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Chapter 5
Wastewater-Based Epidemiology for Early 
Detection of Viral Outbreaks

Irene Xagoraraki and Evan O’Brien

Abstract  The immense global burden of infectious disease outbreaks and the need 
to establish prediction and prevention systems have been recognized by the World 
Health Organization (WHO), the National Institutes of Health (NIH), the United 
States Agency of International Development (USAID), the Bill and Melinda Gates 
Foundation, and the international scientific community. Despite multiple efforts, 
this infectious burden is still increasing. For example, it has been reported that 
between 1.5 and 12 million people die each year from waterborne diseases and diar-
rheal diseases are listed within the top 15 leading causes of death worldwide. Rapid 
population growth, climate change, natural disasters, immigration, globalization, 
and the corresponding sanitation and waste management challenges are expected to 
intensify the problem in the years to come.

5.1  �Introduction

The immense global burden of infectious disease outbreaks and the need to estab-
lish prediction and prevention systems have been recognized by the World Health 
Organization (WHO), the National Institutes of Health (NIH), the United States 
Agency of International Development (USAID), the Bill and Melinda Gates 
Foundation, and the international scientific community. Despite multiple efforts, 
this infectious burden is still increasing. For example, it has been reported that 
between 1.5 and 12 million people die each year from waterborne diseases [1, 2] 
and diarrheal diseases are listed within the top 15 leading causes of death worldwide 
[3]. Rapid population growth, climate change, natural disasters, immigration, 
globalization, and the corresponding sanitation and waste management challenges 
are expected to intensify the problem in the years to come.

Most infectious disease outbreaks in the United States have been related to 
microbial agents [4–7]. In the vast majority of cases, the infectious agents have not 
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been identified. However, the Environmental Protection Agency (EPA) suggests that 
most outbreaks of unidentified etiology are caused by viruses [8]. Viruses have been 
cited as potentially the most important and hazardous pathogens found in wastewa-
ter [9] and are included in the EPA contaminant candidate list. Viruses can lead to 
serious health outcomes, especially for children, the elderly, and immunocompro-
mised individuals, and are of great concern because of their low infectious dose, 
ability to mutate, inability to be treated by antibiotics, resistance to disinfection, 
small size that facilitates environmental transport, and high survivability in water 
and solids.

Infectious outbreaks can cause uncontrollable negative effects especially in 
dense urban areas. Traditional disease detection and management systems are 
based on diagnostic analyses of clinical samples. However, these systems fail to 
detect early warnings of public health threats at a wide population level and fail 
to predict outbreaks in a timely manner. Classic epidemiology observes disease 
outbreaks based on clinical symptoms and infection status but does not have the 
ability to predict “critical locations” and “critical moments” for viral disease 
onset. Recent research efforts in developing optimized detection systems focus 
on rapid methods for analyzing blood samples, but this approach assumes that 
patients are examined at a clinical setting after the outbreak has been established 
and recognized.

The central premise of the proposed approach is that community wastewater 
represents a snapshot of the status of public health. Wastewater analysis is equiva-
lent to obtaining and analyzing a community-based urine and fecal sample. 
Monitoring temporal changes in virus concentration and diversity excreted in com-
munity wastewater, in combination with monitoring metabolites and biomarkers for 
population adjustments, allows early detection of outbreaks (critical moments for 
the onset of an outbreak). In addition, carefully designed spatial sampling will allow 
detection of locations where an outbreak may begin to develop and spread (critical 
locations for the onset of an outbreak) (Fig. 5.1).

Fig. 5.1  Photomicrograph of adenovirus particles (left) and influenza virus particles (right). 
Adenovirus image from Dr. G. William Gary, Jr./CDC and influenza image from National Institute 
of Allergy and Infectious Diseases
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5.2  �Background

Similar detection systems have been used for the investigation of illicit drugs in 
various locations around the world [10–12]. The approach was first theorized in 
2001 [10] and first implemented and reported for several illicit drugs in 2005 where 
the method was termed sewage epidemiology [11]. The methodology considers raw 
untreated wastewater as a reservoir of human excretion products; among these prod-
ucts are the parent compounds and metabolites of illicit drugs. If these excretion 
products are stable in wastewater as they travel through the sewage system, then the 
measured concentration from a wastewater treatment plant (WWTP) could corre-
spond to the amount excreted by the serviced population. Table 5.1 presents a sum-
mary of prior studies utilizing the wastewater-based epidemiology methods to 
assess levels of various substances in a population.

