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Abstract. Real-world networks are very large and are constantly chang-
ing. Computing PageRank values for such dynamic networks is an impor-
tant challenge in network science. In this paper, we propose an efficient
Monte Carlo based algorithm for PageRank tracking on dynamic net-
works. A revisit probability model is also presented to provide theoret-
ical support for our algorithm. For a graph with n nodes, the proposed
algorithm maintains only nR random walk segments (R random walks
starting from each node) in memory. The time cost to update PageRank
scores for each graph modification is proportional to n/|E| (E is the
edge set). Experiments on 5 real-world networks indicate that our algo-
rithm is 1.3–30 times faster than state-of-the-art algorithms and does
not accumulate any errors.

Keywords: PageRank tracking · Monte Carlo · Random walk ·
Incremental computing · Dynamic networks

1 Introduction

PageRank [6] was first used by Google in 1998 to provide better results in their
search engine. It measures the popularity of a web page from the topological
structure of the Web, independent of the page content. Over the last decades,
PageRank has emerged as a very effective measure of reputation for both web
graphs and online social networks, which was historically known as eigenvector
centrality [5] or Katz centrality [11]. However, real-world networks are very large
and are evolving rapidly. For example, there are 60T web pages in the Web, and
it grows with more than 600K new pages every second. In this case, PageRank
algorithms that work only for static networks are insufficient, especially when
it is desirable to track PageRank values in real-time rather than to wait for a
batched computation.
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A dynamic network is a sequence of graphs {G(t) : t = 0, 1, 2, ...}, so that
G(t + 1) is obtained by inserting an edge to or removing an edge from G(t).
To efficiently track PageRank scores on dynamic networks, incremental algo-
rithms are necessary. Currently, there are two main categories of incremen-
tal PageRank algorithms: aggregation algorithms and Monte Carlo based algo-
rithms. A detailed description of these algorithms is provided in Sects. 2 and 3.
In this paper, we focus on Monte Carlo based algorithms. Existing Monte Carlo
based algorithms have two main drawbacks. Firstly, they accumulate errors over
lengthy evolution. Both [3] and [14] simply assume that a random walk would
never revisit a node. This assumption however is not the truth, which makes the
approximation error accumulate quickly on real-world networks. Also, since [14]
does not save any random walk segments, its way to adjust previous random
walk segments also brings error. Secondly, they are inefficient. For each graph
modification, existing algorithms simulate too many unnecessary random walks
to update PageRank values. Besides, [3] keeps a duplicate of a random walk
segment for every node it is passing through, which makes it really a disaster to
maintain them.

To address those two limitations mentioned above, we propose a novel Monte
Carlo based algorithm for PageRank tracking on dynamic networks. Our method
supposes each edge has its own revisit probability as is often the case in real-world
networks. A revisit probability model is presented to provide theoretical support
for our algorithm. Besides, our method saves only nR random walk segments (R
random walks starting from each node) in memory. An efficient and well structure
method is implemented to maintains these random walk segments. Experiments
on several real-world networks show that our method is 1.3–30 times faster than
state-of-the-art algorithms and does not accumulate any errors in long-term
evolution. Our main contributions are as follows:

• Theory: we propose the revisit probability model for analyzing Monte Carlo
based PageRank tracking problem.

• Algorithm: we propose an efficient algorithm that also improves the accuracy.
• Experiments: we report experiments on 5 real-world networks, and compare

our algorithm to state-of-the-art methods.

The rest of the paper is structured as follows. Section 2 describes some prelim-
inaries for Monte Carlo based algorithms; Sect. 3 surveys related works; Sect. 4
presents the revisit probability model and the proposed algorithm; Sect. 5 reports
experimental results; Finally, Sect. 6 concludes this work.

