
Scaling Agile Beyond Organizational
Boundaries: Coordination Challenges

in Software Ecosystems

Iris Figalist1(B), Christoph Elsner1, Jan Bosch2,
and Helena Holmström Olsson3

1 Corporate Technology, Siemens AG, 81739 Munich, Germany
{iris.figalist,christoph.elsner}@siemens.com

2 Department of Computer Science and Engineering,
Chalmers University of Technology, Hörselg̊angen 11,

412 96 Göteborg, Sweden
jan.bosch@chalmers.se

3 Department of Computer Science and Media Technology, Malmö University,
Nordenskiöldsgatan, 211 19 Malmö, Sweden

helena.holmstrom.olsson@mau.se

Abstract. The shift from sequential to agile software development orig-
inates from relatively small and co-located teams but soon gained promi-
nence in larger organizations. How to apply and scale agile practices to
fit the needs of larger projects has been studied to quite an extent in pre-
vious research. However, scaling agile beyond organizational boundaries,
for instance in a software ecosystem context, raises additional challenges
that existing studies and approaches do not yet investigate or address in
great detail. For that reason, we conducted a case study in two software
ecosystems that comprise several agile actors from different organiza-
tions and, thereby, scale development across organizational boundaries,
in order to elaborate and understand their coordination challenges. Our
results indicate that most of the identified challenges are caused by long
communication paths and a lack of established processes to facilitate
these paths. As a result, the participants in our study, among others,
experience insufficient responsivity, insufficient communication of prior-
itizations and deliverables, and alterations or loss of information. As a
consequence, agile practices need to be extended to fit the identified
needs.

Keywords: Large-scale agile software development ·
Inter-team coordination · Software ecosystems

1 Introduction

Agile practices in software development have been around for quite some time
and originally emerged due to the need to adapt faster to changing customer
c© The Author(s) 2019
P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 189–206, 2019.
https://doi.org/10.1007/978-3-030-19034-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-19034-7_12

190 I. Figalist et al.

requirements [1]. Developing in iterations provides the required flexibility and
enables agile projects to “identify and respond to changes more quickly than a
project using a traditional approach” [1]. With the focus being on “individuals
and interactions over processes and tools” [2], preferably through face-to-face
communication, agile practices initially aimed at small, local teams. However,
as agile development became more popular, larger organizations adapted certain
practices as well [3]. As a result, large-scale agile frameworks, such as SAFe [4]
and LeSS [5], were developed to provide guidance to large organizations. The
application of scaled agile methods has already been investigated to a great
extent, e.g. in [3,6–10], and [11]. The focus, however, lies mostly on large-scale
projects or multiteams within one organization. This lead us to the question:
How to scale agile even further, beyond organizational boundaries?

Software ecosystems can be defined as “the interaction of a set of actors on
top of a common technological platform that results in a number of software
solutions or services. [...]” [12]. Opening up a platform to external developers
enables platform operators to expand their offerings and provide further func-
tionalities that they would not have been able to develop themselves, thereby
providing more value to the customer but at the same time requiring additional
coordination efforts [13,14].

In large-scale distributed, agile teams, inter-team coordination has previously
been identified as a major challenge [8]. As large-scale software ecosystems differ
from traditional organizations in various ways, these challenges cannot directly
be adopted. For one, each actor within the ecosystem has its own way of work-
ing that can hardly be standardized [13]. This results in many different practices
applied across the ecosystem and, therefore, many different degrees of agility
which can be difficult to align. Moreover, the actors do not belong to a sin-
gle but instead to many different organizations which share different, possibly
competing, relationships. For this reason, the actors do often neither share the
same goals nor communicate in a fully open way. This makes the inter-team
coordination even more difficult.

To our knowledge, the challenges of inter-team coordination beyond orga-
nizational boundaries are not yet sufficiently investigated in existing literature.
For that reason, we raise the following research questions:

(a) How do agile teams within software ecosystems coordinate their efforts?
(b) Which inter-team coordination challenges do agile teams within software

ecosystems face?

In order to achieve this, we conducted a case study within two large, industrial
software ecosystems to investigate their processes and inter-team coordination.
We elaborate the results along three dimensions that constitute the framing for
our findings: (a) maturity of the ecosystem (b) phases within the agile lifecycle (c)
openness/closedness of the ecosystem. We use this framing to map the conflicting
interests between actors as well as the resulting challenges and implications to
the dimensions. Therefore, the contribution of this paper is to unfold why certain
conflicts arise in a particular situation or setting in order to increase awareness of
other actors’ mindsets, and to help practitioners understand certain challenges

Coordination Challenges in Software Ecosystems 191

and possible trade-offs they, thereby, might be facing. Moreover, we were able
to tie most of the challenges back to long communication paths and a lack of
established processes, raising the need to extend existing agile practices.

The remainder of this paper is organized as follows: First, we explain the
characteristics of software ecosystems in Sect. 2, followed by our case study design
in Sect. 3. In Sect. 4 we present the results of our study, before providing an
overview of related work in Sect. 5, and summing up and concluding our work
in Sect. 6.

