
An End-User Pipeline for Scraping
and Visualizing Semi-Structured Data

over the Web

Gabriela Bosetti1(B) , Sergio Firmenich1,2 , Marco Winckler3 ,
Gustavo Rossi1,2 , Ulises Cornejo Fandos1 , and Előd Egyed-Zsigmond4

1 LIFIA, Facultad de Informática, UNLP, 50th St. and 120th St., La Plata, Argentina
{gabriela.bosetti,sergio.firmenich,gustavo.rossi,

ulisescornejo.fandos}@lifia.info.unlp.edu.ar
2 CONICET, Buenos Aires, Argentina

3 i3S, Université Nice Sophia Antipolis, 2000, route des Lucioles, bât. Euclide B,
BP 121, Sophia Antipolis, France

winckler@i3s.unice.fr
4 Université de Lyon, LIRIS, INSA-Lyon, 7 Av. Jean Capelle, Villeurbanne, France

elod.egyed-zsigmond@insa-lyon.fr

Abstract. The Web is a vast source of semi-structured datasets that
are made readily available to support the construction of new knowledge.
Information visualization techniques have been demonstrated as a suitable
alternative for allowing users to analyze and understand a large amount
of data. However, the steps required for visualizing semi-structured data
obtained from the Web is not straightforward, and it requires proper treat-
ment before information visualization techniques could be applied. In this
work, we present a visualization pipeline for describing the fundamental
operations required for visualizing semi-structured data over the Web. We
employ Web Scraping and Web Augmentation techniques for supporting
interactive visualizations and solving tasks without changing the context
of use of the data. Our approach is duly supported by a framework includ-
ing scraping-, augmenting- and visualization-tools and it has been applied
to different kinds of websites to demonstrate its validity and feasibility. Our
ultimate goal is to expand the limits of our technology for improving the
user interaction with websites and creating new experiences for a better
understanding of large datasets.

Keywords: Infovis · Web augmentation · Web Scraping

1 Introduction

The Web is a massive source of public datasets. NetCraft1 reported over
1.8 billion sites in the World at the beginning of 2017 and the NationalPost
predicts2 that by 2020, the amount of data produced annually will increase

1 https://news.netcraft.com/archives/2017/01/12/january-2017-web-server-survey.
html.

2 https://nationalpost.com/news/big-data-and-analytics-taking-off-at-brocks-
goodman-school-of-business.

c© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 223–237, 2019.
https://doi.org/10.1007/978-3-030-19274-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_17&domain=pdf
http://orcid.org/0000-0002-3968-6738
http://orcid.org/0000-0001-9502-2189
http://orcid.org/0000-0002-0756-6934
http://orcid.org/0000-0002-3348-2144
http://orcid.org/0000-0003-1474-2083
http://orcid.org/0000-0002-1218-8026
https://news.netcraft.com/archives/2017/01/12/january-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/01/12/january-2017-web-server-survey.html
https://nationalpost.com/news/big-data-and-analytics-taking-off-at-brocks-goodman-school-of-business
https://nationalpost.com/news/big-data-and-analytics-taking-off-at-brocks-goodman-school-of-business
https://doi.org/10.1007/978-3-030-19274-7_17


224 G. Bosetti et al.

4,300%. The Web not only made easier access to raw data but also made it
available to everyone. In a recent survey published by data.world3, 63% of citi-
zens explore and interact with data to achieve a broad spectrum of tasks. The
Broadband Commission for Sustainable Development (set up by the ITU and
the UNESCO) estimates that the number of Internet users will represent half
of the world’s population at the end of 2019 at least [1]. In the context of the
increasing amount of data, information visualization might play a role in helping
many users to understand data. Visualization is indeed an important aspect of
data analysis that allows conveying information in a visual format highlighting
patterns, trends, and correlations among data [2].

Information visualization techniques are powerful tools specifically designed
to support the exploration and analysis of large datasets, helping users to deal
with complex decision-making tasks [3,4]. Information visualization techniques
might improve both users’ cognitive abilities and users’ performance with tasks
by relieving the working memory and improving decision accuracy, even on
elderly people [5]. Many visualization techniques are intended to be used by
specialized users (such as system administrators Mahendiran et al. [6]) but more
and more often information visualization techniques (such as CivilAnalysis [7])
are developed to larger audiences.

