)

Check for
updates

Empowering Agile Project Members
with Accessibility Testing Tools: A Case Study

Viktoria Strayl(g), Aleksander Baiz, Nikolai Sverdrupl,
and Heidi Mork®

! Department of Informatics, University of Oslo, Oslo, Norway
{stray,njsverdr}@ifi. uio.no
2 Norwegian Computing Center, Oslo, Norway
aleksander. bai@nr. no
3 NRK, Oslo, Norway
heidi.mork@nrk. no

Abstract. There is a growing interest in making software more accessible for
everyone, which is emphasized by the numerous suggestions passed into law in
many countries. However, many software organizations that use agile methods
postpone or neglect accessibility testing. We aimed to understand how acces-
sibility testing can be better integrated into the daily routine of agile projects by
conducting a case study in a Norwegian software company. We investigated
three accessibility testing tools: automatic checker, simulation glasses, and a
dyslexia simulator. We hosted sessions at which agile project members used the
tools while thinking out loud, responded to questionnaires, and were interviewed
at the end. Additionally, we observed the project members for 18 workdays. Our
results show that all three tools are suitable for agile projects. Especially the
automatic checker and simulation glasses worked well in finding accessibility
issues and were described as easy to use by the project members. Software
organizations should empower their agile project members with low-cost and
efficient accessibility testing tools to make their products more accessible for all.
Doing this early and often in the development cycle may save the project from
potential high costs at a later stage.

Keywords: Accessibility testing - Usability - Cambridge simulation glasses *
SiteImprove accessibility checker - WCAG - Agile software development *
Universal design

1 Introduction

Creating software that is accessible for everyone (including users with impairments) is
an important consideration for an increasingly digital society. Accessibility focuses on
enabling people with the widest range of capabilities to use a product or removing
barriers that can interfere with the user experience [1]. However, putting accessibility
into practice remains a challenge in software development [2], and agile methods are
especially under scrutiny for not offering enough consideration for accessibility [3, 4].

Testing for accessibility means testing how users with impairments and disabilities
(e.g., dyslexia or impaired vision) will experience the software product. Although agile

© The Author(s) 2019
P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 86-100, 2019.
https://doi.org/10.1007/978-3-030-19034-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-19034-7_6

Empowering Agile Project Members with Accessibility Testing Tools 87

methods highlight principles such as delivering working software and regular testing,
incorporating accessibility testing throughout an agile process is complicated and less
common [3, 4], and it can be an expensive endeavor [5]. Accessibility testing is often
postponed to the late phases of software development which breaks with the principle
of delivering working software frequently [6]. Researchers argue for easier methods to
make finding accessibility flaws more effective in agile software projects [6, 9, 10].
Agile projects face a growing complexity with a variety of organizational constraints
such as universal design, legislation, and security, forcing the cross-functional agile
team to adjust their practices and experiment with new team structures (e.g., BizDev
teams) [7, 8]. Thus, now might be a good time to include practices and tools that let
agile teams test for accessibility issues throughout the project.

In an agile process, which features short iterative cycles, it would be difficult to fit
costly and time-consuming accessibility testing into regular testing procedures.
Accordingly, there is a need to find methods that integrate well with agile approaches.
Methods and tools that can be utilized often without being too resource- and time-
intensive will fit well with agile principles. Our motivation for this project was thus to
improve accessibility in agile software development by testing different methods that
are considered fast and efficient.

The benefits of having an accessible solution are apparent. Poorly developed
software with regard to accessibility is aggravating to impaired users and can make the
product miss out on potential users, giving the issue both social justice and economic
motivation. Research has also shown that software that accommodates accessibility and
inclusion will benefit all users, including those without any impairments [11]. Also, for
software to be considered working, it needs to be thoroughly tested and ready to be
delivered to customers or production. If software fails to be sufficiently accessible, it
cannot be considered to be working. For the goal of having working software,
accessibility testing needs to be a part of every iteration that involves features which
can affect the accessibility of the software. Motivated by this, we set out to investigate
how accessibility testing can be integrated into agile software development, by
answering the following research question:

RQ: How do agile project members experience using accessibility testing tools?

To address this question, we conducted a case study [12] where we had the par-
ticipants test three different accessibility tools and respond to a questionnaire about the
tools they tested. The participants were also interviewed and observed.

The remainder of this paper is organized as follows. Section 2 outlines the relevant
background on accessibility testing in agile software development. Section 3 discusses
different testing tools. Section 4 describes the data collection. Section 5 presents the
results, and Sect. 6 discusses the results and implications for practice. Section 7 con-
cludes and suggests future work.

