
RERS 2019: Combining Synthesis
with Real-World Models

Marc Jasper1, Malte Mues1, Alnis Murtovi1, Maximilian Schlüter1,
Falk Howar1, Bernhard Steffen1 , Markus Schordan2(B), Dennis Hendriks3,

Ramon Schiffelers4, Harco Kuppens5, and Frits W. Vaandrager5

1 TU Dortmund University, Dortmund, Germany
{marc.jasper,malte.mues,alnis.murtovi,maximilian.schlueter,falk.howar,

bernhard.steffen}@tu-dortmund.de
2 Lawrence Livermore National Laboratory, Livermore, CA, USA

schordan1@llnl.gov
3 ESI (TNO), Eindhoven, The Netherlands

dennis.hendriks@tno.nl
4 ASML and Eindhoven University of Technology,

Veldhoven/Eindhoven, The Netherlands
ramon.schiffelers@asml.com

5 Radboud University, Nijmegen, The Netherlands
{H.Kuppens,F.Vaandrager}@cs.ru.nl

Abstract. This paper covers the Rigorous Examination of Reactive Sys-
tems (RERS) Challenge 2019. For the first time in the history of RERS,
the challenge features industrial tracks where benchmark programs that
participants need to analyze are synthesized from real-world models.
These new tracks comprise LTL, CTL, and Reachability properties. In
addition, we have further improved our benchmark generation infras-
tructure for parallel programs towards a full automation. RERS 2019
is part of TOOLympics, an event that hosts several popular challenges
and competitions. In this paper, we highlight the newly added industrial
tracks and our changes in response to the discussions at and results of
the last RERS Challenge in Cyprus.

Keywords: Benchmark generation · Program verification ·
Temporal logics · LTL · CTL · Property-preservation · Obfuscation ·
Synthesis

1 Introduction

The Rigorous Examination of Reactive Systems (RERS) Challenge is an annual
event concerned with software verification tasks—called benchmarks—on which
participants can test the limits of their tools. In its now 9th iteration, the
RERS Challenge continues to expand both its underlying benchmark gener-
ator infrastructure and the variety of its tracks. This year, RERS is part of

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 101–115, 2019.
https://doi.org/10.1007/978-3-030-17502-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_7&domain=pdf
http://orcid.org/0000-0001-9619-1558
https://doi.org/10.1007/978-3-030-17502-3_7

102 M. Jasper et al.

TOOLympics [2]. As during previous years [9,12,13], RERS 2019 features tracks
on sequential and parallel programs in programming/specification languages
such as Java, C99, Promela [11], and (Nested-Unit) Petri nets [8,19]. Proper-
ties that participants have to analyze range from reachability queries over linear
temporal logic (LTL) formulae [20] to computational tree logic (CTL) proper-
ties [6]. Participants only need to submit their “true”/“false” answers to these
tasks. As a new addition in 2019, we enrich RERS with industrial tracks in which
benchmarks are based on real-world models.

The main goals of RERS1 are:

1. Encourage the combination of methods from different (and usually discon-
nected) research fields for better software verification results.

2. Provide a framework for an automated comparison based on differently
tailored benchmarks that reveal the strengths and weaknesses of specific
approaches.

3. Initiate a discussion about better benchmark generation, reaching out across
the usual community barriers to provide benchmarks useful for testing and
comparing a wide variety of tools.

One aspect that makes RERS unique in comparison to other competitions
or challenges on software verification is its automated benchmark synthesis: The
RERS generator infrastructure allows the organizers to distribute new and chal-
lenging verification tasks each year while knowing the correct solution to these
tasks. Contrarily, in similar events such as the Software Verification Competition
(SV-COMP) [3] which focuses on programs written in C and reachability queries,
benchmarks are hand-selected by a committee and most of them are used again
for subsequent challenge iterations. That the solutions to these problems are
already known does not harm because, e.g. SV-COMP, does not merely focus on
the answers to the posed problems, but also on details of how they are achieved.
To attain this, SV-COMP features a centralized evaluation approach along with
resource constraints where participants submit their tools instead of just their
answers to the verification tasks. During this evaluation phase, which builds on
quite an elaborate competition infrastructure, obtained counterexample traces
are also evaluated automatically [4].