2 Preliminaries

Before describing related work, we briefly describe some preliminaries for Monte
Carlo based PageRank tracking algorithms.
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2.1 PageRank

The basic idea of PageRank is that more important pages are likely to receive
more links from other pages. That means, the importance of a page depends on
the number and quality of links to the page. Hence, the PageRank value πv of
page v is computed by taking into account the set of pages inv pointing to v.
According to Brin and Page [6]:

πv = α
∑

u∈inv

πu

outdegu
+ (1 − α). (1)

Here α ∈ (0, 1) is the teleport probability and outdegu is the outdegree of page
u, that is the number of hyperlinks coming out from u. When stacking all πv

into a vector π, we get:
π = αPπ + (1 − α)1. (2)

where 1 = [1, ..., 1] and P = {pv,u} is the transition matrix, such that pv,u =
1/outdegu if there is a hyperlink from u to v and pv,u = 0, otherwise.

2.2 Approximating PageRank

The Monte Carlo method [2] approximates PageRank by simulating exactly R
random walks starting from each node in a graph. Each of these random walks
can be terminated at each step either with probability ε (here we call ε as the
reset probability and ε = 1−α), or when it reaches a dangling node. A dangling
node is a node that does not contain any out edge. Assume for each node u, Vu

is the total number of times that all simulated random walks visit v. Then, we
approximate the PageRank of v, denoted by πu, with:

π̃u =
Vu

nR/ε
(3)

where n is the number of nodes in a graph.

2.3 Updating PageRank

By storing all simulated random walk segments, the original Monte Carlo method
allows to perform continuous update of the PageRank as the structure of the
graph changes. However, when an edge e(u,w) is modified at time t + 1, it has
to adjust all those random walk segments passing through node u at time t.
Fortunately, [3] proved that a random walk segment needs to be adjusted only if
it visits the node u and picks w as the next node. In expectation, the number of
times a walk segment visits u is πu

ε . For each such visit, the probability for the
walk to need a reroute is 1

outdegu(t+1) . And there are a total of nR random walk
segments. Define Mt+1 to be the number of random walk segments that need to
be adjusted at time t + 1. By union bound, we have:

E[Mt+1] ≤ nR

ε
E[

π̃u(t)
outdegu(t+1)

]. (4)
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3 Related Work

In this section, we review some works for tracking PageRank on evolving net-
works. A simple way to keep the PageRank scores updated is to recompute the
values using the simple power iteration method [6] for each change in the net-
work. But, this can be very costly. For a network that has n nodes, with a reset
probability of ε, it takes Ω( kn2

1/(1−ε) ) total time to recompute the PageRank val-
ues for k edge modifications. Similarly, the Monte Carlo method [2], working by
simulating exactly R random walk starting from each node, results in a total
Ω(knR

ε ) work, which is also inefficient. Therefore, lots of incremental methods
were proposed for updating the approximation of PageRank. Based on their core
techniques, these methods can be categorized into two general categories:

• Aggregation Algorithms

The basic observation of methods in this category is that evolution of the graph
is slow, with large parts of it remaining unchanged. Based on that, several aggre-
gation algorithms were proposed in [7,8,10,19]. When an edge e(u,w) is inserted
to or removed from a network at time t + 1, these algorithms carefully find a
small subset S(t) of nodes around u and w whose PageRank values need to
be updated. By contracting all other vertices V \S(t) to a single super node s,
a small network Ḡ(t) is obtained. Then, these algorithms compute PageRank
scores on the small network Ḡ(t) using static PageRank algorithms. The main
disadvantage of these method is in accuracy. It depends largely on the choice
of the subset S(t). Although several methods for choosing S(t) had been dis-
cussed in [13], but no theoretical guarantee was provided. Furthermore, even if
the approximation error at time t is small, approximation errors can accumulate
in long-term evolution [17].

