
Using Social Network Analysis
to Investigate the Collaboration Between

Architects and Agile Teams: A Case
Study of a Large-Scale Agile Development

Program in a German Consumer
Electronics Company

Ömer Uludağ(B), Martin Kleehaus, Soner Erçelik, and Florian Matthes

Technische Universität München (TUM),
85748 Garching bei München, Germany

{oemer.uludag,martin.kleehaus,soner.ercelik,matthes}@tum.de

Abstract. Over the past two decades, agile methods have transformed
and brought unique changes to software development practice by strongly
emphasizing team collaboration, customer involvement, and change tol-
erance. The success of agile methods for small, co-located teams has
inspired organizations to increasingly use them on a larger scale to build
complex software systems. The scaling of agile methods poses new chal-
lenges such as inter-team coordination, dependencies to other existing
environments or distribution of work without a defined architecture. The
latter is also the reason why large-scale agile development has been sub-
ject to criticism since it neglects detailed assistance on software architect-
ing. Although there is a growing body of literature on large-scale agile
development, literature documenting the collaboration between archi-
tects and agile teams in such development efforts is still scarce. As little
research has been conducted on this issue, this paper aims to fill this gap
by providing a case study of a German consumer electronics retailer’s
large-scale agile development program. Based on social network analy-
sis, this study describes the collaboration between architects and agile
teams in terms of architecture sharing.

Keywords: Large-scale agile development · Social network analysis ·
Agile architecture

1 Introduction

Emerging in the 1990s, agile methods have transformed and brought unprece-
dented changes to software development practice by strongly emphasizing change
tolerance, continuous delivery, and customer involvement [1,2]. With these agile
methods, self-organizing teams work closely with business customers in a single-
project context, maximizing customer value and quality of delivered software
c© The Author(s) 2019
P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 137–153, 2019.
https://doi.org/10.1007/978-3-030-19034-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-19034-7_9


138 Ö. Uludağ et al.

product through rapid iterations and frequent feedback loops [1]. The success of
agile methods for small, co-located teams has inspired enterprises to increasingly
apply agile practices to large-scale endeavors [2,3]. Since the initial application of
agile methods was originally intended for small, co-located teams, many organi-
zations are uncertain how to introduce them at scale and therefore face new chal-
lenges such as inter-team coordination, dependencies to other existing environ-
ments or distribution of work without a defined architecture [1,4,5]. The latter
is also the reason why large-scale agile development has been subject to criticism
since it neglects detailed assistance on software architecting [2,6]. Agile methods
assume that architecture should evolve incrementally rather than being imposed
by some direct structuring force (emergent architecture) [7]. However, the prac-
tice of this design is effective at team level but insufficient at large-scale. It causes
excessive redesign efforts, architectural divergence, and functional redundancy
increasing a system’s complexity [7,8]. Therefore, an intentional architecture is
required, which embraces architectural guidelines that specify inter-team design
and implementation synchronization [7,9]. The effective evolution of a system’s
architecture requires the right balance of emergent and intentional architecture
and a close collaboration between architects and agile teams [7,9,10].

Literature describing the collaboration between architects and agile teams in
large-scale agile development is still scarce. This paper aims to fill this gap by
providing a case study of a German consumer electronics retailer’s large-scale
agile development program. Based on this objective, our research question is:

How does the collaboration take place between architects and agile teams in a
large-scale agile development program?

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of foundations and related works. In Sect. 3, we present the research
approach of this paper. Section 4 describes the case study on the collaboration
between architects and agile teams in the large-scale agile development program.
We discuss our lessons learned in Sect. 5 before concluding the paper with a
summary of our results and remarks on future research in Sect. 6.

2 Background and Related Work

In the following, the Scaled Agile Framework and Spotify Model are introduced,
as the observed program has adopted these two scaling frameworks. Thereafter,
the concept of communication networks is presented, which is essential for inter-
preting the results of the social network analysis in Sect. 4.