Currently, more and more Web sites embed information visualization tech-
niques to present their data in context. Nonetheless, this practice is not
widespread and most Web sites still only display semi-structured data. The oper-
ations required for visualizing semi-structured data obtained from the Web is
not straightforward, and it requires proper treatment before information visual-
ization techniques could be applied. While the questions related to the design are
central to the development of information visualization techniques, this paper is
interested in the process, the so-called visualization pipeline, that allows trans-
forming semi-structured data into graphical representations.

This paper investigates problems and possible solutions to build visualiza-
tions for helping end-users to analyze datasets available over the web. Our ulti-
mate goal is to develop a technology that allows end-users to collect and visualize
semi-structured data directly over the web site that publish the datasets. As we
shall see, the answer to this problem is intimately associated with the many
operations along the visualization pipeline. Hereafter, we present an approach
and a tool that combines Web Scraping, Web Augmentation, and Information
Visualization techniques. Moreover, we evaluate the validity and feasibility of
the tools by running them over different kinds of websites.

2 Background and Motivation

2.1 Information Visualization

Many aspects of a visualization design are driven by the type of data we are
looking at. In order to become understandable by users, data sources are often
transformed along a process (the visualization pipeline) that transforms raw

3 https://data.world/data-science-by-the-numbers.

https://data.world/data-science-by-the-numbers


An End-User Pipeline for Scraping and Visualizing Data over the Web 225

data into a graphical representation that fits on the user screen. This process is
shown at Fig. 1 encompasses four operations: (i) data acquisition; (ii) filter-
ing; (iii) visual mapping; and, (iv) rendering. It is worthy of notice that user
interaction (shown as dashed lines) might affect all operations in the pipeline.

Fig. 1. Information visualization pipeline, adapted from Munzner (2014) [2].

Data acquisition is one of the most complex problems to be solved, mainly
because the dataset might be available in various formats and most of visualizing
techniques are specifically designed to handle a particular type of data (such as
tables, clusters or lists). But there are exceptions such as Prefuse [8] which is an
extensible user interface toolkit for crafting interactive visualizations that can
handle both structured and unstructured data. And yet, the visualization process
with Prefuse starts with abstract data represented in some canonical form (such
as unstructured, graph, and tree data). In most cases, if the dataset is not on
the format of the tool, it becomes tough to get benefits of the visualization
technique.

When a dataset is loaded into the tool, it might contain information that is
not relevant for solving the problem we are looking at. So that filtering oper-
ations come in place to remove noise, to fix attributes (ex. wrong character
encoding), and to enrich the dataset (ex. add missing labels). An example of the
use of filtering operation as a key feature of tools is illustrated by WebGIVI [9]
which helps researchers to interpret large gene datasets by associating genes and
informative terms (iTerm) that are obtained from the biomedical literature.

The visual mapping is at the core of the design of information visualization
techniques. It allows the association of data attributes (such as gender and age)
to visual variables (as form, color, size or texture). Mapping can be hard-coded
or adjusted by the users. A good example is uVis Studio [10] which allows devel-
opers to compose visualizations by dragging-and-dropping building blocks, then
binding controls to data and visualizing results with immediate feedback. Tech-
niques such as dynamic bidding provide flexibility and interactivity for users to
customize their views according to their needs.

The rendering operations define how the visualization techniques are dis-
played to the users. At this step, the tools might perform geometric transfor-
mations to make data to fit in the screen. The rendering also defines if the
visualization is to be seen in a standard application or an element that can be
integrated into another context of use. A flexible rendering is illustrated here
by the framework Webcharts [11] which can adapt the rendering to three types



226 G. Bosetti et al.

of users: for developer who uses the framework for creating an application; for
the visualization developer, who extends the framework with new visualizations;
and for the end-user, who may dynamically change the visualization of the data
in the application, with no need of waiting for an update of the application that
incorporates the latest visualizations.

The pipeline, shown in Fig. 1, is part of all visualization tools regardless of the
technology used for the implementation. As far as Web technology is a concern,
there are many libraries based on JavaScript that manipulate DOM and CSS
to build visualization techniques that can be displayed inside the Web browser.
A very well-known library is D3 4 [12] which already offers a huge collection of
interactive visualizations. The very common use of these libraries is to feed the
visualizations with data that comes from some API or fixed data specified by
Website developers. In most cases, the creation and the use of visualization tech-
niques still remain something very technical that requires programming skills.