The situation is quite different for the Model Checking Contest (MCC) [16], a
verification competition that is concerned with the analysis of Petri nets, where
the correct solutions to the selected verification tasks are not always known to
the competition organizers. In such cases, the MCC evaluation is often based
on majority voting concerning the submissions by participants, an approach
also followed by a number of other competitions despite the fact that this may
penalize tools of exceptional analysis power. In contrast, the synthesis procedure
of verification tasks for RERS also generates the corresponding provably correct
solutions using a correctness-by-construction approach. Both SV-COMP and
MCC have therefore added RERS benchmarks to their problem portfolio.

1 As stated online at http://www.rers-challenge.org/2019/.

http://www.rers-challenge.org/2019/

RERS 2019: Combining Synthesis with Real-World Models 103

As stated above, RERS aims to foster the combination of different methods,
and this includes the combination of different tools. During last year’s RERS
Challenge for example, one participant applied three different available tools in
order to generate his submission2 and thereby won the Method Combination
Award within RERS3. In order to host an unmonitored and free-style challenge
such as RERS on a regular basis—one where just the “true”/“false” answers
need to be submitted—an automated benchmark synthesis is a must.

Potential criticism of such a synthesis approach might be that the generated
verification tasks are not directly connected to any real-world problem: Their size
might be realistic, however their inherent structure might be not. This criticism
very much reflects a perspective where RERS benchmarks are structurally com-
pared to handwritten code. On the other hand, being synthesized from temporal
constraints, RERS benchmarks very much reflect the structure that arises in gen-
erative or requirements-driven programming. In order to be close to industrial
practice, RERS 2019 also provides benchmarks via a combination of synthesis
with real-world models. For this endeavor, we collaborated with ASML, a large
Dutch semiconductor company.

When developing controller software, over time updates and version changes
inevitably turn originally well-documented solutions into legacy software, which
typically should preserve the original controller behavior. RERS 2019 addresses
this phenomenon by generating legacy-like software from models via a number
of property-preserving transformations that are provided by the RERS infras-
tructure [22]. This results in correct ‘obfuscated’ (legacy) implementations of the
real-world models provided by ASML.

The parallel benchmarks of the last RERS challenge were built on top of
well-known initial systems, dining philosophers of various sizes. As a next step
towards a fully automated benchmark generation process, we created the initial
system in a randomized fashion this year. The subsequent property-preserving
parallel decomposition process, which may result in benchmarks of arbitrary
degrees of parallelism, remained untouched [23]. For RERS 2020 we plan to use
the more involved synthesis approach presented in [15] in order to be able to
also guarantee benchmark hardness.

Moreover, in response to participants’ requests, we implemented a generator
that creates candidates for branching time properties for the parallel bench-
marks. The idea is to syntactically transform available LTL properties into
semantically ‘close’ CTL formulae. This turns out to provide interesting CTL
formulae for the benchmarks systems. These formulae’s validity has, of course,
to be validated via model checking as the generation process is not (cannot be)
semantics preserving.

In the following, the detailed observations from RERS 2018 are described
in Sect. 2. Section 3 then summarizes improvements within the parallel tracks
of RERS that we implemented for the 2019 challenge, before Sect. 4 introduces

2 Details at http://www.rers-challenge.org/2018/index.php?page=results.
3 The reward structure of RERS is described in previous papers such as [12].

http://www.rers-challenge.org/2018/index.php?page=results

104 M. Jasper et al.

the new industrial tracks with their dedicated benchmark construction. Our
conclusions and outlook to future work can be found in Sect. 5.

2 Lessons Learned: The Sequential Tracks of RERS 2018

For RERS 2018, we received four contributions to the Sequential Reachability
track and two contributions to the Sequential LTL track. Detailed results are
published online.4 The tools that participants used for the challenge are quite
heterogeneous: Their profiles range from explicit-state model checking over trace
abstraction techniques to a combination of active automata learning with model
checking [5,10,14,18,25]. During the preparations for the new sequential and
industrial tracks, we started a closer investigation on lessons we might learn
from the results of the RERS 2018 challenge in addition to the valuable feedback
collected during the RERS 2018 meeting in Limassol.