2.1 Scaled Agile Framework

The Scaled Agile Framework (SAFe), a widely used scaling framework [11], was
first published by Dean Leffingwell in 2011. SAFe builds on existing lean and
agile principles that are combined into a method for large-scale agile projects.



Collaboration Between Architects and Agile Teams 139

It provides a soft introduction to the agile world as it specifies many structured
patterns. This introduction is needed for organizations moving from traditional
to agile development environment [7]. The latest SAFe 4.6 version supports four
out-of-the-box configurations: Essential SAFe, Large Solution SAFe, Portfolio
SAFe, and Full SAFe. As the observed program uses Essential SAFe, we will
subsequently focus on this. Essential SAFe is the simplest entry point for imple-
menting SAFe and consists of team and program levels [7]. At team level, the
techniques outlined are those used in Scrum. Each team consists of five to nine
members, one scrum master (SM), and one product owner (PO). All teams are
part of an agile release train (ART), a team of agile teams that delivers a contin-
uous flow of incremental releases. Each team is responsible for defining, building,
and testing stories from its team backlog in a series of two-week iterations using
common iteration cadences [7]. At program level, the product management (PM)
serves as the content authority for the ART and is accountable for identifying
program backlog priorities. The PM works with POs to optimize feature delivery
and direct their work at team level. A release train engineer (RTE) facilitates
program execution, escalates impediments, manages risk, and helps to drive con-
tinuous improvement [7]. The system architect has the technical responsibility
for the overall architectural design of the system and aligns the ART with the
common technical and architectural vision [7].

2.2 Spotify Model

In 2012, Kniberg and Ivarsson [12] published Spotify’s approach to scale agile
methods over 30 teams across three cities. The Spotify Model emphasizes the
importance of “aligned autonomy”, i.e. the autonomy of agile teams with simul-
taneous collaboration and coordination to achieve the same goals. The basic
unit of development is called a Squad, which is similar to an agile team in SAFe.
Squads are self-organizing and autonomous teams that have all the skills to
design, develop, test, and release for production. A Tribe is designed as a col-
lection of squads working in related areas (correspondents to an ART in SAFe).
Squads within a tribe are co-located. People with similar skills in the same com-
petency area within the same tribe form a Chapter. A Guild is a community of
people that share same interests and often includes all chapters working in this
area (complies with a community of practice in SAFe) [12].

2.3 Communication Networks

According to Guo and Sanchez [13], communication is understood as the cre-
ation or exchange of thoughts, ideas, and emotions between senders and receivers.
Communication can be decomposed into two types: inter-team and intra-team
communication. The former stands for communication between several teams,
the latter for communication within a team [14]. The flow of communication con-
necting senders and receivers are called communication networks [15]. Figure 1
depicts five common communication networks. The wheel network is the most
centralized network pattern. In this network, each member communicates with



140 Ö. Uludağ et al.

Fig. 1. Common communication networks [15]

only one other person. The superintendent C receives all the information from
his subordinates A, B, D, and E and sends back information, usually in the form
of decisions. The chain network is the second highest in centralization. Only two
people communicate with each other, and they have only one other person to
communicate with. The Y network is similar to the chain network except that
two members are out of the chain. In the Y network, members A and B can
send information to C but they cannot receive information from anyone else.
Members C and D can exchange information. Member E can exchange informa-
tion with member D. The circle network stands for horizontal and decentralized
communication, which offers equal communication possibilities for every mem-
ber. Each can communicate with one other to his right and left. Members have
identical restrictions but the circle is a less restricted condition than the wheel,
chain, or Y network. The all-channel network is an extension of the circle net-
work and connects everyone in the circle network, as it permits each member to
communicate freely with all other persons [15].