Any substance that is excreted by humans and is stable (or has known kinetic 
pathways) in wastewater can be back-calculated into an initial source concentration. 
An important step in the application of wastewater-based epidemiology is the esti-
mation of the contributing population and its sampled wastewater. Both census and 
biomarker data can be used in this approach to estimate the number of individuals 
that contribute to the wastewater sample.

5.3  �Occurrence of Viruses in Wastewater

Waterborne viruses comprise a significant component of wastewater microbiota and 
are known to be responsible for disease outbreaks. A critical characteristic of viruses 
is that they do not grow outside the host cells. Therefore, viral concentrations in the 
wastewater stream will represent the concentrations excreted by the corresponding 
human population. Table  5.2 summarizes studies that detected waterborne and 
non-waterborne viruses in wastewater and human excrement.

Table 5.1  Summary of substances investigated via wastewater-based epidemiology

Substance Country References

Alcohol Norway [13]
Amphetamines Australia, Belgium, Italy, Spain, South Korea, the United 

Kingdom, the United States
[14]

Cocaine Australia, Belgium, Germany, Ireland, Italy, Spain, the United 
Kingdom, the United States

[14]

Counterfeit 
medicine

The Netherlands [15]

Opiates Germany, Italy, Spain, South Korea [16]
Tobacco Italy [17]
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5.3.1  �Waterborne Viruses

There are several groups of commonly detected and studied waterborne viruses, 
including adenoviruses, astroviruses, enteroviruses, hepatitis A and E viruses, 
noroviruses, and rotaviruses. Adenoviruses are known to cause gastroenteritis and 
respiratory disease [18] and have been linked to outbreaks of disease [19, 20]. 

Table 5.2  Summary of human viruses detected in wastewater or human excrement

Virus
Detected in 
excrement

Detected in 
wastewater

Reported 
concentrations in 
wastewater (copies/L) References

Adenoviruses Yes Yes 6.0∗102 to 1.7∗108 [21–36]
Astroviruses Yes Yes 4.0∗104 to 4.1∗107 [24, 29, 43, 44, 47, 

50–54]
Enteroviruses Yes Yes 6.9∗102 to 4.7∗106 [24–26, 28, 29, 31, 

33, 34, 36, 43, 53, 
58–63]

Hepatitis A 
virus

Yes Yes 4.3∗103 to 8.9∗105 [29, 30, 58, 67–72]

Hepatitis E 
virus

Yes Yes 7.8∗104 [21, 34, 75–78]

Noroviruses Yes Yes 4.9∗103 to 9.3∗106 [24–26, 28–30, 32, 
33, 43, 47, 53, 54, 59, 
60, 79, 84–88]

Rotaviruses Yes Yes 1.8∗103 to 8.7∗105 [29–31, 36, 43–45, 
47, 50, 53, 58, 59, 
90–95]

Aichi virus Yes Yes 9.7∗104 to 2.0∗106 [36, 96, 114]
Polyomaviruses Yes Yes 8.3∗101 to 5.7∗108 [24, 35, 36, 85, 99, 

115, 116]
Salivirus Yes Yes 3.7∗105 to 9.7∗106 [97, 114, 117]
Sapovirus Yes Yes 1.0∗105 to 5.1∗105 [24, 36, 98, 118]
Torque teno 
virus

Yes Yes 4.0∗104 to 5.0∗105 [23, 24, 35, 119]

Coronaviruses Yes Yes [120, 121]
Influenza Yes Yes [104–107, 122]
Dengue virus Yes [111–113, 123]
West Nile virus Yes [109, 110, 124]
Zika virus Yes [108, 125]
Yellow fever 
virus