88 V. Stray et al.

2 Background

Failing to make a product accessible can be costly, as it will increase the probability of
having to make late and expensive changes in the development process and further lead
to prolonged development time. A product with which the user cannot achieve their
goal through the usual procedure will also lead to a reduction in users and increase the
need for additional support and assistance to help guide the users, such as help-desk
services and on-site support [13]. Those who do include accessibility in their devel-
opment process will find that the cost for testing procedures can take its fair share out of
the development budget, especially since the requirements for accessibility testing
often are complex [14].

Investing in accessibility testing early and throughout the development process can
yield a substantial return on investment [15]. Detecting mistakes early lowers the cost
of fixing the error and avoids the accumulation of big, time-consuming problems at the
end of the development process. Accessibility testing, however, has the unfortunate fate
of often being conducted at the very end of development [2]. Reduction in the amount
of work needing to be done in the maintenance phase can also be a substantial benefit,
as a significant portion of the life-cycle expenditure of a software product can con-
gregate in this later stage.

2.1 Accessibility Testing in Agile Software Development

Dissatisfaction surrounding traditional accessibility test methods is a prevalent theme in
other research. Researchers have investigated usability issues in agile development
(e.g., [16-18]) but few researchers have investigated accessibility testing in agile
projects. As Lujan-Mora and Masri [9] argue, accessibility is difficult to achieve with
traditional software development practices, due mainly to its habit of being imple-
mented too late in the development process. They propose that agile development can
significantly help to improve web accessibility due to its focus on regular testing.

Similarly, Eklund and Levingston [6] discuss how usability can benefit from agile
development. They propose a set of steps one can use to incorporate usability tech-
niques in agile development, such as conducting smaller tests and reviews to cover
more of the development process as well as to rely extensively on external consultants
with expert knowledge on accessibility testing. Meszaros and Aston [19] describe the
introduction of early accessibility testing in an agile development process using testing
methods such as paper prototypes to locate accessibility bugs, wizard of Oz testing, and
usability stories. This resulted in a higher acceptance by end users. Kane [3] highlights
the lack of accessibility testing in agile development and proposes techniques to
integrate more accessibility testing into already established agile practices.

3 Testing Tools

Testing for accessibility entails testing for a multitude of different impairments and
disabilities in various states. When ensuring a product works for users with eyesight-
related issues, for example, one has to consider aspects such as different levels of visual

Empowering Agile Project Members with Accessibility Testing Tools 89

perception, color blindness, complete blindness, tunnel vision, and so on. All of these
affect the user experience in different ways and create different challenges that must be
solved. Without any tools, a developer would have to retain an extensive amount of
knowledge to meet the demands of accessibility testing, which would be hard to put
into practice. One solution is to hire expert help from accessibility consultants or recruit
people with different impairments to conduct user testing. However, this is an
expensive solution and should be done when the product moves into a more stable
phase.

One of the most significant challenges in testing for accessibility is that one has to
account for a wide range of people. Using one super-tool that can take account of
everything is not realistic due to the diversity of impairments and the different ways
they affect users. When testing with accessibility in mind, there is a need to evaluate
everything from content, layout, comprehensibility and technical implementation to
compatibility with other accessibility tools, such as a screen reader.

There are some tools that we considered but decided not to include. For example,
we considered a screen reader and WCAG (Web Content Accessibility Guidelines).
However, both tools are intensive regarding the knowledge required to operate them,
and this does not fit very well into an agile process with short iterative cycles. A screen
reader is a software tool intended mainly for use by people suffering from mildly
impaired vision to complete blindness. The biggest challenge of using a screen reader is
that it required extensive training in order to operate the tool correctly. It may take
years to achieve a proficient use of a screen reader, and advanced users can navigate
around an obstacle that novice users cannot. WCAG is the de facto practiced method
used to check for accessibility. WCAG is presented as a set of specifications catego-
rized into four broad principles containing 61 numbered paragraphs of success criteria.
Each criterion has its own detailed page, specifying the intent, examples, techniques,
key terms, and related resources associated with the paragraph. The techniques and
success criteria will, altogether, give a total of 379 different pages, each with a
description, examples, additional resources, test procedures, and expected test results.
From our earlier research, we know that developers perceive WCAG as tedious,
cumbersome, and time-consuming to use in agile projects [14].