• Monte Carlo based Algorithms

In order to explain the computational properties of PageRank, [16] shows that
the general theory of Markov chains [18] can be applied to PageRank if the
Web does not contain dangling nodes [4]. Under this hypothesis, [2] proposed
and analyzed several Monte Carlo type methods for approximating PageRank,
which allow to perform continuous update of the PageRank as the structure of
the graph changes. These methods form the basis of Monte Carlo based algo-
rithms for PageRank tracking. But they are very inefficient. Lately, [3] showed
that a random walk segment needs to be adjusted only if it passes through the
modified edge. However, denote Mt+1 as the actual number of random walk
segments needed to be adjusted, they provided only a upper bound of Mt+1 in
expectation for performance analysis as In Eq. (4), that can not be directly used
in practice. This algorithm stores all random walk segments in a database, where
each segment is stored at every node that it passes through, i.e., totally nR

ε ran-
dom walk segments. For each node u, they also keep two counters: one, denoted
by Wu(t), keeping track of the number of random walk segments visiting u, and
one, denoted by outdegu(t), keeping track of the outdegree of u. Then, when an
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edge e(u,w) is inserted or removed, with probability 1 − ( outdegu(t)−1
outdegu(t)

)Wu(t) it
adjusts all random walk segments passing through node u. Interestingly, when
a graph is build from scratch with k edges inserted, the time complexity is less
than Ω(nR ln k

ε ) to keep PageRank scores updated all the time [3,15]. Another
more efficient algorithm that stores no random walk segment was proposed in
[14]. For each node u, this method keeps only a counter, denoted by Vu(t), keep-
ing track of the total times that all random walk segments visiting u. To adjust
a random walk segment, we must first remove it, then simulate a new one. This
method removes a previous random walk segment by simulating a new random
walk and decrease Vu(t) by 1 for every node u it is passing through. Although
the random walk segment to be removed and the new simulated one follow the
same distribution, they are actually different segments. Hence, its way to adjust
random walk segments also brings error.

4 Proposed Method

Here, we present a novel method for tracking PageRank on evolving networks.
The proposed method is an adaptation of the Monte Carlo method. We first
present the revisit probability model, which provides theoretical support for our
algorithm. Then we propose our algorithm.

4.1 The Revisit Probability Model

Previous works did not consider the situation that a random walk may revisit
an edge or a node. However, this situation is so common that we can not ignore
it. Let ruv be the revisit probability of edge e(u, v), we define it as following.

Definition 1 (edge revisit probability). For a graph G(t), ruv(t) is the
probability that a random walk staring from node u and picking v as the next
node (passing through edge e(u, v)) revisits the node u.

(a) graph G(t) (b) graph G(t+ 1)

Fig. 1. Initial graph G(t) and G(t + 1) with edge e(1, 4) inserted.

To get a better sense of ruv(t), we use Example 1 for explanation. It should
be aware that ruv is determined only by the reset probability ε and the graph
structure. Before describe Example 1, we provide the definitions of random walk
path and random walk segment here.
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Definition 2 (random walk path). A random walk path is an unique and
finite sequence of nodes denoted as {u1, u2, u3, u4, ..., un}, where there is an edge
from ui−1 to ui.

Definition 3 (random walk segment). A random walk segment is an
instance of a random walk path.

Example 1. In this example, we calculate r12(t) on graph G(t) in Fig. 1(a) with
ε = 0.15. We let a random walk terminate: with probability ε at each step; when
it reaches a dangling node; when it revisits node 1©. We list the probability of
all random walk paths starting from edge e(1, 2) in Table 1. Among all these
random walk paths, only path 4 revisits node 1©. Therefore, by Definition 1 we
get r12(t) = 0.36125, which is quite a high probability.

Table 1. The probability of all paths starting from e(1, 2) in G(t).

No. Path x IP(X = x)

1. 1© → 2© 0.15 0.15

2. 1© → 2© → 4© 0.85 × 1
2

0.425

3. 1© → 2© → 3© 0.85 × 1
2

× 0.15 0.06375

4. 1© → 2© → 3© → 1© 0.85 × 1
2

× 0.85 0.36125

Sum. 1

Then we define the probability that a random walk starting from node u
revisits the node u at time t as

Ru(t) =
∑

v∈outu(t)

1 − ε

outdegu(t)
ruv(t), (5)

where outu(t) is the set of nodes that u pointing out to. Since any random walk
can terminate at node u with probability ε, we should multiply it by 1 − ε.