2.4 Agile Architecture

Angelov et al. [16] describe the role of architects and challenges they face in
Scrum such as insufficient collaboration, lack of understanding of the value of
architecture, and poor communication between team architects [16]. Bachmann
et al. [17] and Nord et al. [18] present four tactics to achieve agility at scale
by aligning the system architecture, organization structures and product infras-
tructures. These include vertical and horizontal system decomposition, matrix
and augmented team structures, architecture and infrastructure runway, and
deployability tactics and can be used in different phases in a system’s life cycles.
Uludağ et al. [10] describes how the adoption of domain-driven design supported
a large-scale agile development program with three agile teams at a large insur-
ance company. Uludağ et al. [10] report that agile teams and project managers
involved in the program conceived that without any form of architectural guid-
ance, large-scale agile development programs can hardly be successful. Dingsøyr
et al. [19] investigated a large-scale development program with an extensive use



Collaboration Between Architects and Agile Teams 141

of Scrum and a focus on customer involvement, inter-team coordination, and
software architecture. Two key findings related to software architecture are the
tension between up-front and emergent architecture and the demanding role of
architects in large-scale agile development.

3 Case Study Design

A case study is a suitable research methodology for this paper, since it helps
to study contemporary phenomena in a real life context [20]. We followed the
guidelines described by Runeson and Höst [20].

Case Study Design: The main objective of this paper is to investigate the
collaboration between architects and agile teams in large-scale agile development
in terms of architecture sharing. Based on this objective, we defined one research
question (see Sect. 1). The study is a an exploratory single case study, since
this paper looks into an unexplored phenomenon and aims to seek new insights
and generate ideas for future research [20]. The case was purposefully selected,
because the studied company has successfully adopted SAFe for building complex
software for the last one and a half years. The unit of analysis is the consumer
electronics retailer’s large-scale agile development program.

Data Collection: We used a mixed methods approach with three levels of data
collection techniques [21]. As direct methods, we observed two Program Incre-
ment (PI) Planning events [7] with low degree of interaction by the researcher
and low awareness of being observed [20]. These observations provided a deep
understanding of the overall structure. With the help of seven semi-structured
interviews, roles and practices related to architecture were identified and doc-
umented. Quantitative data was collected by the online-survey tool Questback
for building the social networks and revealing the collaboration between archi-
tects and agile teams (see Sect. 4). Therein, we asked respondents how often they
exchange architectural advice and decisions with their colleagues, how often they
see their colleagues, and if they have suggestions on how to improve the exchange
among team members (using a Likert scale). A total of 32 out of 62 available
people from eight teams took part in the survey. Three persons were removed
from the analysis because no clear assignment to these persons could be made.
The response rate for the remaining 29 program members from eight teams is
47% with 758 connections for architecture sharing.

Data Analysis: Interviews and observation protocols were coded using a deduc-
tive approach as proposed by Cruzes and Dyb̊a [22]. Qualitative data collected
in interviews form the theoretical foundation for interpreting social relations
between architects and agile teams. After initial coding, codes were refined and
consolidated by merging related ones and removing duplicates. Quantitative data
was analyzed through the use of social network analysis, which comprises a set
of methodological techniques that aim to describe and explore patterns in rela-
tionships that individuals and groups form with each other [23].



142 Ö. Uludağ et al.