Viégas et al. [13] were pioneers in the democratization of information visual-
ization techniques over the Web; their Web site called ManyEyes allowed people
to create visualizations based on a predefined set of techniques available. Data
acquisition in ManyEyes was simplified at the most, requiring a simple cut and
paste; but it was not possible to connect tools for automating the information
extraction from the Web. In addition to that, the rendering of the visualizations
created by ManyEyes is not flexible and they cannot be integrated into other
contexts of use than the Web site.

2.2 Web Scraping and Web Augmentation
We suggest that information visualization of datasets over the Web can be
enhanced with Web augmentation and Web scraping technology.

Web Scraping allows transforming unstructured data available on the Web,
typically in HTML format, into structured data that can be analyzed and stored
analyzed in a central local database. For example, MeatBrain [14] is a tool that
extracts data from Web sites and, eventually, aggregates different data into a
new Web page. It is also very common that scrappers let their users define which
part of Web sites to extract, meanwhile others may do it automatically.

Web scrapers are often the base for other applications such as search engines,
Web automation, Web testing, and Web augmentation tools. It is interesting to
notice that, although not every Web augmentation tool employs Web scrap-
ing, most of them contain some scrapper functionality that is used to parse the
Web pages’ DOMs in order to materialize the augmentation. Web augmentation
typically allows to adapt existing third-party Web sites in order to add new con-
tent or functionality [15] and we suggest that it can be a suitable alternative to
integrate visualization techniques into Web sites that lack visualization features.

There are different alternatives to achieve Web Augmentation at client-, server-
or proxy-side. Client-side scripting is the most common alternative that can be
evaluated through browser weavers like Greasemonkey5) or browser extensions.
4 https://d3js.org/.
5 https://www.greasespot.net/.

https://d3js.org/
https://www.greasespot.net/


An End-User Pipeline for Scraping and Visualizing Data over the Web 227

Annotation [16] is a broadly used technique to configure these underlying Web
scrappers following a manual or semi-automatic approach. Actually, some Web
augmentation approaches based on annotations arose to improve information visu-
alization. For instance, Reform [17] allows developers to define general purpose
applications that require some information to work. In this sense, end-users are
responsible for the web content annotation from where that information must be
extracted.

Other Web augmentation approaches may work based on an automatic
scraper because their augmentation effect is not variable. VizMe [18] is a tool
supporting an approach for handling additional data and tasks through aug-
mented browsing. It is intended to provide extra information to the user in the
same context of use, therefore, avoiding the switching between Web pages. That
work emphasizes the visualization of such further data into the browsed Web
page; they deal with the problem of how additional information is communi-
cated to the user. They propose visualizations at different levels: visual cues at
micro-level for hypermedia items and additional layers at macro-level for Web
pages. At the micro-level, they present time-referenced Google data in a time-
plot when the user highlights some Web content. At macro-level, they offer a
wide range of visualizations on a floating panel, as a tag cloud based on the
important words from the text on a Web page, a search engine to Google extra
information or an editor to merge content from different pages. Similarly, another
approach (Enhanced Web Page Content Visualization with Firefox) use natu-
ral language processing and machine learning techniques to help users to get a
better overview of the pages they read, presenting graph-based visualizations.

3 Augmenting Web Sites with Visualization Techniques

In this paper, Web Augmentation (WA) is used to allow end users to build on-
demand visualizations of semi-structured data sources available over the Web
without changing the user’s context of use, which means that visualizations are
embedded into the web site users are visiting. The data acquisition is simplified
by allowing users to select raw data presented in the Web page and turn them
into visualization. This solution has the advantage of refreshing the visualization
automatically when the Web page is updated. We also propose to reuse the data
in search-results or with documents sharing the same structure. It is also possible
to track the changes for a concrete element in the DOM through time, in order
to analyze its evolution through visual means.

Providing users with a means to visualize any third-party semi-structured
Web content presents some challenges from the point of view of the Web Engi-
neering, mainly at the beginning of the visualization pipeline, where the data
acquisition happens. The different structures inherent to the data representation
in a page (HTML elements) must be understood to automatically extract and
interpret their content to create a dataset serving as the input for a visualization.
Moreover, first, it is mandatory to understand which are the HTML structures
that may represent a target dataset to be visualized in a new way.