2 Characteristics of Software Ecosystems

One of the major differences between distributed teams in traditional organiza-
tions and software ecosystems is the fact that the teams or actors are not within
the same company or organization but instead spread across several organiza-
tions, whereby each actor contributes different elements to the system or product.
This entails various types of relationships between actors within an ecosystem.
For instance, the actors can be competitors or share mutual benefits [12]. The
complexity of relationships and dependencies increases with the number of par-
ties involved in the ecosystem [13]. Moreover, the number of actors and their
possibly competing relationships results in a lack of sharing data which has pre-
viously been observed in large organizations [15].

Even though iterative requirements engineering processes provide an
increased flexibility and are already widely applied in software ecosystems, fur-
ther challenges arise due to the ecosystem’s various actors, the physical dis-
tance between them, and the complexity of dependencies within the ecosystem,
which impede a common understanding among and alignment between actors
[16–18]. For one, the interpretation and prioritization of requirements can differ
highly between ecosystem actors because different stakeholders value different
attributes when dealing with a requirement. Every partner contributes require-
ments to the ecosystem which might result in a requirement overload, causing
complications in the prioritization process [19]. Additionally, the negotiation
process of requirements is highly influenced by the amount of power and depen-
dencies between actors [18]. An adequate understanding of the other actors’ goals
and business models is required in the requirements engineering process in order
to satisfy existing stakeholders and attract new partners.

In this paper we analyze how the described characteristics and challenges
manifest in the inter-team coordination of agile teams within software ecosys-
tems.

3 Case Study Design

Case studies are a well-known research methodology to investigate and under-
stand contemporary phenomena in their real-world context with no or little
control by the researcher [20,21]. As our research questions aim at answering
exploratory questions, we believe that this is the right methodology for our
study, following the guidelines by Runeson and Höst [20].

192 I. Figalist et al.

Case Study Design. The research objective of our study was to investigate
the inter-team coordination and its accompanying challenges across organization
boundaries. Specifically, our study focuses on how teams in distributed organi-
zations communicate with each other, what kind of information, feedback or
data they share, how it is shared, and how they are making and communicating
decisions that affect any of the other teams. To achieve this, we performed this
case study in two large software ecosystems, Ecosystem A and Ecosystem B,
which are established in the industrial and the healthcare domain, respectively.
Each ecosystem originated in a large, industrial company and offers several ser-
vices, mostly in terms of applications, to the companies’ customers. In order to
expand their offerings, they opened up their platform to internal as well as exter-
nal partners developing applications on the platforms. Figure 1 gives an overview
of the ecosystems’ structures and actors. We chose the respective ecosystems for
our study since the keystone as well as the partners work in agile teams and
experience difficulties in their coordination.

Fig. 1. Actors in ecosystems

Table 1. Description of ecosystems

Ecosystem A B

of platform devs 500–750 50–100

of internal partners 20–50 5–10

of external partners 100–200 5–10

of apps 20–50 10–20

Interviewees keystone DM PO PM

Interviewees partner SA PO I PO II PO III

Data Collection and Analysis. We conducted semi-structured interviews
with key stakeholders within the two ecosystems. Four product owners (PO), one
product manager (PM), one demand manager (DM), and one software architect
(SA) participated in the study. The demand manager is responsible for collecting
and structuring requests from partners and customers before forwarding them
to appropriate platform teams. Each of our interviewees belongs to a different,
individual agile team within the respective ecosystem and was chosen as a key
stakeholder to represents the views of their entire team. Moreover, all inter-
viewees belonged to either the keystone who develops the platform (PM, DM,
and one PO) or to a complementing player (three POs, SA) of an ecosystem,
therefore providing views from both angles. One product owner, the demand
manager, and the software architect belonged to Ecosystem A and the product
manager and three of the product owners belonged to Ecosystem B (see Table 1
for a structured overview of the ecosystems and our participants).

All interviews included the following topics: communication structures,
exchange of data and feedback with partners and customers, and decision mak-
ing processes; though the interview guides were slightly adjusted to the specific
roles. At the beginning of each interview the participants were given a brief

Coordination Challenges in Software Ecosystems 193

introduction into the study and the structure of the respective ecosystem was
shortly discussed in order to create a common understanding. Following this, the
interviewees were asked for their permission to audio tape the interview, before
the interviews were conducted. Each interview lasted between 45 min and one
hour, and was transcribed and summarized afterwards.

Additionally to the interviews we derived further knowledge from two experts
in this field. Both of them have been working in and with multiple ecosystems,
including Ecosystem A and Ecosystem B, for several years, and shared their
experiences in a couple of unstructured interview sessions. They provided addi-
tional insights on how the respective ecosystems are structured from a bird’s-eye
perspective in contrast to the team perspectives. Moreover, we discussed the
findings of our interviews with them in order to support the validity of our
study.

As a result, we achieve triangulation by (a) investigating multiple software
ecosystems (b) interviewing multiple roles within the ecosystems (c) adding
expert knowledge.