4 Results

4.1 Case Description

In 2016, the case organization decided to relaunch a failed CRM project using
agile methods. Due to the complexity of the project, the management decided to
relaunch it with the help of a scaling framework. During early stages of research,
the reasons for using Essential SAFe (from now on SAFe) became more appar-
ent and convincing to the management. One reason for choosing SAFe was that
it has proven itself in large organizations and offers comprehensive documenta-
tion. The adoption was initiated with a pilot project, which was geographically
distributed. At the beginning, the pilot project faced a lot of problems. Thus,
all involved employees were trained upon agile methods and SAFe by exter-
nal agile coaches. After a few PIs, the responsible management team perceived
that SAFe did not provide sufficient guidance on the coordination of their agile
teams. Thus, the organization decided to combine SAFe with the Spotify Model.
Within the transformation process, program members were divided into tribes,
chapters, squads, and guilds. Figure 2 shows the current organizational structure
of the observed program. Figure 2 also shows all 62 members forming a tribe.
This tribe consists of a “scaled” team (Team A), which does not play a hier-
archical superior, but a more coordinating role without personnel management,
and four squads (Team B, Team C, Team D, and Team E). Team F, Team G,
and Team H, which are not shown in Fig. 2 constitute representatives of three
suppliers that provide external support for their third-party systems. The tribe
is divided horizontally into nine chapters for: (1) the chief product owner (CPO)
and POs, (2) RTE and SMs, (3) IT project managers (IT-PMs), (4) quality
analysts and test managers (QAs & TMs), (5) data analysts (DAs), (6) solution
architects (SAs)1, (7) business process architects (BPAs), (8) product reliability
engineers (PRE), and (9) developers (Devs). Each SA is assigned to a squad and
takes care of the overall system architecture with its subsystems and interfaces.
The team concentrates on the cross-system data flows and processes related to
the integration of the architecture. These data flows and processes are used to
define minimum interface requirements that all teams must meet. In contrast
to SAs, who represent technical architects, BPAs are functional architects that
are also dedicated to squads. The responsibilities of BPAs are not really known
yet, as their role has been added to the program just recently. However, both
architect roles should play a dual role within their squads by making architec-
tural decisions and guiding them to fulfill the required architectural standards.
Due to ongoing transformation, guilds have not yet been established but will be
organized soon. In the following two sections, the inter- and intra-team exchange
of architecture-related information of the observed program will be presented.

1 The role of the SA in the case organization correspondents to the role of the system
architect as described by SAFe [7]. For reasons of consistency, we use the same
terminology as the case organization.



Collaboration Between Architects and Agile Teams 143

4.2 Inter-Team Architecture Sharing

Figure 3 provides an overview of how architecture-related information is shared
across all teams. An interesting finding here is that the scaled team is located in
the center of the graph. This indicates continuous communication and coordina-
tion between the scaled team and the four squads on architectural topics. Figure 3
also shows a close collaboration between Team B and Team E and between Team
B and Team D, which is due to architectural dependencies between the systems
on which they work. Figure 3 also provides an overview of roles that are inten-

Fig. 2. Organizational structure of the observed large-scale agile development program



144 Ö. Uludağ et al.

Fig. 3. Social network of eight teams including salient roles that are intensively involved
in inter- and intra-team architecture-sharing

sively involved (large nodes) in architecture sharing. First, it shows that the CPO
of Team A (CPOA) is the most outstanding node in the inter- and intra-team
exchange of architecture-related information. Second, SAs also form relatively
large nodes compared to other roles. This observation confirms the importance of
SAs for the exchange of inter- and intra-team architectural information. Figure 3
also shows that the TMA also plays an important role in architecture sharing.
Table 1 presents top 10 stakeholders involved in inter-team sharing based on
the normalized degree centrality2 measure. Table 1 shows that the CPOA has a
normalized degree centrality value of 1,0, which indicates that he/she is sharing
information with all stakeholders involved in the observed program. The SAE

2 The normalized degree centrality is defined as the number of links of an stakeholder
divided by the maximal possible number.



Collaboration Between Architects and Agile Teams 145

Table 1. Top 10 stakeholders involved in inter-team architecture sharing based on
normalized degree centrality

and SAD have normalized degree centrality values of 0,92 and 0,90 indicating
high involvement in inter-team sharing.
The PI planning event of SAFe is a face-to-face event [7] that aims to align all
agile teams within the ART to share the common mission and vision by creating
iteration plans and team objectives for the upcoming PI. It is conducted every
two and a half months and offers a platform for the exchange of general and archi-
tectural information across teams, since all members of the ART are present in
one location. Figure 4(a) shows that SAs and BPAs have a very strong sharing
with other teams during the PI planning. Figure 4(d) reveals a chain communi-
cation between the SAB , SAC, SAD, and SAE on a daily basis. In particular,
the chain is composed as follows: SAE exchanges information with SAB, who
exchanges information with SAD, who shares information with SAC. This com-
munication pattern characterizes a centralized communication between SAs. The
chain communication pattern can also be observed with SAB, SAD, and SAE.
Figure 4(e) shows that SAB, SAD, and SAE constantly3 exchange information
and that the SAC is no longer involved in an exchange with other SAs. Figure 4
shows that SAs form a decentralized all-channel communication pattern. This
means that each SA speaks with all other SAs. The overall comparison also shows
that the three external SA of Team B are less participating in the inter-team
exchange than the rest of internal SAs involved in the program. Other roles such
as SM, TM, PO, and CPO are also heavily involved in exchange of information
within the PI planning. The shorter the observed time intervals become, the
more dominant the SA becomes with regards to the inter-team sharing.