Yes [126, 127]

Note: The primary method of laboratory detection in the studies presented in this table is poly-
merase chain reaction (PCR), as well as real-time quantitative PCR (qPCR). PCR uses specific 
primers to replicate target sequences of nucleic acids; designing a primer to replicate a specific 
sequence in a given viral genome allows for the detection of that particular virus. qPCR can also 
determine the concentration of a virus in a sample by quantifying the number of copies of the target 
sequence
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Adenoviruses are a commonly studied group of viruses in water. They are com-
monly detected in raw wastewater [21–36] and have been cited as among the most 
significantly abundant human viruses in wastewater [24, 27, 28, 33, 37]. Adenoviruses 
have also been detected in human excrement of infected persons, including both 
feces and urine [38–47]. Studies have found the concentration of adenovirus in the 
stool of infected persons to range from 102 to 1011 copies per gram with an average 
concentration in the range from 105 to 106 copies per gram of stool [39, 41, 42, 46] 
as quantified by qPCR.

Astroviruses are a group of RNA viruses that have been linked to outbreaks of 
gastroenteritis [19, 48]. They have been cited as one of the more important viruses 
associated with gastroenteritis [49], but they have not been as commonly studied in 
wastewater compared to other groups of human enteric viruses. Nonetheless, they 
have been detected using standard PCR in wastewater in prior studies [24, 29, 50, 
51]. They have also been detected in clinical samples of human excrement of 
infected people [43, 44, 47, 52–54], making them a viable candidate for wastewa-
ter epidemiology. While qPCR has been used as a detection method for astrovi-
ruses in human feces [44, 47, 54], and for quantification purposes in wastewater 
[51], no cited studies have reported quantitative values for astroviruses in human 
excrement.

Enteroviruses comprise several types of human enteric viruses, including poliovi-
ruses, coxsackieviruses, and echoviruses [55, 56]. Enteroviruses can cause an array 
of afflictions depending on type, including common cold, meningitis, and poliomy-
elitis [57], and have been linked to outbreaks of these diseases [19]. Enteroviruses 
have been detected via PCR in raw wastewater by numerous studies [25, 26, 28, 29, 
31, 33, 34, 58, 59], as well as detected in human feces [43, 53, 60–63]. qPCR has not 
as yet been extensively employed to quantify enteroviruses in stool samples, though 
one study determined the enterovirus load to be in the range of 1.4∗104 to 6.6∗109 
copies per gram of stool [60].

Two species of hepatitis viruses, hepatitis A virus and hepatitis E virus, are con-
sidered to be waterborne viruses. Hepatitis is a liver disease that can cause numer-
ous afflictions, including fever, nausea, and jaundice [64]. Hepatitis A virus has 
been linked to disease outbreaks [65], and it has been suggested that even low levels 
of viral water pollution can produce infection [66]. Hepatitis A virus is often 
detected via PCR in raw wastewater [29, 30, 58, 67, 68] and several studies have 
also detected the virus in human stool samples [69–72]. Like enteroviruses, there 
has not been significant investigation into the quantification of hepatitis A virus in 
stool, though one study reported values in the range of 3.6∗105 to 5.6∗109 copies per 
gram of stool [70].

Hepatitis E virus, meanwhile, has only recently begun to become a pathogen of 
interest compared to other waterborne human viruses [73]. Like hepatitis A, hepatitis E 
virus can cause liver disease with many of the same symptoms; in fact, hepatitis E is 
not clinically distinguishable from other types of viral hepatitis infection [74]. While 
not investigated to the extent of other human enteric viruses, hepatitis E virus has been 
detected via PCR in raw wastewater [21, 34, 75]. There have also been studies that have 
detected hepatitis E virus in human stool samples [76–78]. One such study also used 
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RT-qPCR to quantify the concentration of hepatitis E virus in stool and reported values 
in the range of 101 to 106 copies per μL of stool [77].