We chose the testing tools SiteImprove, Cambridge simulation glasses, and a
dyslexia simulator (where we developed a Chrome browser extension), briefly pre-
sented below, based on other studies that have categorized testing tools according to
barrier groups and cost-benefit [14, 20]. Since we wanted testing tools that could be
easily integrated into an agile process (low cost and little prior knowledge), we found
these to be the best candidates.

3.1 SiteImprove Accessibility Checker

SiteImprove is an automatic checker and browser extension that can analyze a web-
page for breaches of many WCAG criteria. When activated, the extension will auto-
matically analyze the currently opened web-page for noncompliance with the different
levels of the WCAG technical standard. It distinguishes between the different cate-
gories of the WCAG standard and organizes them into groups. Each instance of error
can give a direct link to the WCAG manual for a more detailed explanation of why the

90 V. Stray et al.

error exists and includes suggestions about how one can achieve compliance with
WCAG. Other notable features are the ability to highlight where the error exists on the
site itself and in the public source code by highlighting in the browser’s developer
tools.

One of the most significant drawbacks with automatic checker tools is that there are
many things they cannot check, at least not until we have better artificial intelligence.
For instance, an automatic checker can make sure that images have alternative HTML
tags, but it cannot check if the description is accurate and meaningful.

3.2 Cambridge Simulation Glasses

A person can identify accessibility faults by wearing blurred glasses while interacting
with the interface or object that is under examination. For our testing, we used the
Cambridge simulation glasses. The glasses are thin enough to stack several pieces of
glasses in sequential layers, enabling the tester to be in control of the degree of reduced
vision. Before using the glasses, the tester performs a quick eyesight evaluation using a
Snellen chart that comes with the glasses or can be printed out. The chart indicates how
many glasses the tester should wear to simulate reduced vision (a 95% coverage of the
general population). Most people will need two pair of glasses, but those with very
good eyesight might require three glasses. While wearing the glasses, the tester
interacts with whatever is to be evaluated for accessibility, and any possible short-
comings should be made readily apparent for the tester as they might struggle to use the
solution.

3.3 Dyslexia Simulation

The dyslexia simulator is a small and simple browser extension that tries to simulate
how a dyslectic user or someone with some other reading disorder might experience a
website. Dyslexia is a common learning disability, and the condition can severely
hamper a user’s ability to comprehend a website. Dyslexia impedes the ability to read,
and how software is presented can significantly affect the difficulty of interaction for a
dyslectic user, especially in sites that feature much text or require the user to write [21].
The tool will test a website by shuffling the letters in words, making it difficult to read.

When testing a solution, the tester operates the interface as normal with the dyslexia
software running; if there are areas that become difficult to perceive, the tester can use
that as an indication for something that might become difficult for someone with
reading difficulties to perceive. The dyslexia simulation tries to highlight issues related
to a neurological impairment, which is challenging to test for. It is difficult to make
software that can detect areas affected by such disabilities, and it is difficult for a tester
to understand what the impaired user might experience. There are several WCAG
paragraphs detailing the issues related to reading impairments and steps to help in the
matter.

We used a dyslexia simulator in a pilot study that was a script the user had to rerun
for each use, which was cumbersome. Therefore, for this study, we made an extension
for the Google Chrome web browser (now available on the Chrome web store) that is
easier to install and use.

Empowering Agile Project Members with Accessibility Testing Tools 91

4 Data Collection

We conducted this study in a Norwegian software company that makes digital services
and solutions for banks. We observed the project members in their daily routines and
during agile practices such as daily stand-up meetings [22] and retrospective meetings
[23]. We documented their behavior, and conversation topics and were especially
looking for matters where accessibility issues could play a part. We also interviewed
four members with different roles and responsibilities. The reviews of the three testing
methods were conducted by hosting sessions in which the participants tried out
accessibility testing tools, answered questionnaires about the tools, and were inter-
viewed at the end of the session, see Table 1 for an overview of the data collection.

Interview questions and testing tasks were made after determining what information
was needed and how much time we could have with the participants. As recommended
by [24], every tester had filled out a background survey before the session. After a pilot
attempt of the testing session, it was decided to use a publicly available website not
affiliated with the participants, after we found the participants’ knowledge of their
products to influence their ability to judge the accessibility.

All the testing sessions were originally scheduled for one hour each, where we had
time to test three methods, which involved a quick briefing of the participants about the
tools and instructions on how to use them. In the testing sessions, the participants were
instructed to solve pre-made tasks that required them to use the tools to locate
accessibility faults in a website. As the participants used the tools, they would comment
on their experience and be prompted with questions by the interviewers to reflect on the
experience. After completing the tasks, they filled out a questionnaire.