 0

 20

 40

 60

 80

 100

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

true
false

unknown
unknown true

unknown false

(a) University of Freiburg

 0

 20

 40

 60

 80

 100

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

(b) University of Twente

 0

 20

 40

 60

 80

 100

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

(c) LLNL

 0

 20

 40

 60

 80

 100

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

(d) LMU Munich

Fig. 1. Reachability results. (Color figure online)

In Fig. 1, the results of the participants of the reachability challenge are
visualized. The blue bars indicate how many properties have not been addressed
by the respective participant for a problem. Hence, these blue bars point to
potential opportunities for achieving better challenge results for each tool. It is
observable that the amount of green bars is decreasing with increasing problem
size and difficulty. This shows that less unreachable errors are detected with
increased problem size. In contrast, the purple bars still show a fair number of
results for reachable errors.

4 http://www.rers-challenge.org/2018/index.php?page=results.

http://www.rers-challenge.org/2018/index.php?page=results

RERS 2019: Combining Synthesis with Real-World Models 105

It is obvious that showing the absence of a certain error requires a more com-
plicated proof than demonstrating that it is reachable. Therefore, the observed
result is not unexpected. To investigate this further, the blue bars are split up
into the corresponding categories from which the unsolved properties originate.
An orange bar shows the number of unreported reachable errors. A yellow bar
shows the number of unreported unreachable errors. In most cases, the yellow
bar is comparable in size to the blue bar for a problem. On the one hand, this is
evidence which demonstrates that proving unreachable errors is still a hard chal-
lenge no matter which approach has been applied. On the other hand, the charts
indicate that participating tools scale quite well also on the larger problems for
demonstrating the existence of errors.

 0

 20

 40

 60

 80

 100

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

true
false

unknown
unknown true

unknown false

(a) LLNL

 0

 20

 40

 60

 80

 100

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

(b) University of Twente

Fig. 2. LTL results. (Color figure online)

We found a similar situation in the LTL track results reported in Fig. 2. In this
figure a purple bar indicates that a LTL formula holds. This proof requires a deep
understanding of major parts of the complete execution graph. This is therefore
the counterpart for proving an error unreachable. As expected, it appears to be
much easier for tools to disprove an LTL formula on the given examples the
same way as it seems significantly easier to prove error reachability. With a few
exceptions, the blue bars indicating unreported properties for a given problem
are comparable in height with the orange bars for LTL formulae expected to hold
on the given instance. We want to highlight that the tools which participated in
RERS 2018 demonstrated a good scalability for disproving LTL formulae across
the different problem sizes.

Based on the results handed in to RERS 2018, we observe some maturity
in tools disproving LTL formulae and finding errors, which are both charac-
terized by having single paths as witnesses. We appreciate this trend because a
lacking scalability of verification tools was a major motivation to start the RERS
challenge.

As a next step, we intend to motivate future participants to further investi-
gate the direction of proving LTL formulae and error unreachability on systems.
These properties require more complex proofs as it is not possible to verify the
answer with a single violating execution path. Instead it is required to create
a deeper understanding of all possible execution paths in order to give a sound
answer. There is a higher chance to make a mistake and give a wrong answer
resulting in a penalty.

106 M. Jasper et al.

With RERS 2019, we therefore want to encourage people to invest into cor-
responding verification tools by valuing that verifiable properties are more com-
plicated to analyze than refutable ones. In the future we will award two points
for each correct report of an unreachable error or a satisfied LTL formula in the
competition-based ranking. The achievement reward system remains unchanged.

3 Improvements in the Parallel Tracks for RERS 2019

The initial model used for the RERS 2018 tracks on parallel programs was
chosen to be the Dining Philosophers Problem in order to feature a well-known
system [13]. With the goal to reflect the properties of this system as best as
possible, the corresponding LTL and CTL properties were designed manually.
To streamline our generation approach and minimize the amount of manual work
involved, we decided to further automate these steps for RERS 2019.