Assume Wu(t) is the number of random walk segments passing though u at
time t, and Vu(t) is the total times visited by those random walk segments. The
relation between Vu(t) and Wu(t) can be express with Ru(t) as the sum of a
geometric series

Vu(t) = Wu(t)(1 + R1
u(t) + R2

u(t) + ...) =
Wu(t)

1 − Ru(t)
. (6)

For a large and complex network, it is impossible to compute Ru(t) directly as
in Example 1. So, we use an estimation of Ru(t) as

R̃u(t) = 1 − Wu(t)
Vu(t)

. (7)

We also find the following two observations when a graph changes, which
make it possible for accurate PageRank tracking.
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Observation 1. When an edge e(u,w) is modified at time t + 1, ruv remains
unchanged for any node v ∈ outu(t) and v �= w , where outu(t) is the set of
nodes that u pointing out to.

Proof. ruv is affected if and only if any random walk path starting from edge
e(u, v) visits the modified edge e(u,w) before it revisits node u. However, if a
path visits the modified edge e(u,w), then it must first pass through node u. So
we prove the proposition.

Similarly, we can prove that the following Observation 2 is also true.

Observation 2. When an edge e(u,w) is modified at time t + 1, walk count
Wu(t+1) remains unchanged but visit count Vu(t+1) is affected, i.e., Wu(t+1) =
Wu(t) but Vu(t + 1) �= Vu(t).

We already know that a random walk segment needs to be adjusted only if
it visits the modified edge. Denote Mt+1 as the actual number of random walk
segments that need to be adjusted. With the revisit probability model, the core
problem of PageRank tracking can be defined as

Definition 4 (core problem). Given a graph G(t) and the modified edge
e(u,w) at time t + 1, compute the value of Mt+1 by using Wu(t), Vu(t) and
Ru(t).

In the rest part of this section, we show how to solve this problem. We treat
adding an edge and removing an edge separately, since they are different. When
adding an edge e(u,w) at time t + 1, no random walk segment really passes
through the new edge e(u,w) at time t, i.e., things have not happened yet. And
when removing an edge e(u,w) at time t + 1, some random walk segments did
pass through the removing edge e(u,w) at time t.

Adding an Edge. When adding an edge e(u,w) to a graph G(t), we get
outdegu(t + 1) = outdegu(t) + 1. And from Eq. (5), we have

Ru(t + 1) =
(1 − ε)ruw + outdegu(t)Ru(t)

outdegu(t + 1)
. (8)

We first prove the following proposition:

Proposition 1. When adding an edge e(u,w) to a graph G(t) at time t + 1,
Mt+1 is given by:

Mt+1 =
Wu(t)

outdegu(t + 1) − outdegu(t)Ru(t)
. (9)

Proof. When Wu(t) random walks set off from node u at time t+1, outdegu(t)
outdegu(t+1)

of them pick previous outdegu(t) edges of u as the next step, and 1
outdegu(t+1)

of them pick the new adding edge e(u,w). Any random walk picking the new
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adding edge e(u,w) will need to be adjusted. If we let the this part of them just
terminate there, then all random walks will visit the new adding edge e(u,w)
no more than once. After several steps, Ru(t) of those random walks picking
previous outdegu(t) edges return to the node u. These random walks set off from
node u again. We repeat this process until no random walk return to the node
u. Therefore, we could count the total times that all Wu(t) random walks visit
node u as

Vall = Wu(t)(1 +
outdegu(t)Ru(t)
outdegu(t + 1)

+ ...) =
Wu(t)

1 − outdegu(t)Ru(t)
outdegu(t+1)

. (10)

Since we let a random walk terminate when it visits the new adding edge e(u,w),
it is obvious that Mt+1 = Vall

outdegu(t+1) . So we prove the proposition.