228 G. Bosetti et al.

In this context, we formulated an initial set of questions: how many such
HTML structures do exist? Can users benefit from visualizing existing data
spread over the Web through alternative visualizations? Are augmentation-
based-visualizations useful to solve any general-purpose task? Or is it better
to use domain-specific ones? Does the user feel in control by using visualizations
through WA or does he want more expressiveness power? Is specialized domain-
knowledge a requirement for applying a visualization into any Web page? This
work is a first step towards answering those questions, and Web Augmentation
is presented as a bridge for joining Web Scraping and the benefits of visualiza-
tion techniques for solving tasks without changing the context of use where data
appears. It is not just about expanding the limits of technology but also enhanc-
ing the user experience in any Web page –even third-party– by the addition of
a new feature. We aim at covering the gap between the existing Web scraping
and visualization tools and techniques. In this approach:

1. users –with no need for knowledge in low-level scraping– can abstract raw
data on a Web page into a data model specification (DMS),

2. users choose and apply alternative visualizations for the DMS
3. a repository of infovis augmentations do exist
4. developers can extend the existing visualizations in case existing specific visu-

alizations do not cover a concrete task or domain, so users can apply them
on any existing and third-party Web page

4 Web Sites: A Perspective on Content,
Structure and Time

A first step towards the visualization of third-party raw data in the Web is to
analyze how much and how diverse are the HTML structures presenting homo-
geneous content on the Web. To do so, we choose to analyze a sample of sites
that can match into a table dataset type [2]. In this sense, our target datasets
may be referred to as tables, which have rows (members), columns (variables)
and cell values (datums).

To avoid sample bias, we took the list of sites from the top 50 popular sites
according to Alexa’s ranking for Argentina6 as the target sample. We considered
all the sites with a collection of at least five homogeneous elements represent-
ing a dataset member with more than a single variable. Regarding the dataset
variables, only those that are present in all occurrences of the dataset members
were considered. Besides, HTML elements not containing textual raw-data were
not taken into account (e.g. images with no alternative text, «like» or «share»
action buttons). The target datasets were searched in a limited part of the site:
the homepages of the sites. If there was no data to visualize in the homepage
(e.g., Google’s default page) we triggered a search using the search engine of
the site, to check if their Search Engine Results Pages (SERP) may contain
items that may represent a dataset. The remaining pages of the sites were not
6 https://www.alexa.com/topsites/countries/AR Dec. 18th, 2018 at 22:00 h UTC-3.

https://www.alexa.com/topsites/countries/AR


An End-User Pipeline for Scraping and Visualizing Data over the Web 229

analyzed. If more than one possible dataset was detected for a site, we studied
only the one with the most members and variables, respectively. The keywords
used in the case of searching were «facts» and «certificado», respectively. It is
worth mentioning that all the sites have been analyzed in a private-browsing
tab, except for the ones that require log-in (e.g., Facebook or Twitter). From the
50 sites, we kept only 42 sites for analysis; we discarded 3 sites not meeting the
requirement of content suitable for all audiences, 2 sites with the same domain,
2 sites that were offline at the time of analyzing and 1 site with a broken engine.

From the 42 sites, only 10 did not present any data with a heterogeneous
structure. This leaves us with 76% of sites with data that may be visualized
in an alternative way. These sites use different HTML elements to represent
the data: 2 of them do it through a table («table»), 3 through an ordered list
(«ol»), 5 through an unordered list («ul»), 6 through a set of article elements
(«article»), and 16 through a hierarchy of homogeneous divs («div»). As shown
in Table 1, we classified those cases in 3 categories: HTML tables, HTML lists
and HTML hierarchical containers. In this work, we propose at least 3 kinds of
dataset extractors.

Table 1. HTML structures

Dataset presentation HTML Table HTML list HTML hierarchy
Dataset table ol/ul div
Variables/columns thead > tr - -
Members/rows tbody > tr li div/article
Datum/cell td > * * *
Occurrences in the sample 2 8 22

Regardless of such general HTML structure, different combinations of inner
elements were found to present the datasets datum or table’s cell value, which
is the meaning of the «*» symbol in the Table 1. For instance, in YouTube’s
site we considered two anchors presenting the video title and video category,
respectively, and two spans for the views and the date of publication. Since these
data are shared by all the analyzed instances, they represent a variable of the
dataset. The shared variables make it possible to claim that raw-data in existing
and popular Web sites is comparable, and that it may be the target of our
proposed visualizations. On average, the amount of dataset members analyzed
ranged from 5 to 74, with an average of 18.6 and a standard deviation of 14.8
occurrences. We also found an average of 3.4 variables of the members, ranging
from 2 to 6, and with a standard deviation of 1.2 variables.