In [15], a new workflow for the generation of parallel benchmarks was pre-
sented that fully automates the generation process while ensuring certain hard-
ness guarantees of the corresponding verification/refutation tasks. Due to time
constraints, we could not fully integrate this new approach into our generation
pipeline for RERS 2019. Instead, we combined new and existing approaches to
achieve a full automation (Fig. 3). Our workflow for RERS’19 therefore does not
yet guarantee the formal hardness properties presented in [15]. On the other
hand, it integrates the generation of CTL properties, an aspect that was not
discussed in [15].

property
mining

model
checking

parallel MTSs

parallel MTSs

parallel LTSs

Model or
Code

Questionnaire

Q
uestionnaire

Pr
Be

nc
hm

ar
k

of
ile

Solution
parallel decomposition

parallel decom
position

alphabet
extension

modal
refinement

CTLs + solutionCTLs

LTLsLTLs + solution

G(⇒F())

F()

G(=> F())

F()
true

false

AG(true⇒
AF(true))

AF(true)

AG(true=>
AF(true))

AF(true)
false

false

Fig. 3. Workflow of the benchmark generation for the RERS’19 parallel programs.

RERS 2019: Combining Synthesis with Real-World Models 107

Input to the overall workflow (Fig. 3) is a benchmark profile that contains
metadata such as the number of desired verifiable/refutable LTL/CTL proper-
ties, number of parallel components in the final code, and similar characteristics.
The generation of a parallel benchmark starts with a labeled transition system
(LTS). We chose to randomly generate these for RERS’19, based on parame-
ters in the input benchmark profile. Alternatively, one could choose an existing
system modeled as an LTS if its size still permits to model check it efficiently.

3.1 Property Generation

Given the initial LTS, we randomly select verifiable and refutable properties
based on certain LTL patterns. This process is called property mining in Fig. 3
and was previously used to generate the parallel benchmarks of RERS’16 [9] and
some of RERS’17 [12].

As a new addition to the automated workflow, we implemented a generation
of CTL formulae based on the following idea:

– Syntactically transform an LTL formula φl to a CTL formula φc. This yields
structurally interesting CTL properties but is not guaranteed to preserve the
semantics.

– Check φc on the input model. This step compensates for the lack of property
preservation of the first step.

– Possibly negate φc and then apply de Morgan-like rules to eliminate the
leading negation operator in case the ratio of satisfied and violated properties
does not match the desired characteristics. This works for CTL, as in contrast
to LTL, formulae or their negations are guaranteed to hold (law of excluded
middle).

We realized the transformation from an LTL formula to a corresponding CTL
formula by prepending an A (‘always’) to every LTL operator which requires
the formula to hold on every successor state. For a state to satisfy AGφ for
example, φ has to hold in every state on every path starting in the given state.
Additionally, we introduced a diamond operator for every transition label that
is not negated in the LTL formula and a box for every negated label as detailed
below. The transformation was implemented as follows where the LTL formula
to the left of the arrow is replaced by the CTL formula to the right of the arrow.5

Gφ → AGφ
Fφ → AFφ

φUψ → A(φUψ)
φWψ → A(φWψ)

a → 〈a〉true
¬a → [a]false

5 For more details on the syntax of the LTL and CTL properties, see http://rers-
challenge.org/2019/index.php?page=problemDescP.

http://rers-challenge.org/2019/index.php?page=problemDescP
http://rers-challenge.org/2019/index.php?page=problemDescP

108 M. Jasper et al.

The diamond operator 〈a〉φ holds in a state iff the state has at least one
outgoing transition labeled with an a whose target state satisfies φ. In this
case 〈a〉true holds in a state if it has an outgoing transition labeled with a
because every state satisfies ‘true’. The box operator [a]φ holds in a state iff
every outgoing transition labeled with an a satisfies φ. The negation of an atomic
proposition a was replaced by [a]false which is only satisfied by a state which
has no outgoing transitions labeled with an a.