Removing an Edge. Removing an edge e(u,w) from a graph G(t) can be
viewed as an inverse modification of adding an edge, so we have outdegu(t) =
outdegu(t + 1) + 1 and

Ru(t) =
(1 − ε)ruw + outdegu(t + 1)Ru(t + 1)

outdegu(t)
. (11)

Similarly to adding an edge, the following Proposition 2 also proves to be true.

Proposition 2. When removing an edge e(u,w) from a graph G(t) at time t+1,
Mt+1 is given by:

Mt+1 =
Wu(t)

outdegu(t) − outdegu(t + 1)Ru(t + 1)
. (12)

However, we only know the estimation of Ru(t) instead of Ru(t + 1). Remember
that our method stores all nR random walk segments. So when removing an
edge e(u,w) from a graph, Mt+1 is just the number of random walk segments
passing through edge e(u,w). This problem is also solved.

4.2 Algorithm for Tracking PageRank

For a graph with n nodes, our algorithm maintains only nR random walk seg-
ments (R random walks starting from each node) in memory. Each random walk
segment is assigned an unique id, called segment id. We save all these random
walk segments in a hash-table, so that they can be accessed in O(1) time. For
each node u, our method also keeps a counter and a set: the counter, denoted by
Vu(t), keeping track of the total times that all random walk segments visiting u
at time t, the set, denoted by Su(t), keeping track of all random segments’ id who
pass through node u at time t. Then the number of random walk segments pass-
ing through u, denoted by Wu(t) is equal to size of Su(t), i.e., Wu(t) = |Su(t)|.
Every time we add or remove a random walk segment, Vu(t) and Su(t) are auto-
matically updated in O(1/ε) time as in Algorithm 1.
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Algorithm 1. Segment Management
Let Su(t) be a set, Vu(t) be a value kept for node u and sid be the segment id.

1: function AddSegment(sid, newSeg)
2: for each u in newSeg do
3: Vu(t) += 1
4: Add sid to Su(t)
5: end for
6: Add newSeg to hash-table with key sid
7: end function
8:
9: function RemoveSegment(sid)

10: Get segment seg from hash-table with key sid
11: for each u in seg do
12: Vu(t) -= 1
13: if sid in Su(t) then
14: remove sid from Su(t)
15: end if
16: end for
17: Remove seg from hash-table
18: end function

Algorithm 2. Adding or removing node
Let u be the node added or removed.

1: function AddNode(u)
2: for i = 0 → R do
3: sid, newSeg ← simulate a random walk starting from w
4: Call AddSegment(sid, newSeg)
5: end for
6: end function
7:
8: function RemoveNode(u)
9: for each sid whose segment starts from u do

10: Call RemoveSegment(sid)
11: end for
12: end function

The original static Monte Carlo method in [2] is used as an initial solution
for our method. When adding an edge e(u,w) to a graph G(t) at time t + 1,
for each random walk segment in Su(t), with probability Mt+1/Wu(t) we redo it
starting from the new edge e(u,w). That means, we redo a random walk segment
starting from where the first time it visits node u, and force it to pick node w as
the next node. When removing an edge e(u,w) from a graph G(t) at time t + 1,
all random walk segments passing through edge e(u,w) need to be adjust. For
each random walk segment, we simply redo it starting from where the first time
it visits node u.

Sometimes, when adding or removing an edge e(u,w), nodes u and w are also
added or removed. Remember that the original Monte Carlo method simulates
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exactly R random walks starting from each node in a graph. So, when a node u
is added to a graph, we also simulate R random walks starting from u. And when
a node u is removed from a graph, we also remove all random walk segments
starting from u. The proposed method is summarized in Algorithms 2 and 3.

Algorithm 3. Adding or removing edge
Let e(u,w) be the edge modified at time t + 1.