Noroviruses, also known as Norwalk-like viruses, are a genus of viruses within 
the Caliciviridae family. They are one of the more significant gastroenteritis-causing 
viral agents, considered to be a leading cause of the disease [79–81], and are com-
monly associated with disease outbreaks [19, 82, 83]. Noroviruses are one of the 
more commonly investigated and detected viruses in wastewater [24–26, 28–30, 32, 
33, 36, 59, 60, 84, 85]. A number of studies have also investigated the presence of 
noroviruses in human feces [43, 47, 53, 54, 79, 86–88]. One such cited study 
reported quantification values for norovirus in stool following qPCR, in the range of 
9.7∗105 to 1.1∗1012 copies per gram, with a mean value of approximately 1011 cop-
ies per gram [87].

Rotaviruses are another primary cause of gastroenteritis with symptoms includ-
ing diarrhea, vomiting, and fever, in accordance with other enteric viruses [89]. 
They are commonly detected via PCR in raw wastewater [29–31, 36, 50, 58, 59, 
90–92] and are commonly investigated and detected in human feces [43–45, 47, 53, 
93–95]. Like other waterborne viruses, though, only a handful of studies on rotavi-
ruses have used qPCR as a detection tool, and none reported quantification values in 
terms of the number of copies.

In addition to the commonly investigated waterborne viruses described above, 
there are other human viruses that are commonly detected in wastewater and human 
stool but not as frequently studied, such as Aichi virus, polyomaviruses, salivirus, 
sapovirus, and torque teno virus. Aichi virus is a member of the Picornaviridae 
family, the same family as enteroviruses, and is believed to cause gastroenteritis 
[96]. Salivirus, another member of the Picornaviridae family, is also associated 
with gastroenteritis, as well as acute flaccid paralysis [97]. Sapovirus, like norovi-
rus, is a member of the Caliciviridae family and like its relative is a common cause 
of gastroenteritis [98]. Polyomaviruses are associated with a variety of diseases in 
humans, including nephropathy, progressive multifocal leukoencephalopathy, and 
Mercel cell carcinoma [99]. Torque teno virus is commonly detected in humans, but 
the clinical consequences of infection are unclear [100]. These viruses are included 
in Table 5.2.

5.3.2  �Non-waterborne Viruses

Non-waterborne viruses have also been detected in wastewater or human excrement 
(included in Table 5.2). While it is logical to investigate the applicability of water-
borne viruses to wastewater-based epidemiology, it is also important to note the 
potential for other categories of viruses to fit into this methodology.

There exists a category of water-related viruses that are transmitted via insects 
(like mosquitos) that breed in water, such as Zika virus, West Nile virus, Rift Valley 
fever virus, yellow fever virus, dengue virus, and chikungunya virus, in addition to 
confirmed waterborne viruses. These viruses also fall into the category of zoonotic 
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viruses, which are viruses that can be transmitted between humans and animals. 
Other zoonotic viruses include avian influenza virus, SARS (Severe Acute 
Respiratory Syndrome) coronavirus, Menangle virus, Tioman virus, Hendra virus, 
Australian bat lyssavirus, Nipah virus, and hantavirus. Specific animal species of 
concern that are vectors for these zoonotic viruses include avian species, bats, 
rodents, and mosquitos. While these zoonotic viruses are not classified as water-
borne, they are associated with potential waterborne transmission, such as exposure 
to aerosolized wastewater, which can occur when wastewater undergoes turbulence, 
such as in flush toilets, converging sewer pipes, and aeration basins [101, 102] as 
well as irrigation and land application systems.

It has been shown that coronaviruses have been detected in wastewater [103] and 
SARS coronaviruses have been detected in stool and urine samples. Furthermore, 
detection in both human stool and urine [104–106] as well as wastewater [107] has 
been reported for influenza. Detection in urine has been reported for the mosquito-
associated Zika virus [108], West Nile virus [109, 110], dengue virus [111, 112], 
and yellow fever virus [113]. These observations indicate that the concept of 
wastewater-based epidemiology could be applied to a wide range of viruses beyond 
the confirmed waterborne viruses.