Based on the previously mentioned steps, we can automatically generate
LTL and CTL properties that are given to participants of the challenge as a
questionnaire (see Fig. 3). Similarly, the corresponding solution is extracted and
kept secret by the challenge organizers until the submission deadline has passed
and the results of the challenge are announced.

3.2 Expansion and Translation of the Input Model

In order to synthesize challenging verification tasks and provide parallel pro-
grams, we expand the initial LTS based on property-preserving parallel decom-
positions [23] (see top and right-hand side of Fig. 3). The corresponding pro-
cedure works on modal transition systems (MTSs) [17], an extension of LTSs.
This parallel decomposition can be iterated. During this expansion procedure,
the alphabet of the initial system is extended by artificial transition labels. More
details including examples can be found in [13,21].

As a last step, the final model of the now parallel program is encoded in
different target languages such as Promela or as a Nested-Unit Petri net [8] in
the standard PNML format6. The final code or model specification is presented
to participants of the challenge along with the questionnaire that contains the
corresponding LTL/CTL properties.

Please note the charm of verifying branching time properties: As CTL is
closed under negation, proving whether a formula is satisfied or violated can in
both cases be accomplished using standard model checking, and in both cases
one can construct witnesses in terms of winning strategies. Thus there is not
such a strong discrepancy between proving and refuting properties as in LTL.

4 Industrial Tracks

RERS 2019 includes tracks that are based on industrial embedded control sys-
tems provided by ASML. ASML is the world’s leading provider of lithography
systems for the semiconductor industry. Lithography systems are very complex
high-tech systems that are designed to expose patterns on silicon wafers. This
processing must not only be able to deliver exceptionally reliable results with an
extremely high output on a 24/7 basis, it must do so while also being extremely
precise. With patterns becoming smaller and smaller, ASML TWINSCAN lithog-
raphy systems incorporate an increasing amount of control software to compen-
sate for nano-scale physical effects.
6 ISO/IEC 15909-2: https://www.iso.org/standard/43538.html.

https://www.iso.org/standard/43538.html

RERS 2019: Combining Synthesis with Real-World Models 109

To deal with the increasing amount of software, ASML employs a component-
based software architecture. It consists of components that interact via explicitly
specified interfaces, establishing a formalized contract between those compo-
nents. Such formal interface specifications not only include syntactic signatures
of the functions of an interface, but also their behavioural constraints in terms
of interface protocols. Furthermore, non-functional aspects, such as timing, can
be described.

Formal interface specifications enable the full potential of a component-
based software architecture. They allow components to be developed, analyzed,
deployed and maintained in isolation. This is achieved using enabling techniques,
among which are model checking (to prove interface compliance), observers (to
check interface compliance), armoring (to separate error handling from compo-
nent logic) and test generation (to increase test coverage).

For newly developed components, ASML specifies the corresponding interface
protocols. However, components developed in the past often do not have such
interface protocol specification yet. ASML aims to obtain behavioral interface
specifications for such components. Model inference techniques help to obtain
such specifications in an effective way [1]. Such techniques include, for instance,
static analysis exploiting information in the source code, passive learning based
on execution logs, active automata learning querying the running component,
and combinations of these techniques.

ASML collaborates with ESI7 in a research project on the development of
an integrated tool suite for model inference to (semi-automatically) infer inter-
face protocols from existing software components. This tool suite is applied and
validated in the industrial context of ASML. Recently, this tool suite has been
applied to 218 control software components of ASML’s TWINSCAN lithography
machines [26]. 118 components could be learned in an hour or less. The tech-
niques failed to successfully infer the interface protocols of the remaining 100
components.

Obtaining the best performing techniques to infer behavioral models for these
components is the goal of the ASML-based industrial tracks of RERS 2019.
Any model inference technique, including source code analyzers, passive learn-
ing, (model-based) testers and (test-based) modelers including active automata
learning, and free-style approaches, or combinations of techniques can be used.
The best submissions to the challenge might be used by ASML and ESI and
incorporated into their tool suite.