1: function AddEdge(e(u,w))
2: Compute Mt+1 as in Eq. (9)
3: Add e(u,w) to graph G(t)
4: for each sid in Su(t) do

5: if random(0, 1) ≤ Mt+1
|Su(t)| then

6: newSeg ← redo segment starting from the new edge e(u,w).
7: Call RemoveSegment(sid)
8: Call AddSegment(sid, newSeg)
9: end if

10: end for
11: if node u is new added then
12: Call AddNode(u)
13: end if
14: if node w is new added then
15: Call AddNode(w)
16: end if
17: end function
18:
19: function RemoveEdge(e(u,w))
20: Remove e(u,w) from graph G(t)
21: for each sid whose segment passes through e(u,w) do
22: newSeg ← redo segment starting from the first node u.
23: Call RemoveSegment(sid)
24: Call AddSegment(sid, newSeg)
25: end for
26: if node u is removed then
27: Call RemoveNode(u)
28: end if
29: if node w is removed then
30: Call RemoveNode(w)
31: end if
32: end function

5 Experiments

In this section, we conducted experiments with real-world dynamic networks.
The overview of our experiments is as follows:
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• Experimental settings (Sect. 5.1): The platform and datasets we used in our
experiments are present here. We also introduced the comparison methods
and parameter settings.

• Accuracy (Sect. 5.2): We evaluated the accuracy of the proposed algorithm.
We first verified that the proposed method does not accumulate errors in long
term evolution. Then we compared our algorithm to existing methods.

• Efficiency and scalability (Sect. 5.3): We first investigated the average update
time for a single edge modification. We observed that the proposed algorithm
is 1.3–30 times faster than state-of-the-art algorithms. Then we showed that
the proposed algorithm is also suitable for large networks.

5.1 Experimental Settings

We conducted the experiments on a desktop computer with 8 GB of RAM and
AMD CPU R5-2400G@ 3.60 GHz running Windows 10. 5 real-world dynamic
graphs with time-stamps, obtained from http://snap.stanford.edu/data/ and
http://konect.cc/networks/, were used in our experiments, which are listed in
Table 2.

Table 2. Dynamic networks that we experimented with.

Dataset email-Enron email-Eu-corewiki-talk-ja facebook-wosn sx-askubuntu

Static nodes 3.6K 1K 0 52K 0

Dynamic nodes 75K 0 397K 11K 159K

Static edges 43K 25.6K 0 1.28M 0

Dynamic edges 3.0M 33.2K 1.0M 1.81M 964K

During our experiments, we compared our approach with the IMCPR algo-
rithm proposed in [14], and the BahmaniPR algorithm proposed in [3]. The
original static Monte Carlo based PageRank algorithm (MCPR) proposed in
[2] was used as the ground-truth method. A detailed description of how these
algorithms work could be found in Sects. 3 and 4.

There are two errors in the IMCPR method that make it perform very poor
and unstable. Firstly, it computes Mt+1 by Vu(t)/(outdegu(t)−1) when removing
an edge, which will cause a divide by zero error if outdegu(t) = 1. Secondly,
it adds or removes an edge before it simulates a random walk to remove a
previous random walk segment. The order is wrong, which causes the random
walk segment to be removed and the new simulated one do not follow the same
distribution. We fixed these two errors and named the new version IMCPR2,
which is the actual algorithm we used for comparison.

All algorithms were implemented in Python 2.7, and ran with parameters
ε = 0.15 and R = 16.

http://snap.stanford.edu/data/
http://konect.cc/networks/
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5.2 Accuracy

We first evaluated the accuracy of the proposed method. The accuracy is mea-
sured by cosine similarity defined as

Accuracy = cos(π̃,π),

where π is the “ground-truth” PageRank vector by MCPR and π̃ is the approx-
imation by evaluated algorithms.