4 Results

One major difference between distributed teams in large organizations and teams
within software ecosystems is that the actors within an ecosystem do not belong
to the same company or organization and, therefore, do not necessarily share a
common (business) goal. Since we wanted to understand why certain challenges
occurred, we decided to first investigate the respective (differing) interests on
the keystone’s as well as the partners’ side in order to locate potential sources of
conflicts, before we focused on the analysis of the challenges. Hence, this section
is structured as follows: First, we describe the dimensions used in our frame-
work, followed by the conflicting interests, and concluding with the identified
challenges.

4.1 Influencing Factors

During the analysis of our data we observed that our findings were highly depen-
dent on three different factors: the phases of an agile lifecycle comprise different
tasks that require different communication and coordination processes, and the
maturity as well as the openness of an ecosystem influence the relationships
between actors and, therefore, also the communication. These factors constitute
the main dimensions of the models that include the results of our study, and are
explained in detail in the following sections.

Agile Lifecycle. The common agile lifecycle includes an initial requirements
definition and planning phase, followed by a development phase including inte-
gration and tests, a review and feedback phase, frequent releases, and a repri-
oritization phase before the next iteration begins [22]. Since all our interviewees
work in agile teams, they all go through a similar agile lifecycle, experiencing

194 I. Figalist et al.

different challenges in different phases. As the focus of our study is on coordi-
nation challenges, we neglected the technical phases (development and release)
but rather focused on the planning, prioritization and feedback phase. We asked
each interviewee about the phases they go through and, based on the literature
as well as their answers, we propose the agile lifecycle in Fig. 2 that constitutes
one dimension in our study.

Fig. 2. Agile lifecycle

Maturity. Based on our interviews, we noticed that the maturity of the respec-
tive ecosystems plays a rather important role. Especially the communication
between keystone and partners changes drastically over different phases of matu-
rity. For instance, in the early phases of opening up a platform it is important to
attract new and please existing partners, therefore the focus on communication
is much higher than in later phases when the ecosystem is mature enough to
attract partners automatically because of its success and the benefits for the
partners.

One way to describe the evolution of a technology or an innovation is the
s-curve. It describes the performance of a technology during different maturity
stages from “pregnancy, birth, childhood, adolescence, maturity, and decline”
[23]. Both ecosystems already have products on the market but regarding their
maturity we would classify Ecosystem A as still being in the “birth” phase and
Ecosystem B as being in the “childhood” phase. Specifically, Ecosystem A is
still in the process of opening up their development to external partners while
Ecosystem B is already established but still accelerating. For this reason, we
define the second dimension as the maturity from “opening up” to “acceleration”.

Openness vs. Closedness. Hartman et al. identified two different types of
ecosystems, open and closed [24]. While closed ecosystems are still tightly cou-
pled to and somewhat controlled by the keystone, open ecosystems are easily
accessible for partners and can be characterized by their interchangeability of
components and parties. However, ecosystems are not necessarily one or the
other, they can also be in a hybrid stage [24]. This is relevant for our study since

Coordination Challenges in Software Ecosystems 195

the communication and trust across ecosystem partners appears to be different
for the two types. For instance, the actors in closed ecosystems are more inter-
connected than the actors of open ecosystems and, therefore, communicate more
openly and share a higher level of trust. By tendency, Ecosystem A belongs to
the category “open ecosystem” while Ecosystem B incorporates closed as well as
open aspects. This is directly reflected in the characteristics of relationships that
the keystone shares with different types of partners (both external & internal).

Fig. 3. Conflicting interests between different ecosystem actors

4.2 Conflicting Interests

Each ecosystem actor usually follows its own business strategy which can easily
result in different interests that are hard to align and, therefore, cause conflicts
between the actors. In order to analyze which opposing interests might lead to
conflicts, and based on that even challenges, we extracted the interests of the
partners as well as the keystone out of the interviews. Next, we mapped contrary
interests that share a common link from both sides to each other which, therefore,
constitute main drivers and crucial influencing factors for certain conflicts. Since
not all interests and conflicts apply to all ecosystems or to all phases of agile
development, we mapped the conflicting interests to different maturity levels,
phases within an agile lifecycle, and the degree of openness (see Fig. 3). A more
detailed description of the conflicts, interests of the platform and partners, and
other influencing factors can be found in Table 2. All of the described results
were derived out of the interview sessions of our case study. Overall, we identified
nine conflicts that were caused by opposing interests on the partners’ and the
keystone’s side. Three of the conflicts originated in the planning phase, four in
the value prioritization phase, and two in the feedback phase.

