Skip to main content

Model Analysis of Single Population Single Chamber MFC

  • Chapter
  • First Online:
Adaptive and Intelligent Control of Microbial Fuel Cells

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 161))

  • 422 Accesses

Abstract

This chapter deals with the linearization of SPSC MFC model. The linearized system is analyzed with two distinct manipulated input variable cases: (1) dilution rate as a input, and (2) influent substrate concentration as a manipulated input variable. First, the equilibrium points are investigated and the stability at such points using Jacobian matrix is analyzed. An approximate linear model of the SPSC MFC is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ElMaraghy, H., Lahdhiri, T., Ciuca, F.: Robust linear control of flexible joint robot systems. J. Intell. Robot. Syst. 34(4), 335–356 (2002)

    Article  Google Scholar 

  2. Guarnizo, M., Trujillo, R., Guacaneme, M.: Modeling and control of a two DOF helicopter using a robust control design based on DK iteration. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society (2010). https://doi.org/10.1109/iecon.2010.5675183

  3. Jordan, A.: Linearization of non-linear state equation. Bull. Pol. Acad. Sci. 54(1), 63–73 (2006)

    Article  MathSciNet  Google Scholar 

  4. Jayaprakash, J., Kumar, H.: State Variable analysis of four tank system. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (2014)

    Google Scholar 

  5. Ziv, N., Brandt, N., Gresham, D.: The use of chemostats in microbial systems biology. J. Vis. Exp. 80 (2013). https://doi.org/10.3791/50168

  6. Rangappa, V., Kodialbail, V., Bharthaiyengar, S.: Effect of dilution rate on dynamic and steady-state biofilm characteristics during phenol biodegradation by immobilized Pseudomonas desmolyticum cells in a pulsed plate bioreactor. Front. Environ. Sci. Eng. 10(4) (2016). https://doi.org/10.1007/s11783-016-0863-9

  7. Szewczyk, K.: The effect of dilution rate variation on the performance of continuous fermentation. Bioprocess Eng. 6, 17–19 (1991). https://doi.org/10.1007/bf00369273

    Article  Google Scholar 

  8. Martens, D., de Gooijer, C., van der Velden-de, Groot C., Beuvery, E., Tramper, J.: Effect of dilution rate on growth, productivity, cell cycle and size, and shear sensitivity of a hybridoma cell in a continuous culture. Biotechnol. Bioeng. 41(4), 429–439 (1993). https://doi.org/10.1002/bit.260410406

    Article  Google Scholar 

  9. Nabergoj, D., Kuzmić, N., Drakslar, B., Podgornik, A.: Effect of dilution rate on productivity of continuous bacteriophage production in cellstat. Appl. Microbiol. Biotechnol. 102(8), 3649–3661 (2018). https://doi.org/10.1007/s00253-018-8893-9

    Article  Google Scholar 

  10. Kayombo, S., Mbwette, T., Katima, J., Jorgensen, S.: Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Res. 37(12), 2937–2943 (2003). https://doi.org/10.1016/s0043-1354(03)00014-9

    Article  Google Scholar 

  11. Grady, C., Harlow, L., Riesing, R.: Effects of growth rate and influent substrate concentration on effluent quality from chemostats containing bacteria in pure and mixed culture. Biotechnol. Bioeng. 14(3), 391–410 (1972). https://doi.org/10.1002/bit.260140310

    Article  Google Scholar 

  12. Sánchez, E., Borja, R., Travieso, L., Martín, A., Colmenarejo, M.: Effect of influent substrate concentration and hydraulic retention time on the performance of down-flow anaerobic fixed bed reactors treating piggery wastewater in a tropical climate. Process. Biochem. 40(2), 817–829 (2005). https://doi.org/10.1016/j.procbio.2004.02.005

    Article  Google Scholar 

  13. Grady, C., Williams, D.: Effects of influent substrate concentration on the kinetics of natural microbial populations in continuous culture. Water Res. 9(2), 171–180 (1975). https://doi.org/10.1016/0043-1354(75)90006-8

    Article  Google Scholar 

  14. Pannell, T., Goud, R., Schell, D., Borole, A.: Effect of fed-batch versus continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater. Biochem. Eng. J. 116, 85–94 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravi Patel , Dipankar Deb , Rajeeb Dey or Valentina E. Balas .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, R., Deb, D., Dey, R., E. Balas, V. (2020). Model Analysis of Single Population Single Chamber MFC. In: Adaptive and Intelligent Control of Microbial Fuel Cells. Intelligent Systems Reference Library, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-18068-3_3

Download citation

Publish with us

Policies and ethics