4.1 ASML Components for RERS

For the RERS challenge, ASML disclosed information about roughly a hundred
TWINSCAN components. We decided to select 30 among them to generate
challenging benchmark problems for RERS 2019, and three additional ones that
are used for training problems. Using these components allows participants to

7 ESI is a TNO Joint Innovation Centre, a collaboration between the Netherlands
Organisation for Applied Scientific Research (TNO), industry, and academia.

110 M. Jasper et al.

apply their tools and techniques on components of industrial size and complexity,
evaluating their real-world applicability and performance.

For the disclosed components, Mealy machine (MM) models and (generated)
Java and C++ source-code exist. The generation of benchmarks for the RERS
challenge is based on the MM models. This allows us to open the industrial tracks
also to tools that analyze C programs. The Java code of the challenge is gen-
erated by the organizers as described later in Sect. 4.4 and does not represent
the originally generated Java code provided by ASML. This prevents partici-
pants from exploiting potential structural patterns in this original Java code
(such structural information does not exist in legacy components). Furthermore,
an execution log is provided for each component. Each execution log contains
a selected number of logged traces, provided by ASML, representing behavior
exhibited by either a unit or integration test.

The remainder of this section provides a brief overview of how properties are
generated for these benchmarks and how code is generated using the obfusca-
tion infrastructure from previous sequential RERS tracks. Figure 4 presents an
overview of the corresponding benchmark generation workflow that is described
in the following.

CodeQuestionnaire

Be
nc

hm
ar

k
Pr

of
ile

Q
uestionnaire
Solution

complete MM w.
error transitions

partial MM w. some
error transitions

partial MM without
error transitions

LTLs + solutionCTLs + solution

partial MM w. some
error transitions

(initial) code model

MM expansion
MM expansion

discrimination tree

program model
construction

error selection

property
mining

Section 4.1 Section 4.2 Section 4.3 Section 4.4

program model
elaboration

G(⇒F())

F()
true

false

AG(⇒EF)

AG()
true

false

err

err

err err

Fig. 4. Workflow of the benchmark generation for the new industrial tracks.

4.2 Generation of CTL Properties

We compute CTL formulae from Mealy machines using conformance testing
algorithms. We generate a small set of traces that characterizes each state.

RERS 2019: Combining Synthesis with Real-World Models 111

Using this, we can define for each state q a CTL state formula σq that char-
acterizes part of its behavior. If i1/o1, i2/o2 is an IO sequence of state q, then
formula σq takes the form

EX(i1 ∧ EX(o1 ∧ EX(i2 ∧ EXo2))).

These characterizing formulae are the basis for CTL properties, e.g., of the form

AG(σ1 ∨ σ2 ∨ . . . ∨ σn),
AG(σ1 ⇒ EX(i ∧ EXo ∧ σ2)), or
AG(σ1 ⇒ EFσ3),

where i and o denote symbols from the set of inputs and outputs of the Mealy
machine model, respectively. Additionally, we generate CTL formulae that do
not hold in the model using the same approach.

4.3 LTL and Reachability Properties

Regarding the new ASML-based benchmarks, we used a property mining app-
roach for the generation of LTL properties. By mining we mean that properties
are extracted from the model without altering this model. As a first step, we
temporarily discard all error transitions from the input Mealy machine (MM)
(see Fig. 4): In line with the benchmark definition used in former editions of the
RERS tracks on sequential programs, our LTL properties only constrain infi-
nite paths. This nicely reflects the fact that controllers or protocols are typically
meant to continuously run in order to react on arising input.

Having discarded all error transitions, our approach first generates random
properties from relevant patterns according to [7]. A model checker is then used
to determine whether or not the generated properties hold on the given input
model. We iterate this process until we find a desired ratio between satisfied and
violated properties. This mining approach is very similar to the previous LTL
generation in RERS (cf. [22]), with the exception that no properties are used for
synthesizing a MM. Because we have never altered the original MM with regard
to its infinite paths, all extracted LTL properties that are satisfied characterize
the input/output behavior of the given real-world model.