4.3 Intra-Team Architecture Sharing

The exchange of architectural information in Team B shows a central wheel com-
munication pattern between SAs, since external SAs are guided by the internal
SA, who represents the intra-team lead architect (see Fig. 5(a)). Figure 5(a) also
shows that SAs form the core of the team. Moreover, Fig. 5(a) shows that BPAB

only exchanges information with another role. A decentralized all-channel com-
munication pattern can be observed in Team C (see Fig. 5(b)). This means that
other non-architectural roles exchange information without necessarily involving
SAC. Nevertheless, SAC plays the most central role, since the SA frequently com-
municates with all team members. Compared to BPAB, BPAC plays a more cen-
tral role, as he/she shows a close collaboration and communication with his/her
3 Constant exchange means that it takes place more than once a day.



146 Ö. Uludağ et al.

Fig. 4. Social networks focusing on SAs and BPAs with regards to the frequency of
inter- and intra-team architecture sharing

squad (see Fig. 5(a) and (b)). The comparison of the two figures also shows that
SAC and BPAC exchange information more frequently than SAB and BPAB.
Figure 5(b) shows a decentralized all-channel communication pattern between
architects and other team members of Team D. Similar to BPAC, BPAD often



Collaboration Between Architects and Agile Teams 147

Fig. 5. Social network of the four squads focusing on SAs and BPAs involved in intra-
team architecture-sharing

Table 2. Normalized degree centralities of architects in intra-team architecture sharing

Fig. 6. Social network of Team B focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing



148 Ö. Uludağ et al.

Fig. 7. Social network of Team C focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

exchanges architecture information with team members. Table 2 shows the nor-
malized degree centrality values of SAs and BPAs involved in intra-team archi-
tecture sharing. 75% of the SAs possess a normalized degree centrality value of
1,0 indicating that they share information with all squad members. Comparing
SAs with BPAs, Table 2 shows that SAs have a stronger exchange of information
with their squad members than BPAs (except Team E).

Figure 6 shows how Team B’s intra-team sharing changes at four distinct time
intervals. For instance, Fig. 6(a) shows that BPAB only exchanges information
with one DevB once per iteration. Figure 6(b) shows that the exchange of infor-
mation between SAs and non-architectural roles mostly takes place two to three



Collaboration Between Architects and Agile Teams 149

Fig. 8. Social network of Team D focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

Fig. 9. Social network of Team E focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

times per iteration, while the sharing between SAs takes place constantly (see
Fig. 6(d)). Similar to Figs. 6, 7 shows Team C’s intra-team architecture sharing.
The exchange in the team usually takes place two to three times per itera-
tion (see Fig. 7(c)). Sharing between architects and non-architectural roles takes
place on a daily basis (see Fig. 7(d)). In contrast to Team B, Fig. 7(e) shows that
SAC and BPAC constantly communicate together. Figure 8(a) shows that the
exchange between architects and non-architectural roles as well as among archi-
tects mainly takes place on a daily basis. SAD and BPAD constantly exchange
architectural information (see Fig. 8(b)). Figure 8(b) also shows that other mem-



150 Ö. Uludağ et al.

bers such as DAD, QA & TMD, PRED, and POD constantly exchange architec-
tural information. The intra-team exchange of Team E takes place mainly on
a daily basis (see Fig. 9(a)). SAE and BPAE communicate on a daily basis (see
Fig. 9(b)). Architecture sharing between architects and non-architectural roles
takes place on a daily basis. Figure 9(b) shows that two groups are formed during
the constant exchange of information. The first group includes SAE, SME, DevE,
and POE, while the second group constitutes DevE, BPAE, and PREE. Table 3
provides a summary of the social network analysis with identified communication
patterns and frequencies.