We also observed that different mechanisms must be implemented for updat-
ing the visualization when it is required to include extra members from a dataset
presented in a different context (e.g., on the second page of a dynamic table, or
a SERP). Just 8 of the 32 sites with possible datasets had paginated members.



230 G. Bosetti et al.

Therefore, in the 75% of the cases it was possible to retrieve extra members
for the dataset through a user interaction: in 11 cases when the page is scrolled
down, and in the remaining cases when a single link is clicked (10 cases, e.g., the
«next» anchor), multiple links (2 cases, e.g. «page 1» or «page 2» anchors), or
a button (1 case).

Obtaining such extra members (e.g., more videos appearing at the bottom of
the page when the user scrolls down on the search engine of YouTube) or access-
ing a similar page which presents different data (e.g., two different pages of a
YouTube video), allow reusing the same structure understanding. Such elements
can be referenced by evaluating different Web locators [19], like XPath, CSS or
JQuery selectors. We previously worked on the definition of user-defined scrap-
pers capable of extracting similar elements loaded in different contexts [16]. So
far, everything seems to be a question of how to map different HTML structures
to the constitution of a dataset, and how to reuse the initial selectors to get more
HTML elements to consider when the information is paginated. However, it is
also a matter of time, since using the same selectors allows obtaining the same
information at different times. Moreover, although a website may change over
time (as you can check by using the Internet Archive 7), Aldalur and Díaz [19]
presented an approach for generating regenerative locators that use contingency
data to evaluate alternative location strategies in case the DOM of a website
changes. They validated their approach by taking a sample of a webpage from 8
websites every three months, and they find out that using their resilient locators,
they were able to successfully regenerate the locators of the 73% of the samples.
Therefore, using a locator over time for extracting elements and creating one or
multiple datasets over time is plausible.

5 AlVis: An End-User Tool for Web Content
Visualization

In the previous section, we presented the typical information visualization
pipeline adapted to end-user activities in scenarios where they want to add
alternative visualization to existing and third-party Web content. Moreover,
we presented an analysis that we have made over several kinds of Web page’s
DOM structures in order to understand how to extract datasets from these semi-
structured content. In this section, we present AlVis (ALternative VISualization
through web augmentation), our end-user tool for visualizing Web content which
is deployed as a Web extension 8. We first present the use process of this tool,
explaining the matching between interaction steps in the tool with the steps
explained in the adapted pipeline. Later, we show the tool in action through
some examples.

7 https://archive.org/web/.
8 AlVis prototype is publicly available https://github.com/gbosetti/alvis.

https://archive.org/web/
https://github.com/gbosetti/alvis


An End-User Pipeline for Scraping and Visualizing Data over the Web 231

Fig. 2. AlVis use process for visualizing third-party raw-data in Web pages

The AlVis process (Fig. 2) requires six interaction steps by end-users:

1. DOM annotation (corresponds to the Data Acquisition step in the pipeline):
define which part of the current Web site’s DOM will be extracted. This step
can be manual or semi-automatic. For a manual step, an annotation tool is
required such as the one we have defined in previous work, called WOA (Web
Objects Ambient) [16]. The semi-automatic way requires that users choose
some semi-structured data automatically discovered by the AlVis extractors.
For this regard, and based on the analysis presented in Sect. 4, we have defined
the following extractors:

– TableExtractor. Through this strategy, all the HTML tables present in the
DOM are retrieved and analyzed. The extractor checks for the definition
of the «thead» to identify the variables of the dataset, and the «tbody» to
generate the output. In both cases, what is extracted are the children of
such elements: a collection of «tr» elements. If multiple elements compose
a «tr» element, these are split into new columns, in case the user needs
to use them separately. The name of the column is the same but with the
addition of an index.