Having finished testing, the participants were asked a series of questions regarding
their thoughts on each tried method, comparing the methods and identifying which one
they preferred and which one they disliked. They were further asked about the rami-
fications of accessibility testing, and how they thought accessibility testing could be
integrated into their routines.

Table 1. Data collection

Data Explanation Number
Full work days We observed the project members in their daily 18 days
observed work

Stand-up meetings We observed teams having daily stand-up meetings 15 meetings
Team meetings We observed meetings in the agile teams, including |5 meetings

2 retrospective meetings
Interviews outside of | We interviewed one team leader, one developer, one |4 interviews
tests UX designer, and one architect
USE questionnaires Seven of Cambridge simulation glasses, seven of 19 answers
SiteImprove, five of dyslexia simulator
Testing sessions with | We tested and interviewed four developers, one 7 sessions
end interviews software tester, and two UX designers

92 V. Stray et al.

4.1 The Accessibility Testing Tools

We tested three different accessibility testing tools. Five participants tested three tools
while two participants tested two tools because of less time available. The participants
were encouraged to think aloud. When they forgot to talk while they were using the
tools, we reminded them to do so. Below, we will describe how we tested each of the
tools.

SiteImprove. Before we began, the participants were instructed to install the extension
on their computers, and they were also given a quick overview of what it does at the
start of the session. The Sitelmprove user test was conducted without any specific tasks
or scenarios in mind, as the tool does not need any extraordinary web features to be
able to highlight its capabilities. The participants would explore the tool and investigate
the different layers of information on a given website. When they had questions about
the tool or were stuck, we guided them in the right direction. After exploring the tool on
the given website, five of the participants switched to sites they were working on or
were more familiar with to get a
better sense of what the tool was
telling them.

Simulation Glasses. After a
brief introduction and determin-
ing how many glasses each tester
should wear, the participants
who tested the simulation glasses
where given tasks to complete
while wearing the glasses
(Fig. 1). The tasks involved
interacting with a web interface ' N
and completing two scenarios. &‘
The scenarios involved finding - \:?
and booking airplane tickets —
online from one of the leading Fig. 1. A participant testing with simulation glasses
airlines in Scandinavia.

Dyslexia Simulation. Before we began, the participants were instructed to install the
extension. We described how the tool worked and how it could help them discover
accessibility vulnerabilities. Participants were asked to navigate a website with the
dyslexia extension turned on and complete two scenarios. The scenarios involved
finding information about prices, luggage, and legal requirements. The chosen web
pages contained a lot of text to afford the extension something to work with.

4.2 USE Questionnaire for Tool Evaluation

Every participant filled out a questionnaire for each of the methods they tested. The
questionnaire for evaluation of the testing methods is a post-session rating metric
named the “Usefulness, Satisfaction, and Ease of use (USE) Questionnaire” [25].
The USE Questionnaire is a validated questionnaire that consists of 30 questions

Empowering Agile Project Members with Accessibility Testing Tools 93

divided into four categories. We considered this questionnaire to be helpful in assessing
whether each of the methods was suitable for agile projects, by stating general ques-
tions about satisfaction with usability and ease of use on a seven-point Likert scale.

4.3 End Interview After Test

At the end of each testing session, we asked the participants a set of prepared questions
to gauge what they thought about the testing tools. They were asked to compare the
tools in different ways and to talk about how they experienced using each of the tools.
We also asked them whether they believed they would use the tools in the next three
weeks, which tool they felt discovered most faults, and how the tools could be inte-
grated into the daily agile workflow routines. Also, we had some general questions
about how accessibility aspects affected the products they were developing.

5 Results

From the interviews, it became evident that many project members did not know much
about accessibility testing before they tried the tools. One developer suggested that a
reason was that they did not learn it in their software engineering education, and he also
claimed it was not a common theme in work discussions. From our observations, we
could confirm that there was little talking about accessibility among the project
members. In none of the 20 observed meetings was there any discussion of accessibility
issues. However, all interviewees were positive to learn about tools to help them test for
accessibility throughout the agile project. Even though many had little experience with
the tools, all participants managed to install the tools in a short amount of time.

5.1 SiteImprove Accessibility Checker

Seven participants evaluated the SiteImprove tool. As Fig. 2 shows, the method did
very well, with a high score for all categories. The percentage reflects how well a
category scored on the Likert scale from one to seven, where seven is 100% and one is
0%. The tool received a total score of 4.98 (¢ = 0.40) with a 95% confidence interval
between 4.68 and 5.28.