5.4  �Variations of Viruses in Wastewater

The quantity of human enteric viruses in wastewater has been shown to have sea-
sonal variation, indicating that infection resulting from these viruses is more preva-
lent at certain times of the year. A study conducted in Japan by Katayama et al. 
(2008) found that norovirus concentrations in wastewater were highest during the 
months of November through April [26], while enterovirus and adenovirus concen-
trations were largely consistent throughout the year. A 9-year study in Milwaukee, 
Wisconsin, by Sedmak et al. (2005) found that concentrations of reoviruses, entero-
viruses, and adenoviruses were highest during the months of July through December. 
This study also analyzed clinical specimens of enterovirus isolates and found the 
incidence of clinical enterovirus infection corresponded to the concentration of 
these viruses in wastewater during the same time periods [31]. Another study in 
Beijing, China, by Li et al. (2011) found that rotavirus concentrations were highest 
during the months of November through March [90] and that these findings also 
corresponded with clinical rotavirus data reported in China [128].

Additionally, variation in viral concentration in wastewater can occur on a 
smaller timescale. For example, tourist locations could experience higher wastewa-
ter loads, and consequently higher viral concentrations, on weekends where there is 
an influx of population. For example, Xagoraraki’s research group conducted a 
study which observed an increase in adenovirus concentration in wastewater fol-
lowing the July 4th holiday in Traverse City, Michigan, a popular vacation destina-
tion [27]. Likewise, urban centers may experience higher loads during the day on 
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weekdays, while people are at work. Accounting for these population changes 
would be vital for understanding when viral outbreaks occur.

Wastewater has been used in the past as a tool to investigate viruses for other 
purposes as well, such as spatial surveillance and evaluation of immunization effi-
cacy. Two particular studies were able to use wastewater to observe the spatial varia-
tion of particular viral strains; Bofill-Mas et al. observed that particular strains of 
polyomavirus were endemic to specific regions, while Clemente-Cesares et  al. 
detected Hepatitis E virus in areas previously considered non-endemic for the virus 
[129, 130]. Lago et  al. (2003) investigated the efficacy of a poliovirus (a type of 
enterovirus) immunization campaign in Havana, Cuba, by quantifying concentra-
tions of the virus in wastewater [61]. Poliovirus was detected in 100% of wastewater 
samples prior to the start of the immunization campaign and dropped to a 0% detec-
tion rate in wastewater 15 weeks after the campaign, indicating the usefulness of 
wastewater surveillance. A study by Carducci et al. (2006) investigated the relation-
ship between wastewater samples and clinical samples and found that the same viral 
strains could sometimes be detected between the two sets of samples [131].

5.5  �Proposed Methodology

Waterborne and non-waterborne viruses have been detected in wastewater, varia-
tions of concentrations in time have been observed, and virus presence in wastewa-
ter has on occasion been correlated with occurrence of clinical disease. However, 
wastewater-based epidemiology methods have not yet been applied to assess and 
predict viral disease outbreaks in a systematic way. Wastewater-based epidemiology 
has the potential to predict “critical locations” and “critical moments” for viral 
disease onset. Designing spatial and temporal sampling appropriate to the area of 
concern, as well as modeling the fate of viruses, is critical for the effectiveness of 
the proposed method. This methodology is summarized in Fig. 5.2. In the following 
sections, critical factors for implementation are discussed.

5.5.1  �Sampling in Urban and Rural Locations

The most critical parameter for the effective application of wastewater-based epide-
miology is the selection of a surveillance program, including spatial and temporal 
sampling. Considerations must be made in the differences between urban and rural 
wastewater systems. Urban sewage systems offer a convenient confluence of waste-
water in the serviced population, as all wastewater will ultimately flow to a WWTP, 
providing a sampling point representing the entire community. Additionally, local-
ized sampling can be performed in specific neighborhoods where access points are 
available. By surveying both the combined wastewater at the treatment plant and the 
localized samples from neighborhoods, viral outbreaks can be traced to a more 
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specific location and the urban areas of concern can be identified. Xagoraraki’s 
research group is currently conducting an National  Science  Foundation-funded 
study of this nature in the city of Detroit, sampling at several interceptors at the 
Detroit wastewater treatment plant, as well as sampling from sewer lines in residential 
areas throughout the city.