5 Discussion

5.1 Key Findings

Both architectural roles, i.e. SAs and BPAs, and other roles, e.g. TMs, SMs,
and POs, are involved in inter- and intra-team architecture sharing. In particu-
lar, the CPO plays one of the most salient roles. An all-channel communication
network can be observed in each squad. SAs enable a decentralized exchange so
that other team members can exchange architecture-relevant information with-
out necessarily involving SAs. This observation coincides with the values and
principles of agile software development. Both SAs and BPAs prefer face-to-face
communication with their team members and do not exchange information by
including bridging roles. Each squad is accompanied by at least one SA and BPA.
Both architects play a dual role in their squads. On the one hand, they make
architectural decisions and iteratively create architecture models. On the other
hand, they provide guidance and support their squad in meeting architectural
standards. With this setup, the observed program aims to increase development
speed by balancing emergent and intentional architecture. In all social networks,
SAs form central nodes in inter- and intra-team sharing.

Table 3. Summary of the social network analysis



Collaboration Between Architects and Agile Teams 151

5.2 Threats to Validity

We discuss potential threats to validity along with an assessment scheme as
recommended by Runeson and Höst [20].

Construct Validity: This aspect reflects to what extent operational measures
that are studied really represent what the researcher has in mind [20]. Two
countermeasures were taken for construct validity. First, interview protocols were
coded by the author of this paper and reviewed by a second researcher. Second,
a key informant of the organization has reviewed the analyses of this paper.

Internal Validity is irrelevant, as this study was neither explanatory nor causal.

External Validity: This aspect of validity concerns to what extent the findings
can be generalized, and to what extent the findings are of interest to other
persons outside the case under investigation [20]. This paper focuses on analytical
generalization [20] by providing a detailed description of the case. It provides
empirical insights that allow for a profound understanding on the collaboration
between architects and agile teams. The shown findings should be viewed as
valuable insights for other organizations that adopted Essential SAFe.

Reliability: This validity is concerned with to what extent the data and the
analysis are dependent on the specific researcher [20]. To mitigate this threat,
two countermeasures were taken. First, the case study has been designed so
that the large number of interviewees and multiple interviewers allowed data
and observer triangulation. Second, a case study database was created, which
includes case study documents such as audio recordings protocols, and field notes
of observations.

6 Conclusion and Future Work

In this paper, we described the collaboration between architects and agile teams
in a large-scale agile development program of a German consumer electronics
retailer. Due to the complexity and extent of the CRM product, each squad is
guided and supported by at least one SA and BPA. Each SA is responsible for the
architecture of a subsystem and ensures that the respective squad complies with
defined architectural requirements. The observed program also introduced the
new role of the BPA that is responsible for developing the functional architecture
of the subsystem. To understand the role of SAs and BPAs and their collabo-
ration with squads, we investigated social networks of one scaled team and four
squads. We learned that intra-team architecture sharing is usually facilitated by
SAs. Comparing the social networks with common communication networks, we
discovered that SAs and BPAs prefer direct communication. For the most part,
architects share information on a daily basis with their teams. The intra-team
sharing between architects and their teams is characterized by an all-channel
communication network.

As future work, we will continue to study the large-scale agile development
program of the German consumer electronics retailer. First, we will research how



152 Ö. Uludağ et al.

the current state of architecture sharing is perceived by the stakeholders and how
it could be improved by the use of various coordination mechanisms such as ad
hoc meetings, co-location or communities of practices. Second, as the squads
in the large-scale agile development program become more mature and evolve
towards feature teams, we will investigate the architectural decision-making pro-
cess of squads. We hope to gain a better understanding of the collaboration
between architects and squads regarding the distribution of their responsibilities
for architectural issues.