SiteImprove scored very high in the Usefulness category with a score of 5.43
(o = 0.42), which is well above the average of 4.0. Ease of Learning received a score
of 4.82 (o = 0.41) since most of the operations are provided automatically by starting
the extension.

The method also scored high in Ease of Use with a score of 4.87 (¢ = 0.42) even if
some had minor complaints and somewhat struggled: “The fool points out that there
are faults, but it is hard to spot where the faults are”. However, many stated that
SiteImprove was much better to use than WCAG. One developer said, “This is close to
a developer tool (...). I like that it makes references to WCAG. I have tried to look at
the WCAG documentation, but found that difficult”.

94 V. Stray et al.

Usefulness
100%
90% 74%
80%
.
56% X
40% .
+*30% *e
63% * 0% N
> 10% N
Satisfaction < 0% X Ease of Use

= >~ 65%

64%
Ease of Learning

Fig. 2. SiteImprove evaluation results

5.2 Cambridge Simulation Glasses

Seven participants also evaluated this method. As Fig. 3 shows, the glasses got high
scores in all categories and had the highest total score of 6.15 (¢ = 0.48) among all the
methods. The 95% confidence interval for the method was between 5.79 and 6.51.
Not surprisingly, since this method requires the participant only to wear glasses,
this method scored very well on both Ease of learning with a score of 6.79 (¢ = 0.12)

Usefulness
100% 81%
90%
80% &
709" Ca,
WA) ’0
,+50% %
o 40% 2o
4 30% e
74% o 20% *s
o 10% ey
Satisfaction 3 0% v Ease of Use
-d

* & 91%

96% b o

Ease of Learning

Fig. 3. Cambridge simulation glasses evaluation results

Empowering Agile Project Members with Accessibility Testing Tools 95

and Ease of use with a score of 6.45 (¢ = 0.49), One developer said, “The glasses gave
quick results and were easy to use. I also like that they are tangible”, while another
developer said, “I want to have these glasses on my desk and use them often”.

Also for the Usefulness category, the method scored high with 5.88 (¢ = 0.48), and
the sub-question “Is it useful” scored 6.57 (¢ = 0.73), which is well above the average
for the category. A designer said, “I will use these glasses in meetings between
developers and business developers to make them aware of how the different solutions
they are discussing will be perceived by people with reduced sight”.

Regarding Satisfaction, the method scored the highest of all with 5.47 (¢ = 0.84),
and this was also reflected in the interviews. Many participants mentioned that the
method was fun to use, and many also tried the glasses on their own after the session
was completed. During the interviews, many participants mentioned that the method
created more awareness of the challenges associated with bad contrast and small fonts.

5.3 Dyslexia Simulation

Five participants evaluated the dyslexia simulation tool, and as Fig. 4 shows, this
method was also regarded highly. The tool had the second highest evaluation in the
Ease of learning category with a score of 6.35 (¢ = 0.3). This is not unexpected since
the method requires only the push of a button in the browser to be enabled. Both
Usefulness and Ease of use also had high scores with 5.33 (o =0.57) and 5.62
(o =0.67). A designer said, “The dyslexia simulator makes me realize how important
it is to use common and simple words because those are easier to recognize when they
are scrambled. I will definitely use this tool to show the management how it will be
perceived by people with dyslexia if we use long text with difficult words”.

Usefulness
100%
90%
80%
70% yfe
60%" %
500%] ‘0
‘.‘40% %o
. o 30%
64% & 0% N\
10%
Satisfaction & 0% RS Ease of Use

72%

\ o 77%

89%

Ease of Learning

Fig. 4. Dyslexia simulation evaluation results

96 V. Stray et al.

Overall the Dyslexia simulation method did good, in particular in the category Ease
of learning, as Fig. 4 shows. The method itself scored well above neutral (4) and might
have received even better scores if not for some bugs in the extension. This is also
reflected in the sub-question for Ease of use where the question “I don’t notice any
inconsistencies as I use it” scored 4.00 (¢ = 0.89), which is well below all the other
sub-questions. This is also probably connected to the fact that the extension did not
adapt all the text on the webpage.

The tool scored well overall with a total score of 5.53 (o =0.53) and a 95%
confidence interval between 5.14 and 5.92. In the interviews, many participants said
that the method was an eye-opener experience. Participants also liked that it was easy
to visualize problems with too much text on a web page and that it emphasizes the
importance of writing good and readable text: One developer said, “I like this plugin.
I now see that the way you structure the text is very important. When you have too
much text close together, it is hopeless for a person with dyslexia”. Contrarily, some
noted that it could be difficult to understand how good the method was at finding
issues.