196 I. Figalist et al.

Table 2. Description of conflicting interests between keystone and partners and the
influencing factors in different phases

Conflict Partners’ Interests Keystone’s
Interests

Ph Ma IF

1 Platform functionalities Request specific
partner
functionalities

Provides the
functionality that
brings most value
to the ecosystem

P OP O

2 Communication of
requests

Expect fast & easy
communication
processes

Asks for well
described
requests

P OP& A O

3 Keystone’s control &
partners’ independence
(planning)

Become more
independent

Keep control over
the partners’
customer
interaction

P A C

4 Prioritizations &
different business
strategies

Follow own business
strategy

Ensure the
ecosystem’s
future

VP OP& A -

5 Different power
relations

Want to be
recognized by
keystone

Wants to bind
“important”
partners to
ecosystem

VP OP PR

6 Transparency by the
keystone

Expect transparency
(e.g. delivery
timelines,
commitments)

Wants to stay
flexible/be able
to reprioritize

VP OP O

7 Keystone’s control &
partners’ independence
(prioritization)

Obtain broad
picture over all
customers

Keep control over
the partners’
customer
interaction

VP A C

8 Exchange of data &
required infrastructure

Share customer
feedback/data with
collaborative
partners

Low priority to
provide
infrastructure

F OP& A O

9 Forwarding customer
feedback

Only benefit from
forwarding feedback
if it is directly
connected to the
partner’s
app/service

Needs the
partners to
forward
requirements (if
related to the
keystone) of their
customers

F OP& A O

Phases (Ph): Planning (P), Value Prioritization (VP), Feedback (F)
Maturities (Ma): Opening up (OP), Acceleration (A)
Influencing factors (IF): Openness (O), Closedness (C), Power Relations (PR)

Coordination Challenges in Software Ecosystems 197

Fig. 4. Mapping of challenges to different settings

Planning Phase. Conflict #1 concerns the platform functionalities pro-
vided by the keystone and required by the partners. On the one side, the part-
ners require the keystone to provide specific functionalities for their minimum
viable product (MVP) while the keystone receives so many requests that it is
difficult to take all partners into consideration so “[they] need to come to a point
where [they] say what platform value creates the most value to the ecosystem
and that’s not easy because the ecosystem is so broad”. For this reason, the
keystone concentrates its planning efforts on the partners that bring the most
value to the ecosystem.

The next issue (#2) is related to the communication of requests and the
inconsistency of processes. Partners want to communicate their requests in an
easy and fast way, and expect the keystone to respond to their requests, while
the keystone “receive[s] quite small or tiny, tiny described requests” but “would
like to receive more well described requests” from their partners. As there are
no consistent processes available this often leads to misunderstandings of what
the requirement actually is and, therefore, causes displeasure on both sides.

Moreover, the keystone’s control and the partners’ independence (#3)
lead to conflicts, especially in closed ecosystems. While the partners want to be
independent of the keystone in order to being able to optimize individual business
interests, the keystone wants to keep control over the end-customers and the
partners’ interactions with these customers in order to ensure a coherent, overall
business offering.

198 I. Figalist et al.

Table 3. Description of coordination challenges caused by divergent interests of actors
within the ecosystem
Challenge Description Ph Ma IF PR
1 Achieve sufficient

request responsivity
P: Keystone not sufficiently reactive
K: Keystone receives too many requests over a lot of different channels
Why: many different communication channels, processes not well estab-
lished yet

P OP O P>K

2 Appropriate com-
munication of topics
& deliverables

P: Lack of transparency & lack of support -> leads to lack of trust
K: Apps formulate high level user stories -> Keystone PM refines it ->
potential misunderstandings
Why: long communication paths, not all PMs have expertise in all areas
-> easy to misunderstand

P OP&A O P>K

3 Obtain a broad pic-
ture of customers
(planning)

P: Partners get restrictions from keystone concerning customer interaction
-> no broad overview on customer’s needs
K: Keystone wants to ensure an appropriate representation of the entire
ecosystem in front of the customer
Why: partners & keystone closely coupled, keystone does not want the
customer to see the product in a non-ready state

P A C K>P

4 Achieve alignment
of roadmaps and
prioritizations

P: Every ecosystem partner has own roadmap and prioritizations do often
not match
K: Challenging to consider all partners & decide what brings most value
to ecosystem
Why: no common business interests in software ecosystems

VP OP&A - -

5 Handling different
power relations

P: Keystone gives preference to certain stakeholders -> neglect ”less im-
portant” partners
Why: Not all partners can be treated the same
K: Partners create pressure in order get their requests preferred -> How
to decide which partner/customer is more important?
Why: Keystone relies on ”powerful” partners in opening up phase

VP OP PR P>K

6 Insufficient commu-
nication of prioriti-
zations

P: Prioritizations are not well communicated
K: Challenge to handle trade-off between pleasing partners and maintain-
ing flexibility
Why: Keystone wants to stay flexible

VP OP O P>K

7 Obtain a broad pic-
ture of customers
(prioritization)

P: Limited communication between customers and partners -> not all
customers included in prioritization process
K: See challenge #3
Why: as a result of #3

VP A C K>P

8 Establish pro-
cesses to collect &
exchange data

Partner & Keystone: No exchange of customer feedback within ecosystem,
no direct Feedback channel / centralized way to store & access feedback
-> information loss, ”one-sided” feedback
Why: off-the-shelf infrastructure can usually not be used, do both part-
ners/keystone benefit by sharing?