References

1. Kettunen, P.: Extending software project agility with new product development
enterprise agility. Softw. Process: Improv. Pract. 12(6), 541–548 (2007)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14358-3 1

3. Alqudah, M., Razali, R.: A review of scaling agile methods in large software devel-
opment. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 28–35 (2016)

4. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

5. Uludag, Ö., Kleehaus, M., Caprano, C., Matthes, F.: Identifying and structuring
challenges in large-scale agile development based on a structured literature review.
In: IEEE 22nd International Enterprise Distributed Object Computing Conference
(EDOC) 2018, pp. 191–197. IEEE (2018)

6. Rost, D., Weitzel, B., Naab, M., Lenhart, T., Schmitt, H.: Distilling best practices
for agile development from architecture methodology. In: Weyns, D., Mirandola,
R., Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 259–267. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23727-5 21

7. Leffingwell, D.: SAFe R© 4.5 Reference Guide: Scaled Agile Framework R© for Lean
Software and Systems Engineering. Addison-Wesley Professional, Boston (2018)

8. Mocker, M.: What is complex about 273 applications? untangling application archi-
tecture complexity in a case of european investment banking. In: 2009 42nd Hawaii
International Conference on System Sciences 2009, HICSS, pp. 1–14. IEEE (2009)

9. Waterman, M.: Reconciling agility and architecture: a theory of agile architecture,
Ph.D. thesis, Victoria University of Wellington (2014)

10. Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle, C., Matthes, F.: Supporting
large-scale agile development with domain-driven design. In: Garbajosa, J., Wang,
X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 232–247. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91602-6 16

11. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of archi-
tects in scaling agile frameworks. In: 2017 IEEE 21st International Enterprise Dis-
tributed Object Computing Conference (EDOC), pp. 123–132. IEEE (2017)

12. Kniberg, H., Ivarsson, A.: Scaling agile @ spotify (2012)
13. Guo, L.C., Sanchez, Y.: Workplace communication. Organizational behavior in

health care, pp. 77–110 (2005)

https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-23727-5_21
https://doi.org/10.1007/978-3-319-91602-6_16


Collaboration Between Architects and Agile Teams 153

14. Presbitero, A., Roxas, B., Chadee, D.: Effects of intra- and inter-team dynamics on
organisational learning: role of knowledge-sharing capability. Knowl. Manag. Res.
Pract. 15(1), 146–154 (2017)

15. Lunenburg, F.: Network patterns and analysis: underused sources to improve com-
munication effectiveness. Nat. Forum Educ. Adm. Super. J. 28(4), 1–7 (2011)

16. Angelov, S., Meesters, M., Galster, M.: Architects in scrum: what challenges do
they face? In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS,
vol. 9839, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48992-6 17

17. Bachmann, F., Nord, R.L., Ozakaya, I.: Architectural tactics to support rapid
and agile stability. Technical report, Carnegie-Mellon University Pittsburgh PA
Software Engineering Institute (2012)

18. Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: architecture to the rescue.
In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K.
(eds.) XP 2014. LNBIP, vol. 199, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14358-3 5

19. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development
at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empirical Softw. Eng. 23(1), 490–520 (2018)

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical softw. Eng. 14(2), 131 (2009)

21. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empirical softw. Eng. 10(3), 311–341 (2005)

22. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 275–284. IEEE (2011)

23. Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-48992-6_17
https://doi.org/10.1007/978-3-319-48992-6_17
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/978-3-319-14358-3_5
http://creativecommons.org/licenses/by/4.0/

	Using Social Network Analysis to Investigate the Collaboration Between Architects and Agile Teams: A Case Study of a Large-Scale Agile Development Program in a German Consumer Electronics Company
	1 Introduction
	2 Background and Related Work
	2.1 Scaled Agile Framework
	2.2 Spotify Model
	2.3 Communication Networks
	2.4 Agile Architecture

	3 Case Study Design
	4 Results
	4.1 Case Description
	4.2 Inter-Team Architecture Sharing
	4.3 Intra-Team Architecture Sharing

	5 Discussion
	5.1 Key Findings
	5.2 Threats to Validity

	6 Conclusion and Future Work
	References