6 Discussion

Good accessibility is difficult to achieve, mainly due to its complex nature and the wide
range of people who must be considered. It does not help that accessibility testing is
conducted late in the development process when changes are costly to make, and
compromises are made instead. However, agile development can significantly help to
improve web accessibility due to its focus on regular testing [9]. Eklund and
Levingston [6] and Ferreira et al. [10] argue for more frequent testing where more cost-
effective methods are used several times throughout the project rather than relying on
few but large and costly testing activities, such as hiring accessibility experts to do
accessibility testing.

There is currently little research that offers concrete solutions for simple accessi-
bility testing in agile settings; most current research discusses just the possibilities for
accessibility testing in agile development. In this study, we have focused on giving
accessibility testing some much-needed evaluation in an agile project. The fast and
low-cost test methods in this study were perceived as useful and easy to use by the agile
project members.

Next, as other research also has suggested [9, 26], we found that accessibility needs
to be a team effort. Agile principles promote self-organization and communication
within the development team and make it possible to inspect even the smallest of
details when everyone is involved, instead of having only a few experts working on
accessibility. Several of the methods we tested addressed many of these concerns.
While some were easier to use and learn than others, they all were usable without
extensive training and learning sessions. Our results showed that all three methods we
tested, SiteImprove, the Cambridge glasses, and the dyslexia simulator, can be used
across the development team and utilized in such a way that it becomes a team effort
where testing can be commenced at regular but short intervals.

Empowering Agile Project Members with Accessibility Testing Tools 97

All three accessibility testing methods we used in this study were low-cost and
perceived as very easy and quick to use. Most of them can be used very early in
development, some even before any code is written, merely going by design drawings.
There is no doubt that accessibility testing can be included early in agile software
projects. Using any of the tools will enable testing to be done more often. The inter-
viewees also suggested regular workshops at which the agile team members together
could experience the solutions they made with different accessibility testing tools. Also,
if there are formal requirements from the organization or customer, these issues could
be discussed in planning and retrospective meetings and would probably be a more
frequent theme in the daily-standup meetings.

SiteImprove was quick in producing results and is the method that would cover the
broadest set of WCAG paragraphs in our study. One key factor in its success is the
automation aspect of the tool. It dramatically reduces the time spent finding bugs, and
the user is immediately presented with clearly defined statements of what is wrong and
how one can improve. It was not surprising that the participants rated SiteImprove as
easy to learn since most of the operations are provided automatically by starting the
extension. We had expected a lower total score of SiteImprove since the tool uses many
complicated terms and advanced terminology. A drawback with SiteImprove is that it
cannot be used until a solution has been implemented, rendering it not as useful for
designers or in the early phases. It is also limited by being able only to check what is
programmatically possible.

The Cambridge simulation glasses were, along with SiteImprove, the method that
worked well in many situations. It also worked well in cases where SiteImprove cannot
help. Use of the glasses is not dependent on a solution having reached a certain level of
development. The glasses can be used early in development on visual concepts, for
example on sketches or prototypes. They are also platform-independent and can be
used on any software or visual representation, making it a universal accessibility tool.
One aspect remarked on by many of the participants who tested the method was that the
glasses gave an overview of the product in its entirety. Being able to view the product
from a higher perspective rather than fixating on small details also contributes to why
so many liked to use the glasses.

We included the dyslexia tool because we wanted methods that covered cognitive
impairment, and this method was one of the few testing methods that are low-cost and
fast to test for this. The method was rated higher than we had foreseen, particularly
because we expected more participants to misunderstand the idea behind the method.
The tool received good results on the USE Questionnaire. However, with this tool, the
testers have to interpret the results based on their knowledge of dyslexia. Some testers
reported that the plugin could be helpful to discover text where long and complicated
words were being used, and where the structure and layout were not organized. The
improved accessibility by employing clear and concise language is an aspect not
addressed by any of the other tools.

6.1 Threats to Validity

As with all empirical studies, there are some threats to validity that we need to consider.
First, we used a single-case design and, as a result, have the possibility of bias in the

98 V. Stray et al.

data collection and analysis. Therefore, the general criticisms of single-case studies,
such as uniqueness, may apply to our study. However, as the company had been using
agile methods for many years, developing bank solutions for a wide variety of people,
we found it to be a valuable case for investigating accessibility testing in agile software
development. Furthermore, we triangulated the research question from multiple sources
of evidence such as interviews, observations, and questionnaires to increase the quality
of the case study [12].