Similar to the former editions of RERS, the new industrial tracks also pro-
vides reachability tasks (“Is the error labeled x reachable?”). This generation
process is disjoint with the LTL track generation. While we discarded all error
transitions from the input model during conversion from the input model to code
in the LTL track generation, we select real errors from the given input model and
map them to unique error states before code generation during the reachability
task generation. This way, all included errors are taken from a real system and
are not synthetical. The same input models are used for the generation of the
benchmarks for the reachability track and the LTL track. There are just slightly
different pre-processes in place that address the handling of error transition dur-
ing generation. Using real error paths is again in contrast to the benchmark

112 M. Jasper et al.

synthesis of RERS that was applied during previous years where reachability
tasks were artificially added to (already artificial) input models.

As depicted in the top-left corner of Fig. 4, the initial MM model is complete,
meaning that each input symbol that is not supported in a certain state is rep-
resented by an error transition leading to a sink state. We randomly select some
of those error transitions and reroute them so that they each lead to a distinct
error state. At the same time, we introduce unreachable error states to the MM
and enumerate both the reachable and unreachable error states. The resulting
reachability vector is reported back to the challenge organizer as part of the
Questionnaire Solution (Fig. 4). The error states are then rendered as guarded
“verifier errors” in the final program (see Sect. 4.4). Unsupported transitions
that were not selected for the reachability tasks are rendered as “invalid input”,
in line with the previous RERS tracks on sequential programs.

4.4 Obfuscation and Code Generation

The obfuscation and code generation steps are reused from the existing RERS
benchmark generator of the sequential tracks. As described in Fig. 4 and in
Section 11 and Section 12 of [22], the translation from the initial MM to the final
code is divided into smaller steps, which are implemented as individual modules.

As shown in the right-hand side of Fig. 4, the partial MM is first expanded
as done before. Additional states which are clones of existing states are added
such that they are unreachable. Next, a discrimination tree is constructed using
different kinds of variables as properties on the nodes and constraints on these
variables on the outgoing edges of the decision tree. Based on the choice of
these variables, the current complexity of the synthetic RERS benchmarks is
controllable. It may range from plain encodings using only integer variables to
encode the subtrees, to options with string variables, arithmetic operations and
array variables in the same fashion as it was done in the past for RERS.

Next, the automaton is randomly mapped to the leaf nodes of the decision
tree. The constraints collected along a path from the decision tree root to a
leaf is used to encode a state of the automaton associated with that leaf. The
automaton transitions are encoded based on the decision tree encoding. The
now completely encoded problem is translated into the target language. While
ASML normally generates C++ code from its automaton models, we decided
to maintain the old RERS tradition of providing a Java and a C encoding for
each problem. The underlying MM is maintained during this obfuscation and
encoding step as it has been in the previous editions of RERS.

5 Conclusion and Outlook

With the addition of industrial tracks where benchmarks are based on real-world
models, RERS 2019 combined the strength of automated synthesis with the rel-
evance of actively used software. Due to these new tracks based on a collabora-
tion with the company ASML, the variety of different tasks that participants of

RERS 2019: Combining Synthesis with Real-World Models 113

RERS can address has again expanded. Independently of this new addition, we
further improved our generation infrastructure and realized a fully-automated
synthesis of parallel programs that feature intricate dependencies between their
components.

In the future, we intend to fully integrate the approach presented in [15] into
our infrastructure in order to guarantee formal hardness properties also for vio-
lated formulae. Future work might include equivalence-checking tasks between
a model and its implementation, for example based on the systems provided by
ASML. Furthermore, we intend to provide benchmark problems for weak bisim-
ulation checking [24] for the RERS 2020 challenge. As a longer-term goal, we
continue our work towards an open-source generator infrastructure that allows
tool developers to generate their own benchmarks.

Acknowledgments. This work was partially performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, and was supported by the LLNL-LDRD Program under Project
No. 17-ERD-023. IM Release Nr. LLNL-CONF-766478.