For adding edges, the initial network G(0) was set as a network with all
static edges, and an initial PageRank solution was also computed by the MCPR
method. Then we inserted dynamic edges one-by-one in time order, which follows
the preferential attachment model [1]. Similarly, for removing edges, we set the
initial network G(0) as the whole graph with both static edges and dynamic
edges. We then sequentially removed dynamic edges from the current network
in reverse time order. We traced the accuracy every time 4% percentages of
dynamic edges were inserted or deleted. The results are shown in Fig. 2. These
show that the proposed algorithm does not accumulate any errors in long-term
evolution.
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Fig. 2. PageRank tracking accuracy of this work on 5 real-world networks.

We also plotted the comparison results on email-Eu-core network in Fig. 3.
Results show that the proposed method performs best both in adding and delet-
ing edges. And IMCPR2 accumulates errors more faster than BahmaniPR in
long-term evolution. The reasons are as follows:

• Both IMCPR2 and BahmaniPR lack theory supports, so the estimation of
Mt+1 or the probability they used for PageRank tacking are not accurate;

• IMCPR2 does not save any random walk segment, therefore its way to adjust
random walk segments also brings error;

• IMCPR2 deals with an added or removed node u by setting Vu(t) = R or 0,
which is not correct.
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Fig. 3. Accuracy comparison of the algorithms on network email-Eu-core.

5.3 Efficiency and Scalability

Here, we investigated the efficiency and scalability of the proposed method. As in
the previous accuracy evaluation, the network with only static edges was set as
the initial network G(0) for adding edges, and the whole graph with both static
edges and dynamic edges was set as the initial network G(0) for removing edges.
We measured the average update time for a single edge insertion and deletion.
The results are list in Table 3. These show that the proposed method is about
1.3 times faster than IMCPR2 algorithm and 30 times faster than BahmaniPR
algorithm. BahmaniPR method is slow because it adjusts too many unnecessary
random walk segments to update PageRank scores for a single edge modifi-
cation. And since IMCPR2 method does not save any random walk segment,
it has to simulate 2Mt+1 random walks for each edge modification. However,
our experiments show that simulating Mt+1 random walks is much slower than
updating Mt+1 saved random walk segments in memory, especially for graphs
with weighted edges.

Table 3. Average update time (ms) for inserting or deleting a single edge.

Dataset email-Enron email-Eu-core wiki-talk-ja facebook-wosn sx-askubuntu

ins del ins del ins del ins del ins del

This work 0.57 0.46 0.41 0.29 42.0 36.4 2.06 1.87 4.83 3.17

IMCPR2 0.89 0.65 0.73 0.64 65.8 49.2 3.43 2.56 8.01 5.19

BahmaniPR 20.6 17.4 16.5 13.2 – – 50.3 46.2 74.1 59.8

We also verified that the proposed algorithm is scalable for large networks.
For a graph with n nodes, the update time for a single edge modification is
actually inversely proportional to the average outdegree |E|/n, where E is the
edge set. To verify this claim, we plotted the relation between the average update
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Fig. 4. Scalability of the proposed method.

time and the average outdegree |E|/n in Fig. 4(b). We measured the average
outdegree and the average update time every time 4% percentages of dynamic
edges were inserted. Results on real-world datasets show that the average update
time of 4 networks except email-Enron are inversely proportional to their average
outdegree. And the email-Eu-core network, which does not contain any added
or removed nodes, perfectly supports our claim. Figure 4(a) also shows that the
average outdegree of a graph keeps stable or increases when it grows larger.
Therefore our algorithm is also suitable for large networks.

6 Conclusions

In this paper, we proposed an efficient PageRank tracking algorithm on dynamic
networks, which does not accumulate errors in long term evolution. The proposed
algorithm is practically 1.3–30 times faster than state-of-the-art algorithms. We
also presented a revisit probability model, which overcomes existing limitations
of state-of-the-art Monte Carlo algorithms for tracking PageRank in dynamic
networks. In future work, we hope to extend our method to Personalized PageR-
ank [9,12,20] as well.
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