2017.
https://m.eet.com/media/1246048,/2017-embedded-market-study.pdf

w

N ot

®

https://angularjs.org/
https://www.arduino.cc/reference/en/
https://electronjs.org/
https://www.w3.org/TR/generic-sensor
https://www.w3.org/TR/html-media-capture/
http://johnny-five.io/
http://www.w3.org/TR/html5
https://nodejs.org/en/
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://okazari.github.io/Rythm.js/
https://www.webcomponents.org/specs
www.w3.org/community/web-bluetooth
https://webassembly.org/
https://developers.google.com/youtube/iframe_api_reference
https://developers.google.com/youtube/iframe_api_reference
https://doi.org/10.1007/11603023_7
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf

330

18.

19.

20.

21.

22.

23.

24.

25.

J. Garza et al.

Gavrin, E., Lee, S.J., Ayrapetyan, R., Shitov, A.: Ultra lightweight JavaScript
engine for Internet of Things. In: Companion Proceedings of the 2015 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Appli-
cations: Software for Humanity, SPLASH Companion 2015, pp. 19-20. ACM,
New York (2015). https://doi.org/10.1145/2814189.2816270. http://doi.acm.org/
10.1145/2814189.2816270

Guan, G., Dong, W., Gao, Y., Fu, K., Cheng, Z.: TinyLink: a holistic system for
rapid development of IoT applications. In: Proceedings of the 23rd Annual Inter-
national Conference on Mobile Computing and Networking, pp. 383-395. ACM
(2017)

Guinard, D., Trifa, V.: Towards the Web of Things: web mashups for embedded
devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009), in Proceedings of WWW (International World
Wide Web Conferences), Madrid, vol. 15 (2009)

Kuc, R., Jackson, E.W., Kuc, A.: Teaching introductory autonomous robotics with
JavaScript simulations and actual robots. IEEE Trans. Educ. 47(1), 74-82 (2004)
Locke, D.: MQ Telemetry Transport (MQTT) v3. 1 Protocol Specification. IBM
Developer Works Technical Library (2010)

Osentoski, S., Jay, G., Crick, C., Pitzer, B., DuHadway, C., Jenkins, O.C.: Robots
as web services: reproducible experimentation and application development using
rosjs. In: IEEE International Conference on Robotics and Automation (ICRA), pp.
6078-6083. IEEE (2011)

Schlett, M.: Trends in embedded-microprocessor design. Computer 31(8), 44-49
(1998). https://doi.org/10.1109/2.707616

Villar, N.; Scott, J., Hodges, S., Hammil, K., Miller, C.:NET gadgeteer: a platform
for custom devices. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Kriiger, A.
(eds.) Pervasive 2012. LNCS, vol. 7319, pp. 216-233. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31205-2_14

https://doi.org/10.1145/2814189.2816270
http://doi.acm.org/10.1145/2814189.2816270
http://doi.acm.org/10.1145/2814189.2816270
https://doi.org/10.1109/2.707616
https://doi.org/10.1007/978-3-642-31205-2_14

	Amalgam: Hardware Hacking for Web Developers with Style (Sheets)
	1 Introduction
	2 Amalgam
	2.1 Overview
	2.2 Amalgam Platforms
	2.3 The Amalgam Library
	2.4 Amalgam-Enhanced CSS Style

	3 Examples
	3.1 Video Player
	3.2 Commercial Scale
	3.3 Dancing Speaker

	4 Impact on Development Time
	5 Related Work
	5.1 Integration of Hardware to Web Technologies
	5.2 Rapid Development of Embedded Devices

	6 Conclusions
	References