References

1. Aslam, K., Luo, Y., Schiffelers, R.R.H., van den Brand, M.: Interface protocol
inference to aid understanding legacy software components. In: Proceedings of
MODELS 2018, co-located with ACM/IEEE 21st International Conference on
Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, pp. 6–11 (2018)

2. Bartocci, E., et al.: TOOLympics 2019: an overview of competitions in formal
methods. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019.
LNCS, vol. 11429, pp. xx–yy. Springer, Cham (2019)

3. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28756-5 38

4. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 31

5. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No. 99CB37002), pp. 411–420, May 1999

8. Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Methods Program. 104,
60–85 (2019)

https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

114 M. Jasper et al.

9. Geske, M., Jasper, M., Steffen, B., Howar, F., Schordan, M., van de Pol, J.:
RERS 2016: parallel and sequential benchmarks with focus on LTL verification. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 787–803.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3 59

10. Heizmann, M., et al.: Ultimate Automizer with SMTInterpol. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641–643. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 53

11. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2011)

12. Jasper, M., et al.: The RERS 2017 challenge and workshop (invited paper). In:
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software, SPIN 2017, pp. 11–20. ACM (2017)

13. Jasper, M., Mues, M., Schlüter, M., Steffen, B., Howar, F.: RERS 2018: CTL,
LTL, and reachability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 433–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 27

14. Jasper, M., Schordan, M.: Multi-core model checking of large-scale reactive systems
using different state representations. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 212–226. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47166-2 15

15. Jasper, M., Steffen, B.: Synthesizing subtle bugs with known witnesses. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 235–257.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4 16

16. Kordon, F., et al.: Report on the model checking contest at Petri nets 2011. In:
Jensen, K., van der Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn,
J., Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VI. LNCS, vol. 7400, pp. 169–196. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35179-2 8

17. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8 19

18. Meijer, J., van de Pol, J.: Sound black-box checking in the LearnLib. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 349–366.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 24

19. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,
Upper Saddle River (1981)

20. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57, October 1977

21. Steffen, B., Jasper, M., Meijer, J., van de Pol, J.: Property-preserving generation
of tailored benchmark Petri nets. In: 17th International Conference on Application
of Concurrency to System Design (ACSD), pp. 1–8, June 2017

22. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven
benchmark generation: synthesizing programs of realistic structure. STTT 16(5),
465–479 (2014)

23. Steffen, B., Jasper, M.: Property-preserving parallel decomposition. In: Aceto, L.,
Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algo-
rithms, Logics and Tools. LNCS, vol. 10460, pp. 125–145. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63121-9 7

24. Steffen, B., Jasper, M.: Generating hard benchmark problems for weak bisimula-
tion. LNCS. Springer (2019, to appear)

https://doi.org/10.1007/978-3-319-47169-3_59
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-030-03421-4_27
https://doi.org/10.1007/978-3-319-47166-2_15
https://doi.org/10.1007/978-3-319-47166-2_15
https://doi.org/10.1007/978-3-030-03421-4_16
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/978-3-642-35179-2_8
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/978-3-319-77935-5_24
https://doi.org/10.1007/978-3-319-63121-9_7

RERS 2019: Combining Synthesis with Real-World Models 115

25. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoiza-
tion. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 332–347.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3 24

26. Yang, N., et al.: Improving model inference in industry by combining active and
passive learning. In: IEEE 26th International Conference on Software Analysis,
Evolution, and Reengineering (SANER) (2019, to appear)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-34281-3_24
http://creativecommons.org/licenses/by/4.0/

	RERS 2019: Combining Synthesis with Real-World Models
	1 Introduction
	2 Lessons Learned: The Sequential Tracks of RERS 2018
	3 Improvements in the Parallel Tracks for RERS 2019
	3.1 Property Generation
	3.2 Expansion and Translation of the Input Model

	4 Industrial Tracks
	4.1 ASML Components for RERS
	4.2 Generation of CTL Properties
	4.3 LTL and Reachability Properties
	4.4 Obfuscation and Code Generation

	5 Conclusion and Outlook
	References