More rural or underdeveloped areas that do not have sewage collection systems 
pose sampling problems. In these areas, wastewater is often disposed in open space, 
latrines, or septic tanks. As a result, for wastewater-based epidemiology sampling to 
be effectively applied to these areas, disposal, fate, and transport of wastewater in 
the environment must be taken into account. Watershed modeling would therefore 
become an integral component of the wastewater-based epidemiology methodology 
for rural locations. In a study performed by Xagoraraki’s research group, prelimi-
nary investigation into the wastewater epidemiology methodology was conducted 
[132]. Samples were collected from a wastewater treatment plant and surrounding 
surface waters in Kampala, Uganda. Three sampling events were conducted in 
2-week intervals. Four human viruses (adenovirus, enterovirus, hepatitis A virus, 
and rotavirus) were quantified at each sampling location via qPCR. Concentrations 
of each virus at each location from each sampling event were compared to one 
another to determine if significant differences could be observed from one sam-
pling event to the next. Results indicated that statistically significant differences in 
viral concentration were observed for the measured viruses at several sampling 
locations.

Fig. 5.2  Summary of the proposed wastewater-based epidemiology methodology
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The selection of the sampling times and locations is of paramount importance to 
the methodology, regardless of whether sampling takes place in urban or rural areas. 
Sampling should be based upon expected critical pathways of viral transport and 
transmission. These critical pathways include environmental reservoirs for viruses 
and the timing and locations where viruses are most easily transported and transmit-
ted between humans and the environment. By determining sampling times and loca-
tions based upon critical pathways, “critical locations,” and “critical moments,” 
areas and times most impactful to the spread of viral disease would be most readily 
and effectively identified.

5.5.2  �Quantification of Viruses

Quantitative data of viruses of concern, such as those obtained with qPCR, are criti-
cal for the proposed methodology, as peaks in viral concentrations will indicate 
potential onset of disease outbreaks. While detection in human excrement or raw 
wastewater has not been reported for all viruses, it is possible that they have simply 
not been investigated in this context, as detection of viruses via conventional meth-
ods (cell culture, PCR, qPCR) is specific to the virus being investigated. Thus, while 
qPCR is important to detect and quantify common waterborne viruses, next-
generation sequencing and metagenomic methods could also be performed to screen 
for the presence of other viruses. If genomic sequences of viruses of concern are 
found, then quantification with qPCR can follow.

Metagenomic methods have been applied to investigate viruses in wastewater 
and have been found to produce more conservative results of viral detection com-
pared to conventional methods; viruses detected with metagenomic methods are 
typically also detected with conventional methods, whereas viruses detected via 
qPCR may not be detected with metagenomic methods. These metagenomic meth-
ods, however, can detect the presence of viruses not commonly quantified using 
qPCR [37, 133–136]. Xagoraraki’s research group’s studies have used metagenomic 
methods to identify human viruses of potential concern in wastewater. The first of 
these studies, conducted with samples from both Michigan and France, detected a 
comparatively high number of metagenomic hits for human herpesviruses and also 
detected human parvovirus and human polyomavirus in wastewater effluents [37]. 
Their other study, conducted in Uganda, detected human astroviruses, papillomavi-
ruses, as well as a BLAST (Basic Local Alignment Search Tool) hit for Ebola virus 
[132]. While more research is still required to attain more robust genomic informa-
tion and comparison databases, metagenomic methods can still be a useful tool for 
the identification of potential viruses that can then be monitored with qPCR methods. 
Table 5.3 presents a summary of studies that have used metagenomic methods to 
detect human viruses in wastewater and human excrement.
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5.5.3  �Population Normalization

Population normalization is also a critical factor for the application of wastewater-
based epidemiology. Proper quantification of biomarkers in wastewater would allow 
for an appropriate estimation of serviced population via statistical modeling, which 
would provide context to measured viral concentrations and ensure that differences 
in viral concentration could not be attributed to changes in population. When 
observed viral concentrations are significantly high relative to the estimated popula-
tion, a viral outbreak could be indicated.