Second, when using self-reported data to measure usability of tools, one might have
the “social desirability bias” [27] where respondents respond more positively to rating
questions because they unconsciously want to satisfy the facilitator giving them the
questionnaire. To reduce this bias, following the advice of Albert and Tullis [25], we
collected the responses anonymously on the web, and we did not look at the results
until afterward.

6.2 Implications for Practice

Our results show that agile accessibility testing methods are not well-known among
agile team members. Accordingly, agile projects should invest in simple tools that can
be used by all roles, and project members should be informed about the techniques they
can use. We found that the three tools tested were useful and should be used regularly
in agile projects as they are also cost-efficient. For software developers who consider
using accessibility testing tools, we suggest that Cambridge glasses be used early, as
they do not require much effort from the agile developers. As the product becomes
more stable, Sitelmprove can be used regularly.

The methods and tools we have evaluated have been used with the intention of
testing software and finding accessibility issues. In the larger scheme of accessible
software, we suspect that using these tools, especially the ones that simulate an
impairment, might have secondary benefits. Exposure to the type of simulation testing
such as with the Cambridge glasses and the dyslexia simulator can give the tester a
heightened sense of awareness of issues that could come into conflict with impaired
users and foster more empathy and understanding.

Many comments were made that the testers had new insights and understanding.
The new knowledge about how different users perceive software can give developers a
subconscious ability to shape software in a more accessible direction, outside of
directly applying accessibility methods. So, while the methods described in this paper
might not be chosen to be used regularly, there can be a significantly insightful
experience for agile developers to try these methods, and they can put that experience
to use in later development.

There is still a way to go to more easily integrate accessibility testing into agile
work processes. The existing tools should be more compatible with agile processes,
and agile project members should have a wider variety of accessibility testing tools to
aid them in making accessible software. Implementing this would reduce the resources
needed for accessibility testing by continuing the work toward more lightweight and
comprehensible tools, as well as making the surrounding issues with impairments more
visible and the knowledge of how they affect software interaction more obtainable. This
will aid in weaving accessibility into the development process.

Empowering Agile Project Members with Accessibility Testing Tools 99

Another barrier is that many testing tools are platform-dependent. Tools are not
uniformly available on all operating systems, browsers, and developer tools. The dif-
ferent tools have their own characteristics, and integration and learning can be made
more arduous because of this. Tools that support software not intended for web or
mobile are also rare. The lack of diverse tools available on many platforms hampers
any attempt to make accessibility a more uniform process as it now has to be indi-
vidually tailor-made depending on the hardware and software available to developers,
and without the right combination, it can be challenging to cover a wide range of
impairments with tools.

7 Conclusion and Further Work

We have evaluated three different tools for accessibility testing, in addition to inter-
viewing the participants and observing them in their daily work in software develop-
ment teams. We argue that the methods we tested will help to discover accessibility
issues while keeping costs low in an agile project. In our study, when introduced to the
tools, the project members became more aware of how to make the software more
accessible, and they had a positive attitude toward using the tools throughout their
projects. The interviewees stated that they wanted accessibility work to be a team effort,
rather than the responsibility of the UX designers or accessibility consultants.

Further work should test other accessibility tools such as screen reader, WCAG,
and Personas to try to find an approach for these tools to be integrated into an agile
development project. Furthermore, future work should investigate the connection
between the cost of doing accessibility work throughout the agile process with the cost
saved by fixing accessibility issues early.

References

1. Petrie, H., Bevan, N.: The evaluation of accessibility, usability, and user experience. In:
Stephanidis, C. (ed.) The Universal Access Handbook, pp. 1-16. CRC Press (2009)

2. Sanchez-Gordoén, M.-L., Moreno, L.: Toward an integration of Web accessibility into testing
processes. Procedia Comput. Sci. 27, 281-291 (2014)

3. Kane, D.: Finding a place for discount usability engineering in agile development: throwing
down the gauntlet. In: Proceedings of the Agile Development Conference, pp. 40-46. IEEE
(2003)

4. Zimmermann, G., Vanderheiden, G.: Accessible design and testing in the application
development process: considerations for an integrated approach. Univ. Access Inf. Soc. 7,
117-128 (2008)

5. Nielsen, J.: Return on Investment for Usability. Jakob Nielsen’s Alertbox (2003)

6. Eklund, J., Levingston, C.: Usability in Agile Development, pp. 1-7. UX Research (2008)

7. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future directions
for research. In: Proceedings of the XP2018 Scientific Workshops, Porto, Portugal. ACM
(2018)

8. Mikalsen, M., Moe, N.B., Stray, V., Nyrud, H.: Agile digital transformation: a case study of
interdependencies. In: Proceedings of the Thirty Ninth International Conference on
Information Systems (ICIS 2018), San Francisco (2018)

100

9.