F OP&A O -

9 Appropriate com-
munication & avoid-
ance of information
loss/altering

P: Insufficient communication of malfunctions by the keystone
Why: communication channels for incident reporting must be established,
more challenging in ecosystem
K: Limited amount of information & information loss when communicat-
ing across multiple ecosystem partners
Why: Multiple alterations due to long communication paths, feedback
from end-customers communicated via partners

F OP&A O -

Partner challenges (P), Keystone Challenges (K)
Phases (Ph): Planning (P), Value Prioritization (VP), Feedback (F)

Maturities (Ma): Opening up (OP), Acceleration (A)
Influencing factors (IF): Openness (O), Closedness (C), Power Relations (PR)

Power relations (PR): Partner > Keystone (P>K), Keystone > Partner (K>P)

Value Prioritization Phase. Conflict #4 concerns prioritizations and dif-
ferent business strategies. As each partner follows its own business strategy,
the keystone wants to ensure the ecosystem’s future which leads to conflicts in
the prioritization process since the different strategies can be difficult to align.
One interviewee explains that they need to decide “from a platform point of
view, what makes most sense, what is scalable, what is beneficial for a lot of
customers [...] that’s a challenge”.

It is quite natural that some ecosystem partners are more important business
partners to the keystone than others. However, this leads to different power
relations (#5) as the important partners can create more pressure on the key-
stone than the others. Ultimately, the partners expect the keystone to be aware
of them and their needs and to be treated (at least) equally to other partners,

Coordination Challenges in Software Ecosystems 199

while the keystone wants to bind its important partners (e.g. defined by the
number of customers, revenue etc.) to the platform.

Moreover, especially during that opening up phase, the ecosystem partners
expect transparency of the keystone, e.g. concerning the prioritization of next
steps, delivery timelines, or commitments. One of the interviewees states that
he “would like to have more transparency how and on what basis decisions are
made [...] because at the moment it’s very non-transparent how [the keystone]
decides what constitutes the biggest value for the overall project”. However, the
keystone avoids giving too detailed commitments and detailed timelines in order
to stay flexible and being able to reprioritize. This leads to conflicting interests
concerning the amount of transparency by the keystone (#6).

Analogously to and building upon conflict #3, the keystone’s control and
the partners independence (#7) create a conflict in the prioritization phase
of closed software ecosystems. The partners would like to base their prioritization
on a broad picture of all their customers while the keystone wants to keep control
over the interaction with customers.

Feedback Phase. The partners would like to receive as much information on
their customers as possible even if the data is collected by another partner.
However, they are disinclined to share their data with competitors within the
ecosystem but would be willing to do so with collaborative partners. On the
other hand, the keystone perceives it as low priority to provide an infrastructure
for sharing data across the ecosystem. This leads to conflicts concerning the
exchange of data and the required infrastructure (#8) to do so.

Lastly, and related to the previous conflict, the handling and forwarding
of customer feedback (#9) concerning other partners or the keystone also
constitutes certain challenges since the partners only benefit from forwarding
feedback if it is directly connected to the partners’ apps or services. However,
the keystone relies on the partners to forward platform-related requirements of
their customers to them. Additionally, one interviewee explains that “feedback
from customer visits are a tricky thing because the POs are going to the visits and
we have a process described on how to feed back the feedback to the organization
and also to me but that is still a little bit... some use it, some don’t and some
you have to chase to get their feedback for their customer” which is why they
“need to turn that into a more automated, also tool-automated, process flow”.

4.3 Challenges

Based on the previously extracted conflicting interests, all ecosystem related
challenges faced by either the keystone or the partners were extracted out of the
interviews. For each challenge we identified the following properties: The ecosys-
tem’s maturity, the phase within the agile lifecycle, other influencing factors, and
causes for the respective challenge. Table 3 shows an overview of the detected
challenges. In a next step, we mapped the challenges into a multi-dimensional
model (see Fig. 4). The two main dimensions are the phases within the agile life-
cycle (planning, value prioritization, and feedback) and the degree of maturity

200 I. Figalist et al.

of the ecosystems. We added an extra dimension, the openness of the ecosystem,
to each of the phases of the agile lifecycle because we identified challenges within
these phases that were also strongly influenced by this factor. We identified two
types of partners: partners that are closely coupled to or guided by the keystone
and partners that are only loosely coupled to the keystone. Challenges between
actors may be effective only in one or in both directions (arrows with one vs.
two heads in Fig. 4). The power balance can be even or be dominated by one
actor (indicated by a square or by triangles respectively).

Planning Phase. The first challenge results out of conflict #1 concerning the
development of basis or new platform functionalities. The partners sometimes
feel like the keystone is not sufficiently responsive and takes too long to deliver
needed functionalities while the keystone receives too many requests over a lot of
different channels which makes it difficult to respond to or handle the requests
in a decent amount of time, as one interviewee explains “we keep on getting
requests from everywhere [...] not everything can be taken up at the same time”.
The challenge is to achieve the right request responsivity (#1). Among
others, this is caused by missing or not well established processes to handle such
requests which, again, leads to many different communication channels.