Quantification of biomarkers (substances naturally excreted by humans) in 
wastewater can be used as a method of estimating population in an area. 
Governmental census information has been found to underestimate the population 
of a community compared to estimation using biomarkers [140], and certain sub-
stances detected in wastewater have been shown to correlate with census data [141]. 
Several substances have been proposed and investigated as population biomarkers 
(Table  5.4), including creatinine [142], cholesterol, coprostanol [143], nicotine 
[144], cortisol, androstenedione, and the serotonin metabolite 5-hydroxyindoleacetic 
acid (5-HIAA) [145]. Nutrients such as nitrogen, phosphorus, and oxygen [12], as 
well as ammonium [146], have also been proposed as population biomarkers, but 
these may more adequately reflect human activity and industry footprint rather than 
population [145, 147, 148].

Table 5.3  Summary of studies using metagenomic methods to detect viral sequences in wastewater 
and human excrement

Detected in Virus References

Wastewater Adenovirus, enterovirus, polyomavirus, papillomavirus [135]
Adenovirus, Aichi virus, coronavirus, herpesvirus, torque teno virus [137]
Adenovirus, Aichi virus, astrovirus, coronavirus, enterovirus, 
herpesvirus, papillomavirus, parechovirus, parvovirus, rotavirus, 
salivirus, sapovirus, torque teno virus

[133]

Adenovirus, Aichi virus, astrovirus, norovirus, papillomavirus, 
parechovirus, polyomavirus, salivirus, sapovirus

[136]

Adenovirus, herpesvirus, parvovirus, polyomavirus [37]
Adenovirus, astrovirus, Ebola virus, enterovirus, papillomavirus, 
rotavirus, torque teno virus

[132]

Human 
excrement

Adenovirus, astrovirus, enterovirus, norovirus, parvovirus, 
rotavirus, torque teno virus

[138]

Adenovirus, Aichi virus, enterovirus, parechovirus, rotavirus [139]

Note: The following sequences have been confirmed via PCR for the listed study. Bibby and Peccia 
[133] adenovirus, enterovirus, parechovirus [131], [136], adenovirus, polyomavirus, salivirus 
[134], adenovirus [37], [132], adenovirus, enterovirus, rotavirus [130]
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5.5.4  �Estimation of Shedding Rates

The shedding rate (the rate with which viruses are released from the body in excre-
ment) for each waterborne virus group encompasses a wide range, from 102 copies 
per gram at minimum to 1012 copies per gram at maximum. This variability is sum-
marized for selected viruses in Table 5.5. For example, mean concentration values 
of adenoviruses in excrement ranged from 104 to 106 depending on the study and 
whether the virus is excreted in stool or urine, indicating a wide data variance [39, 
41]. Many factors can impact the shedding rate of viruses in excrement, including 
viremia (the presence of the virus in the bloodstream) [40, 87, 151]. The duration of 
the presentation of a particular disease can also impact the shedding rate [105, 121].

5.5.5  �Transport of Viruses in the Environment

Waterborne viruses survive well in water, but all viruses are susceptible to natural 
degradation determined by factors such as temperature, exposure to UV light, and 
the microbial community [152, 153]. The kinetic decay rate of a virus would thereby 

Table 5.4  Summary of biomarkers proposed for population adjustment

Biomarker Description
Excreted 
in References

5-HIAA Metabolite of serotonin Urine [145]
Ammonium Form of ammonia found in water Urine [146]
Androstenedione Sex hormone precursor Urine [149]
Atenolol Drug (beta blocker) used to treat hypertension Urine [140]
Cholesterol Lipid molecule, key component of cell 

membranes
Feces [143]