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

V. Stray et al.

Lujan-Mora, S., Masri, F.: Integration of web accessibility into agile methods. In:
Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS
2012), pp. 123-127 (2012)

Ferreira, J., Noble, J., Biddle, R.: Agile development iterations and UI design. In: Agile
Conference (AGILE), pp. 50-58. IEEE (2007)

Fuglerud, K.S.: Inclusive design of ICT: The challenge of diversity (2014)

Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2009)

Bias, R.G., Mayhew, D.J.: Cost-Justifying Usability: An Update for the Internet Age.
Morgan Kaufmann Publishers Inc., San Francisco (2005)

Bai, A., Mork, H.C., Stray, V.: A cost-benefit analysis of accessibility testing in agile
software development: results from a multiple case study. Int. J. Adv. Softw. 10, 1 (2017)
Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J.: Error cost
escalation through the project life cycle. In: INCOSE International Symposium, pp. 1723—
1737. Wiley Online Library (2004)

Bordin, S., De Angeli, A.: Focal points for a more user-centred agile development. In: Sharp,
H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 3—15. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33515-5_1

Chamberlain, S., Sharp, H., Maiden, N.: Towards a framework for integrating agile
development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.)
XP 2006. LNCS, vol. 4044, pp. 143-153. Springer, Heidelberg (2006). https://doi.org/10.
1007/11774129_15

Moreno, A.M., Yagiie, A.: Agile user stories enriched with usability. In: Wohlin, C. (ed.) XP
2012. LNBIP, vol. 111, pp. 168-176. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30350-0_12

Meszaros, G., Aston, J.: Adding usability testing to an agile project. In: Agile Conference,
pp. 289-294. IEEE (2006)

Bai, A., Fuglerud, K., Skjerve, R.A., Halbach, T.: Categorization and comparison of
accessibility testing methods for software development. Stud. Health Technol. Inf. 256, 821—
831 (2018)

W3C Working Group Reading Level: Understanding Success Criterion 3.1.5. https://www.
w3.org/tr/understanding-WCAG20/meaning-supplements.html

Stray, V., Moe, N.B., Sjeberg, D.IK.: The daily stand-up meeting: start breaking the rules.
IEEE Softw. (2018). https://doi.org/10.1109/ms.2018.2875988

Derby, E., Larsen, D., Schwaber, K.: Agile Retrospectives: Making Good Teams Great.
Pragmatic Bookshelf (2006)

Edwards, R., Holland, J.: What is Qualitative Interviewing? A&C Black (2013)

Albert, W., Tullis, T.: Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics. Newnes (2013)

Constantine, L.: What do users want? Engineering usability into software. Windows
Tech J. 4, 30-39 (1995)

Nancarrow, C., Brace, L.: Saying the “right thing”: coping with social desirability bias in
marketing research. Bristol Bus. Sch. Teach. Res. Rev. 3, 1-11 (2000)

http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/11774129_15
http://dx.doi.org/10.1007/11774129_15
http://dx.doi.org/10.1007/978-3-642-30350-0_12
http://dx.doi.org/10.1007/978-3-642-30350-0_12
https://www.w3.org/tr/understanding-WCAG20/meaning-supplements.html
https://www.w3.org/tr/understanding-WCAG20/meaning-supplements.html
http://dx.doi.org/10.1109/ms.2018.2875988

Empowering Agile Project Members with Accessibility Testing Tools 101

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Empowering Agile Project Members with Accessibility Testing Tools: A Case Study
	Abstract
	1 Introduction
	2 Background
	2.1 Accessibility Testing in Agile Software Development

	3 Testing Tools
	3.1 SiteImprove Accessibility Checker
	3.2 Cambridge Simulation Glasses
	3.3 Dyslexia Simulation

	4 Data Collection
	4.1 The Accessibility Testing Tools
	4.2 USE Questionnaire for Tool Evaluation
	4.3 End Interview After Test

	5 Results
	5.1 SiteImprove Accessibility Checker
	5.2 Cambridge Simulation Glasses
	5.3 Dyslexia Simulation

	6 Discussion
	6.1 Threats to Validity
	6.2 Implications for Practice

	7 Conclusion and Further Work
	References