Furthermore, both cases in our study perceived an appropriate commu-
nication of topics and deliverables (#2) between platform and partners as
quite difficult as a result to conflict #2. The partners reveal that they would
appreciate more transparency on the keystone’s side in order to get a clear pic-
ture of what is possible to achieve. If this is not well communicated, this lack
of transparency easily leads to a lack of trust. On the other hand, the keystone
explains that they mostly receive high level user stories from their partners which
have a high potential for being misinterpreted by the product manager who has
to refine the user stories. Possible causes for this challenge are long communi-
cation paths across multiple stakeholders often implying information loss, and
the fact that it is impossible for product managers to have expertise in all of
the partners’ areas which easily leads to misunderstandings, especially since the
partner offering are “operating in a very specific domain which makes it difficult
for most people to understand the topics”.

Another challenge, closely coupled to closed ecosystems and related to con-
flict #3, is to obtain a broad picture of the end-customers (#3) due to
keystone guidelines. In case partners and the keystone are very tightly coupled,
partners who talk to customers are perceived as representatives of the entire
ecosystem. For this reason, the platform wants to ensure an congruent repre-
sentation of the ecosystem in front of the customers. In the particular case, the
keystone has collaboration agreements with certain customers and the partners
get instructions which partners they should talk to. However, this keeps the
partners from getting a broad overview over all customers.

Value Prioritization Phase. As a result to conflict #4, it is challenging to
achieve alignment of roadmaps and prioritizations (#4) as the actors

Coordination Challenges in Software Ecosystems 201

within an ecosystem simply do not share a common business interest. This makes
it difficult for the keystone to consider all partners and decide what brings the
most value to the ecosystem. One of the partners states that “it is challenging
because the keystone has its own roadmap, its own prioritizations and this can
cause conflicts if the priorities or values do not match”.

Quite the contrary to the previous challenge and related to conflict #5, this
challenge addresses the difficulty of handling different power relations (#5)
within the ecosystem. The partners feel like the keystone gives preferences to
certain “important” customers and neglects the “less important” customers.
One interviewee explains that he feels like “it depends on which partner has the
greatest business potential”. However, the keystone is simply not able to treat all
partners with the same amount of attention because “[the partners] are always
creating pressure” in order to get their requests preferred which naturally leads
to the questions how to decide which partners are more important.

Conflict #6 concerning the amount of transparency by the keystone leads
to an insufficient communication of prioritizations (#6), e.g. concerning
the keystone’s next steps, which causes displeasure on the partners’ side. At the
same time, the keystone faces the challenge how to handle the trade-off between
pleasing partners and maintaining its flexibility.

As a result of challenge #3 and related to conflict #7, we observed that
– due to the divergent viewpoints concerning the partners independence and
the keystone’s control – the partners face the challenge of obtaining a broad
picture over all their customers (#7). The reason is that they are unable to
include all their customers in their prioritization process due to the keystone’s
limitations concerning the customer communication. One of the interviewees
even states that “It would be much better to run more statistics because I don’t
feel like this is a comprehensive picture”.

Feedback Phase. Some of the interviewees reported on their interest in collect-
ing and sharing customer data with certain collaborative stakeholders (conflict
#8), however, so far there exist no established processes for software ecosystems
to do so. The interviewees explain that they “would rather have direct feedback
channels” or “centralized ways to store and access feedback” because off-the-
shelf infrastructure can usually not be used for such kind of data sharing since
fine-grained access to the data is not easy to control and legal or privacy issues
need to be addressed. As a result, this leads to information loss and one-sided
feedback. Therefore, the challenge is to establish processes to collect and
exchange data (#8).

Lastly, both of our cases perceive the communication across stakeholders as
insufficient and are under the impression that a lot of information gets altered
or lost due to the (mis-)communication across multiple partners. This results in
the challenge of an appropriate communication and avoidance of infor-
mation loss and altering (#9). One of the interviewees revealed that the
keystone does not immediately communicate malfunctioning platform features
that the partners’ features rely on to them because high priority communica-

202 I. Figalist et al.

tion channels for incident reporting in software ecosystems would need to be
established first. On the other hand, the keystone suffers from limited amount of
customer feedback and information loss since the chances for alterations are very
high due to the long communication paths. One interviewee reports that “the
more people you involve in between the more information gets lost”. Moreover,
the feedback from end-customers concerning platform features are often commu-
nicated via the partners. Especially in open ecosystems the keystone often does
not have direct customer contact. This makes it challenging for the keystone to
receive information on and to understand the real customer’s needs.

5 Related Work

Previous research suggests that the application of agile practices is more difficult
in large projects or organizations than in small teams [25]. As an organization
grows it becomes challenging to keep an overview of all projects and groups
within one organization [26]. Additionally, if the activities between them are not
well communicated, it is hard to keep track of the existing dependencies. These
factors often result in coordination challenges and additional coordination efforts
[9,27]. For instance, an overarching figure or role, as well as appropriate meth-
ods, are required to coordinate the teams and address team-crossing challenges
[11]. However, inter-team coordination in software ecosystems rises additional
complications as the teams are distributed over several organizations who rarely
share common goals or strategies nor a centralized control figure who coordinates
them.