– ListExtractor. This strategy retrieves all the «ol» and «ul» elements from
the current document. For each list, it takes all the «li» elements as
possible members of the dataset. The variables are generated in a second
round, by traversing all the possible members of the dataset and keeping
just the leaf children elements that are present on all the members, based
in its type. This means that if an «ol» has 5 «li», and only two of them
have an element «anchor», then it is not considered as a variable. Under
this strategy, the variables exist but their names are not representative: it
is a combination of the name of the DOM element type concatenated with
an index. The user will be able to redefine his name when manipulating
the data after its extraction.

– HierarchyExtractor. In this case, the variables are created in the same
way as for the ListExtractor. What’s different is the detection of sim-
ilar elements representing the members of the dataset to be extracted
(as the «li» elements inside a list for the ListExtractor). In this case,



232 G. Bosetti et al.

the detection of similar elements is conducted by traversing the full body
of the page’s document looking for potential «container» elements that
are not a «script» element, and that contain more than five children.
Then, the children of each potential container are analyzed to check that
more than the 50% of the elements are instances of the same type of
element (e.g., articles, divs, ytd-video-renderer). If so, the instances of
the predominant kind of element are considered as the members of the
dataset to extract, and the variables are extracted in the same way as for
the ListExtractor.

Both methods (manual and semi-automatic) generate a DOM annotation
template that is stored in the AlVis local storage, in this way AlVis can be
aware of the desired data structure for a particular Web site when this is
loaded again in the future.

2. Data-Items materialization (corresponds to the Data Acquisition step in the
pipeline): materialization is the process by which a DOM extractor parse the
Web page’s DOM to extract the data and their underlying data model. For
any of the extractors defined for AlVis, the output is always a JSON that
would be used for the further steps in this process.

3. Data transformation (corresponds to the Filtering step in the pipeline): some
data could require to be curated by end-users before going on into the visual-
ization steps. For instance, if some value extracted must be passed through a
transformation function, or even if the data model requires some refinement,
such as adding or changing naming columns heads. Moreover, this interaction
steps allows users to delete data that is not required for the visualization.

4. Visualization selection (corresponds to the Visual Mapping step in the
pipeline): This step allows end-user to choose a kind of visualization from
the currently available ones. Although the AlVis tool includes a framework
for adding new kinds of visualizations, the current prototype already covers
the most common ones. It is important to mention that for the same dataset,
several visualizations can be used.

5. Visualization customization (corresponds to the Visual Mapping step in the
pipeline): Once a visualization is chosen, the user may customize which values
to use, and other several aspects related inherent to the visualization being
configured.

6. Augmentation method selection (corresponds to the Rendering step in the
pipeline): finally, the last interaction steps in AlVis let users define how the
alternative visualization must be rendered. Visualization could be added in
a pop-up window or can be woven in the original Web page’s DOM with
different insertion strategies.

To illustrate this process, we present an example. For the sake of space,
the example is based on using a semi-automatic extraction. The process starts
with the user navigating the Web and identifying a raw dataset. For instance,
the Latest Human Development Ranking by the United Nations Development
Programme 9. A screenshot of the page without augmentations can be found
9 http://hdr.undp.org/en/2018-update.

http://hdr.undp.org/en/2018-update


An End-User Pipeline for Scraping and Visualizing Data over the Web 233

in Fig. 3. In such page there is a table reporting variables as «the expected
years of schooling» and «the gross national income» by country. Consider that
a user wants to take his customized ranking as the dataset to visually identify
the countries with higher gross national income and their proportion concerning
the countries with the lower values. In the same Figure, it can be observed
that the page is presenting 25 results by page. The user may want to create
a visualization just with such a number of members, or he may want to do it
with all the paginated results in the HTML table. For a matter of space, we will
explain the simplest case.

Fig. 3. A capture of the HTML table to extract data from

The first step is to extract the data to create the user’s dataset of interest.
It involves using one of three strategies, matching the structures mentioned in
Table 1. All the extraction techniques generate the same output: a JSON with
the variable names, and the members of the dataset. In case any element is not
detected, it is defined as «undefined».

Under our approach, such extractors are evaluated when the user clicks the
browser action of the AlVis extension (first step of Fig. 4); it is a button in
the browser’s toolbar that can be clicked to evaluate all the extractors with
the content of the current page. From that moment on, an «extract» button is
added at the bottom of all the DOM structures recognized by the extractors
in the current webpage (step 2 of Fig. 4 ) without any extra user intervention,
transparently performed.