Coprostanol Metabolite of cholesterol Feces [143]
Cortisol Steroid hormone produced by adrenal glands Urine [150]
Cotinine Metabolite of nicotine Urine [145]
Creatinine Metabolite of creatine phosphate in muscle Urine [142]
Nicotine Stimulant found in tobacco Urine [144]
Nutrients (N, P, 
BOD)

Water-quality parameters n/a [12]

Table 5.5  Summary of reported shedding rates for viruses

Virus Range of shedding rate, copies/g stool References

Adenoviruses 1.0∗102 to 1.0∗1011 [39, 41, 42, 46]
Enteroviruses 1.4∗104 to 6.6∗109 [60]
Hepatitis A virus 3.6∗105 to 1.0∗1011 [70]
Hepatitis E virus 1.0∗101 to 1.0∗106 [77]
Noroviruses 1.1∗105 to 1.1∗1012 [87]
Sapoviruses 1.3∗105 to 2.5∗1011 [98, 118]
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be primarily dependent not only on the characteristics of the individual virus but 
also environmental conditions within the sewage system, which could vary from 
location to location. Moreover, the fate of viruses may be different between waste-
water systems in urban areas which typically use enclosed underground sewer pipes 
and rural areas which may utilize septic tanks, catchments, and the open environ-
ment. Viruses can also adsorb to or be enveloped by particulate matter in wastewater 
which would lead to confounding factors in measurement of these viruses.

5.5.6  �Correlation with Public Health Records and Unidentified 
Clinical Data

Comparison with clinical data is another key component of these methods. 
Correlations between measured viral concentrations in wastewater and reported 
clinical cases of disease could be established, strengthening the proposed methodol-
ogy. The establishment of these correlations can serve as a validation for a predic-
tion model that accounts for the factors discussed above, providing evidence for the 
notion that changes of viral concentrations in wastewater will indicate changes in 
viral disease cases in humans. Moreover, should preventative public health mea-
sures be implemented after the identification of an outbreak, the tracking of clinical 
data could provide a quantifiable indicator of the efficacy of these  preventative 
measures.

5.6  �Conclusions

Infectious viral outbreaks can cause uncontrollable negative effects especially in 
densely populated areas. Early detection is critical for effective management and 
prevention of outbreaks. Recent research efforts in developing optimized detection 
systems often focus on rapid methods for analyzing blood or excrement samples; 
however, these approaches require that individuals are examined in clinical settings, 
typically after an outbreak has been established. Wastewater-based epidemiology is 
a promising methodology for early detection of viral outbreaks at a population level. 
Analyzing wastewater is equivalent to obtaining and analyzing a community excre-
ment sample. In the determination of whether an outbreak is imminent or already in 
progress, quantifying viral concentration in raw wastewater is a crucial first step in 
this process. Waterborne viruses appear to be prime candidates, as they are detect-
able and quantifiable in both wastewater and human excrement. Non-waterborne 
viruses have been shown to be detected in human excrement, and some have been 
reported to be detected in wastewater. Wastewater-based epidemiology therefore 
has the potential to expand beyond waterborne viruses.

Routine monitoring for temporal changes in virus concentration and diversity in 
community wastewater, in combination with monitoring metabolites and biomark-
ers for population adjustments, allows early detection of outbreaks (critical moments 
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for the onset of an outbreak). In addition, carefully designed spatial sampling of 
wastewater will allow detection of locations where an outbreak may begin to 
develop and spread (critical locations for the onset of an outbreak). Considerations 
in sampling locations must be taken with regard to the area of investigation, as 
urban and rural areas may have differences in the respective wastewater systems 
that can affect viral transport in the water environment. Moreover, to obtain an accu-
rate estimation of disease cases in a population, other factors must be considered 
such as viral shedding rates, environmental transport and degradation rates, and 
correlation with reported clinical disease data. Ultimately, there is great opportunity 
for the use of wastewater-based epidemiology to investigate viral outbreaks within 
a community. Comprehensive application of the various factors discussed above is 
crucial for the full potential of this methodology to be realized. Further research 
could clarify many of these issues and allow for the full development and applica-
tion of this new epidemiological technique for studying, identifying, and predicting 
viral outbreaks.
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