Moreover, it has been observed that an increased autonomy enabled by agile
practices causes individual teams within a mutual organization to prioritize their
own goals over the larger context [27]. Knowledge regarding the system is spread
across the distributed teams and processes to share that knowledge need to be
established [28,29]. Additionally, a global distribution of teams leads, among
other challenges, to “reduced feelings of proximity when telecommunication is
necessary, and difficulty in arranging frequent meetings due to time zone differ-
ences” [27].

Previous studies by Dingsøyr et al. [6] and Stettina et al. [30] indicate that
most issues identified in agile large-scale software projects are related to pro-
cesses as well as the people and their relationships. We observed quite similar
results in our case study. Nevertheless, our results differ from the challenges of
distributed agile teams in the way that the interactions between teams of a sin-
gle organization are quite different to the interactions across organizations. In
the latter case, single parties do not necessarily share a mutual larger context or
even a common business interest which also impedes the sharing of knowledge.
Moreover, the individual teams do neither apply or utilize unified processes nor
can they be forced to do so since a central control figure does not exist in this
context.

In order to improve the lack of visibility in large-scale projects, methods and
solutions such as agile portfolio management, reporting or inter-team retrospec-
tives have been introduced to connect the business strategy and the respective

Coordination Challenges in Software Ecosystems 203

teams, to get an overview of all initiatives within a portfolio, and to address
inter-team coordination challenges [6,10]. However, it has not been investigated
yet how such practices could be applied across organizational boundaries. For
instance, some actors can be reluctant to share their reports with certain other
actors. Therefore, practices or guidelines would need to be established to coor-
dinate the distribution of reports or to enable inter-organization retrospectives.

The complexity of (inter-)team coordination tends to increase with the size
of the project and the number of teams involved (e.g. in multiteam systems). A
shared mental model (e.g. concerning the work process, tasks, or awareness of
who knows what), closed-loop communication, and trust are considered mech-
anisms that facilitate the coordination of multiple teams. Bjørnson et al. [7]
investigated the practices that can be applied in order to implement these mech-
anisms. They identified, among others, formal as well as informal communication
channels, specialized roles that rotate between teams, stand-up meetings, mini
demos, and discussions in an open workspace as helpful tools to implement the
mechanisms. In their case study, all teams are located in the same office and
many of the proposed practices rely on the co-location of the teams, or at least
on a shared common business interest and willingness to exchange information.
These characteristics can usually not be observed in software ecosystems which
makes it challenging to adapt these practices and mechanisms in this context.

Scheerer et al. [31] investigated different types of coordination strategies for
multiteam systems. Each of their strategy types comprises three coordination
types – mechanic (e.g. plans, rules), organic (e.g. mutual adjustment, feedback),
and cognitive (e.g. cognitive similarity configurations) – that are applied to differ-
ent kinds of extents, e.g. low, medium, or high. This work specifically focuses on
multiteams that work on the same software product and while each team works
toward an individual goal, they still share, at least to some extent, a mutual col-
lective goal [31]. Rolling out a unified coordination strategy ecosystem-wide is
very difficult to enforce since it would affect teams across several organizations,
each of them pursuing their own goals and applying their own practices, without
sharing a central control figure.

6 Conclusion

The research objective of our study was to elaborate the arising coordination
challenges of agile teams within software ecosystems. Our findings indicate that
many of the identified coordination challenges are either directly or indirectly
related to long communication paths and a lack of well established communi-
cation processes, especially if information needs to be shared with other actors
across organization boundaries. In contrast to distributed teams within one com-
pany, this is additionally challenging because of the varying, sometimes even
competitive, relationships that influence the communication and the way data is
forwarded or shared. For one, our participants perceived the responsivity as very
slow and insufficient. Moreover, the deficient communication structures cause a
lack of awareness and understanding of topics, deliverables and timelines between
the keystone and its partners. The keystone is rather cautious when it comes to

204 I. Figalist et al.

revealing its prioritizations and plans for the future which causes frustration on
the partners’ side. In addition to that, our results imply that on many occasions
information gets lost or altered due to the multiple hops it has to pass. Our
research provides evidence that there is a need to adapt or develop agile pro-
cesses to facilitate and enable across-organization communication, coordination,
and exchange of data.

Therefore, future work could be dedicated to solving the identified challenges
and to investigate how agile practices would need to be adapted in order to fit
across-organizational needs.

References

1. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. Adv. Com-
put. 62(03), 1–66 (2004)

2. Alliance, A.: Agile manifesto, vol. 6, no. 1 (2001). http://www.agilemanifesto.org
3. Jørgensen, M.: Do agile methods work for large software projects? In: Garbajosa,

J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 179–190. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 12

4. Leffingwell, D.: SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean Soft-
ware And Systems Engineering. Addison-Wesley Professional, Boston (2016)

5. Larman, C., Vodde, B.: Large-scale Scrum: More With Less. Addison-Wesley Pro-
fessional, Boston (2016)

6. Dingsøyr, T., Mikalsen, M., Solem, A., Vestues, K.: Learning in the large - an
exploratory study of retrospectives in large-scale agile development. In: Garbajosa,
J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 191–198. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 13