When the user clicks the «extract» button, the extracted dataset is shown
below in a new div under the HTML structure, which presents an editor to
manipulate the dataset and use it through different visualization techniques.



234 G. Bosetti et al.

This is the second step the user must carry out. For instance, she can change
the variable names, remove variables or members, transpose the matrix, apply
operators to the data. A screenshot of the extracted data presented through the
editor is shown in the last step of Fig. 4.

The results of the two first steps are the transformation of raw data into a
dataset. Both steps can be envisioned as part of what Card et al. [20] calls «Data
Transformation» in their well-known model. What follows is the visualization
selection and its customization.

Regarding visualization selection, our approach contemplates a framework
where the visualizations represent an extension point. We provided a base of visu-
alizations, like the ones listed at the top of Fig. 4, but these can be extended.
The visualizations are presented according to the dataset characteristics. For
instance, some of them require to have a mandatory variable name or are
designed for a concrete kind of data: continuous, discrete or categorical. How-
ever, such a process is transparent for the end user, who needs to choose any
available visualization and configure it if required. For instance, in Fig. 4 the user
is required to choose two variables as the input for the X and Y axis of the bar
chart. He can also use the control at the bottom to zoom in or zoom out part of
the graph, including or excluding some bars on both sides of the graph.

A playlist with a video demonstration concerning this and other scenarios is
also available online 10.

6 Validation

Before starting with the development of our prototype, we checked how much
data available in the Web is a potential target to be visualized. Starting from
the same sample described in Sect. 4, which was focused on the kinds of HTML
structures, we also analyzed if such structures have data that makes sense to
visualize without making data transformations. We discarded all the cases with
no numerical variables and no repeated textual values or dates (e.g., a new’s
dataset with just two variables: «title» and «description»). The number of high-
lighted sites was 10, leaving 22 sites with data that could make sense for some
user to visualize. In order to check the extractors, and for the sake of space, we
took the two first sites from the sample matching each type of HTML structure
(Table 1), and we used our described techniques to check if the proposed extrac-
tion techniques succeeded. The sites chosen were youtube.com, clarin.com.ar,
wikipedia.org, twitter.com, blogger.com, and bna.com.ar. The extractors were
successfully tested in the six sites, these were capable of extracting all the default
members of the dataset and observed properties, with no exception.

10 https://www.youtube.com/playlist?list=PLHuNJBFXxaLBFgtbBCZ7kOUUFd-
Z3aaJK.

http://youtube.com
http://clarin.com.ar
http://wikipedia.org
http://twitter.com
http://blogger.com
http://bna.com.ar
https://www.youtube.com/playlist?list=PLHuNJBFXxaLBFgtbBCZ7kOUUFd-Z3aaJK
https://www.youtube.com/playlist?list=PLHuNJBFXxaLBFgtbBCZ7kOUUFd-Z3aaJK


An End-User Pipeline for Scraping and Visualizing Data over the Web 235

Fig. 4. Extracting and visualizing data from a page



236 G. Bosetti et al.

7 Conclusions and Future Work

As the reader knows, the Web is a powerful platform for an extensive range of
user activities, among which learning from the available information is not very
well supported. As we know them, Web Browsers are a tool for browsing Web
sites, but these hardly have evolved to support the complexity of available infor-
mation, although there have been considerable advances in support of security
issues as well as to support the technologies that have arisen during almost 30
years of Web applications evolution.

The kind of approach we present in this paper, and other compelling works in
the context of Web mashups and Web Augmentation, aim to adapt Web browsers
to reach new kinds of interactions that empower end-users to interact with Web
content beyond the interactions that Web applications and Web Browsers allow.
From our humble point of view, these approaches are vital given the advance of
users capabilities that are very often not adequately addressed.

In this work, we analyze how information visualization would improve data
consumption and use by end-users. We mainly analyze how the formal pipeline
for information visualization should be adapted or applied by end-users (which
are not necessarily experts in this area) for visualizing Web content. The engi-
neering problem behind our approach is threefold: one problem is scraping
semi-structured data from Web under demand into the Web browser to create
datasets, a second problem is how to obtain visualizations from these datasets,
and finally how to plug in-context new pervasive visualizations for any Web site.