7. Bjørnson, F.O., Wijnmaalen, J., Stettina, C.J., Dingsøyr, T.: Inter-team coordina-
tion in large-scale agile development: a case study of three enabling mechanisms.
In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp.
216–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6 15

8. Begel, A., Nagappan, N., Poile, C., Layman, L.: Coordination in large-scale soft-
ware teams. In: Proceedings of the 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, pp. 1–7. IEEE Computer Society (2009)

9. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in
large-scale software development: a case study of planning misalignment in hybrid
settings. IEEE Trans. Softw. Eng. 44(10), 932–950 (2018)

10. Rautiainen, K., von Schantz, J., Vahaniitty, J.: Supporting scaling agile with port-
folio management: case paf. com. In: 2011 44th Hawaii International Conference
on System Sciences (HICSS), pp. 1–10. IEEE (2011)

11. Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle, C., Matthes, F.: Supporting
large-scale agile development with domain-driven design. In: Garbajosa, J., Wang,
X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 232–247. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91602-6 16

12. Manikas, K., Hansen, K.M.: Software ecosystems - a systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

13. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, SPLC 2009, pp. 111–119.
Carnegie Mellon University, Pittsburgh (2009)

http://www.agilemanifesto.org
https://doi.org/10.1007/978-3-319-91602-6_12
https://doi.org/10.1007/978-3-319-91602-6_13
https://doi.org/10.1007/978-3-319-91602-6_15
https://doi.org/10.1007/978-3-319-91602-6_16

Coordination Challenges in Software Ecosystems 205

14. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of
software product lines, global development and ecosystems. J. Syst. Softw. 83(1),
67–76 (2010)

15. Fabijan, A., Olsson, H.H., Bosch, J.: The lack of sharing of customer data in large
software organizations: challenges and implications. In: Sharp, H., Hall, T. (eds.)
XP 2016. LNBIP, vol. 251, pp. 39–52. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33515-5 4

16. Fricker, S.: Specification and analysis of requirements negotiation strategy in soft-
ware ecosystems. In: CEUR Workshop Proceedings, vol. 505, pp. 19–33 (2009)

17. Knauss, E., Damian, D., Knauss, A., Borici, A.: Openness and requirements: oppor-
tunities and tradeoffs in software ecosystems. In: 2014 IEEE 22nd International
Requirements Engineering Conference (RE), pp. 213–222 (2014)

18. Valença, G., Alves, C., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and
collaboration in requirements engineering: a case study of an emerging software
ecosystem. In: 2014 IEEE 22nd International Requirements Engineering Confer-
ence (RE), pp. 384–393 (2014)

19. Karlsson, L., Dahlstedt, Å., Natt och Dag, J., Regnell, B., Persson, A.: Challenges
in market-driven requirements engineering-an industrial interview study. In: Eighth
International Workshop on Requirements Engineering: Foundation for Software
Quality (2002)

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

21. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE Publica-
tions, Thousand Oaks (2014)

22. Burger, R.: The ultimate guide to agile software development (2016). https://blog.
capterra.com/the-ultimate-guide-to-agile-software-development/. Accessed 8 Jan
2019

23. Slocum, M.S.: Technology maturity using s-curve descriptors. TRIZ J. (1999)
24. Hartmann, H., Trew, T., Bosch, J.: The changing industry structure of software

development for consumer electronics and its consequences for software architec-
tures. J. Syst. Softw. 85(1), 178–192 (2012)

25. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

26. Stettina, C.J., Schoemaker, L.: Reporting in agile portfolio management: routines,
metrics and artefacts to maintain an effective oversight. In: Garbajosa, J., Wang,
X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 199–215. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91602-6 14

27. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

28. Rolland, K.H.: Scaling across knowledge boundaries: a case study of a large-scale
agile software development project. In: Proceedings of the Scientific Workshop
Proceedings of XP2016, p. 5. ACM (2016)

29. Moe, N.B., Olsson, H.H., Dingsøyr, T.: Trends in large-scale agile development: a
summary of the 4th workshop at XP2016. In: Proceedings of the Scientific Work-
shop Proceedings of XP2016, p. 1. ACM (2016)

30. Stettina, C.J., Hörz, J.: Agile portfolio management: an empirical perspective on
the practice in use. Int. J. Proj. Manag. 33(1), 140–152 (2015)

31. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software
development: a multiteam systems perspective. In: 2014 47th Hawaii International
Conference on System Sciences, pp. 4780–4788. IEEE (2014)

https://doi.org/10.1007/978-3-319-33515-5_4
https://doi.org/10.1007/978-3-319-33515-5_4
https://blog.capterra.com/the-ultimate-guide-to-agile-software-development/
https://blog.capterra.com/the-ultimate-guide-to-agile-software-development/
https://doi.org/10.1007/978-3-319-91602-6_14

206 I. Figalist et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Scaling Agile Beyond Organizational Boundaries: Coordination Challenges in Software Ecosystems
	1 Introduction
	2 Characteristics of Software Ecosystems
	3 Case Study Design
	4 Results
	4.1 Influencing Factors
	4.2 Conflicting Interests
	4.3 Challenges

	5 Related Work
	6 Conclusion
	References