At this moment, we are designing a user evaluation for our approach to pro-
cess and visualize Web information. We firmly believe in the idea that this kind of
browser’s behavior would make the user’s tasks faster and also the user’s under-
standing of information deeper. Moreover, we plan a more in-depth analysis of
multiple websites to understand how much content share a similar structure and
find which are the best alternatives for generating proper selectors. At the same
time, we are studying how information can be usefully extracted to help users in
its analysis and use in other ways. For instance, for creating dynamic datasets
using temporal information that Web sites change with a specific frequency.
Furthermore, using user-driven annotations for extracting complex instances of
information that are composed without a semi-structured presentation enabling
automatic extraction.

Finally, other more technological aspects for making easier the use of this
tools are devised, such as repositories for quickly sharing and maintaining visu-
alizations and the implementation of a library that allows Web developers to
apply this kind of visualizations internally.

References

1. Sanou, B.: Measuring the information society report 2018. In: International
Telecommunication Union, Geneva, Switzerland (2018)

2. Munzner, T.: Visualization Analysis and Design. AK Peters/CRC Press, New York
(2014)



An End-User Pipeline for Scraping and Visualizing Data over the Web 237

3. Yi, J.S., ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of
interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6),
1224–1231 (2007)

4. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. Craft Inf. Vis., 364–371 (2003)

5. Price, M., Crumley-Branyon, J., Leidheiser, W., Pak, R.: Effects of information
visualization on older adults’ decision-making performance in a medicare plan
selection task: a comparative usability study. JMIR Hum. Fact. 3(1), (2016)

6. Mahendiran, J., Kirstie Hawkey, N.Z.H.: Exploring the need for visualizations in
system administration tools. In: CHI 2014 Extended Abstracts on Human Factors
in Computing Systems, pp. 1429–1434. ACM (2014)

7. de Borja, F.G., Freitas, C.M.D.S.: CivisAnalysis: interactive visualization for
exploring roll call data and representatives’ voting behaviour. In: 28th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI 2015), pp. 257–264.
IEEE Computer Society (2015)

8. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 421–430. ACM (2015)

9. Sun, L., et al.: WebGIVI: a web-based gene enrichment analysis and visualization
tool. BMC Bioinf. 18(1), 237 (2017)

10. Pantazos, K., Kuhail, M., Lauesen, S., Xu, S.: uVis Studio: an integrated develop-
ment environment for visualization. Vis. Data Anal. 2013, 8654 (2013)

11. Fisher, D., Drucker, S., Fernandez, R., Ruble, S.: Visualizations everywhere: a
multiplatform infrastructure for linked visualizations. IEEE Trans. Vis. Comput.
Graph. 16(6), 1157–1163 (2010)

12. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans.
Vis. Comput. Graph. 17(12), 2301–2309 (2011)

13. Viégas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.M.: ManyEyes:
a site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph 13(6)
(2007)

14. Teixeira, J., Barata, G., Gonçalves, D.: Metabrain: web information extraction and
visualization (2012)

15. Díaz, O., Arellano, C.: The augmented web: rationales, opportunities, and chal-
lenges on browser-side transcoding. ACM Trans. Web 9(2) (2015)

16. Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., Barbieri, T.: Abstracting and
structuring web contents for supporting personal web experiences. In: Bozzon, A.,
Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 77–95.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8_5

17. Toomim, M., Drucker, S.M., Dontcheva, M., Rahimi, A., Thomson, B.,
Landay, J.A.: Attaching UI enhancements to websites with end users. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
1859–1868. ACM (2009)

18. Nguyen, D.Q., Schumann, H.: Visualization to support augmented web browsing.
In: International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), pp. 535–541. IEEE/WIC/ACM (2013)

19. Aldalur, I., Diaz, O.: Addressing web locator fragility: a case for browser exten-
sions. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 45–50. ACM (2017)

20. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualiza-
tion: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

https://doi.org/10.1007/978-3-319-38791-8_5

	An End-User Pipeline for Scraping and Visualizing Semi-Structured Data over the Web
	1 Introduction
	2 Background and Motivation
	2.1 Information Visualization
	2.2 Web Scraping and Web Augmentation

	3 Augmenting Web Sites with Visualization Techniques
	4 Web Sites: A Perspective on Content, Structure and Time
	5 AlVis: An End-User Tool for Web Content Visualization
	6 Validation
	7 Conclusions and Future Work
	References




