
VIAP 1.1
(Competition Contribution)

Pritom Rajkhowa(B) and Fangzhen Lin

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{prajkhowa,flin}@cse.ust.hk

Abstract. VIAP (Verifier for Integer Assignment Programs) is an auto-
mated system for verifying safety properties of procedural programs with
integer assignments and loops. It is based on a translation from of a
program to a set of first-order axioms with quantification over natural
numbers, and currently makes use of SymPy as the algebraic simplifier
and the SMT solver Z3 as the theorem prover. Our first version of the
system competed at SV-COMP 2018. This paper describes VIAP 1.1,
a new version that makes use of our newly developed recurrence solver.
As a result, VIAP 1.1. is able to verify many programs that were out of
reach for the older version VIAP 1.0.

Keywords: Automatic program verification · First-order logic ·
Mathematical induction · Recurrences · SMT · Arithmetic

1 Introduction

VIAP (Verifier for Integer Assignment Programs) is an automated system for
verifying safety properties of procedural programs with integer assignments and
loops. It translates a given program to a set of first-order axioms with natural
number quantification using an algorithm proposed by Lin [1]. An earlier ver-
sion of VIAP competed at SV-COMP 2018, and is described in [2,3]. A key
feature of Lin’s translation is that loops are translated to a set of recurrence
relations. Then, VIAP simplifies those axioms by using a Python library for
symbolic computation systems, SymPy [4], to compute the closed-form solutions
of recurrence relations. SymPy is equipped with function rsolve() to compute
closed-form solution of recurrence relation. The translation of the loop body gen-
erates recurrence relations which are either simple non-conditional, conditional
or mutual in nature. But rsolve() can find the closed form solution only for
certain class of simple non-conditional recurrence relations. This motivated us
to design a recurrence solver (RS) that goes beyond what the rsolve() function
can do in SymPy, and integrate it with our system. The new system, VIAP 1.1,
is the one that will compete at this year’s SV-COMP. VIAP 1.1 continues to
use SymPy for simplifying algebraic expressions, and the SMT solver Z3 [5] as
c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 250–255, 2019.
https://doi.org/10.1007/978-3-030-17502-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_23


VIAP 1.1 (Competition Contribution) 251

the underlying theorem prover without ever explicitly generating loop invariants.
Because of the new recurrence solver, VIAP 1.1 can solve many more benchmarks
that were previously out of the reach of VIAP 1.0.

To illustrate how our system works, consider the simple program below:

int x=0,y=0;
while (x<100) { if (x < 50){ y++; } else { y--; } x++; }
assert(y==0);

With some simple simplifications, the translation outlined in [1] would gen-
erate the following axioms:

x1 = x2(N), y1 = y2(N),
∀n.x2(n + 1) = x2(n) + 1, x2(0) = 0,
∀n.y2(n + 1) = ite(x2(n) < 50, y2(n) + 1, y2(n) − 1), y2(0) = 0,
¬(x2(N) < 100),∀n.n < N → x2(n) < 100.

Here, x1 and y1 denote the output values of x and y, respectively, and x2(n)
and y2(n) denote the values of x and y during the n-th iteration of the loop,
respectively. The conditional expression ite(c, e1, e2) has value e1 if c holds and
e2 otherwise. Also N is a natural number constant, and the last two axioms say
that it is exactly the number of iterations the loop executes before exiting.

There are two recurrence relations in the above axioms. Both the recurrence
relations are passed to RS. It first solves x2(n) which yields the closed-form
solution x2(n) = n which can then be used to simplify the recurrence relations
for y2(n) into

y2(0) = 0, y2(n + 1) = ite(n < 50, y2(n) + 1, y2(n) − 1).

Then RS tries to solve the above simplified conditional recurrence relations, and
returns the following closed-form solution:

y2(n) = ite(0 ≤ n < 50, n, 50 − n).

After computing the closed-form solutions for x2() and y2() by RS, VIAP elim-
inates them, and produces the following axioms:

x1 = N ∧ y1 = ite(0 ≤ N < 50, N, 100 − N), N ≥ 100),
∀n.n < N → n < 100.

The translation of assertion results y1 == 0. With this set of axioms, SMT
solvers like Z3 can then be made to prove the assertion. Similarly, when an
assertion like assert(y==1) is made to prove using above set of axioms, then
Z3 will return following counterexample:

[y1 = 0, N = 100, x1 = 100].

Using this counterexample, VIAP constructs the violation witness.



252 P. Rajkhowa and F. Lin

2 VIAP Architecture

VIAP is implemented in Python 2. VIAP has been developed in a modular
fashion, and its architecture is layered into two parts:

– Front-End: The system accepts a program written in C (C99 language) as
input and translates it to first order axioms. The recurrence solver solves the
recurrence relations generated during the translation if closed-form solutions
are available.

– Back-End: The system takes the set of translated first-order axioms and
translates all the axioms to equations compatible with Z3 (Version 4.5) by pre-
processing them using SymPy (Version 1.1.1). Then the proof engine applies
different strategies and tries to prove post-conditions in Z3 [2].

Translation. Given a program P , and a language X, our system generates a set
of first-order axioms denoted by ΠX

P that captures the changes of P on X. Here,
a language means a set of functions and predicate symbols. For ΠX

P to be correct,
X needs to include all program variables in P as well as any functions and
predicates that can be changed by P . The axioms in the set ΠX

P are generated
inductively on the structure of P . The algorithm is described in detail in [1]
and an implementation is explained in [2]. The inductive cases of translations
are given in the table provided in the supplementary information1. We have
extended our translation programs with arrays; the extension is described in
detail in [3].

Recurrence Solver (RS). The main objective of this module is to find closed-
form solutions of recurrence relations generated from the translation of the loop
body. Our recurrence solver (RS)2 takes a set of recurrence relation(s) and other
constraints, returns a set of closed-form solutions it found for some of the recur-
rences and the remaining recurrences relations and constraints simplified using
the computed closed-form solutions. It uses SymPy [4] (V 1.1.1) as the base
solver. The RS classifies input recurrence relation(s) into three major categories
(1. non-conditional 2. mutual and 3. conditional recurrences relation) and applies
the following corresponding sub-solver and tries to find closed form solution(s).

– The Non-Conditional Recurrence Solver (NCRS): RS applies this sub solver
to the non-conditional recurrence relation(s) of the form of either

X(n + 1) = f(X(n), n),

where f(x, y) is a polynomial function of x and y
or

X(n + 1) = X(n) + f(n) + A1F1(n) + · · · + AkFk(n),

where f(n) is a polynomial function in n, Ai’s are constants, and Fi’s are
function symbols.

1 https://github.com/VerifierIntegerAssignment/VIAP ARRAY/blob/master/
Document/Inductive Translation.pdf.

2 https://github.com/VerifierIntegerAssignment/recSolver.

https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/Inductive_Translation.pdf
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/Inductive_Translation.pdf
https://github.com/VerifierIntegerAssignment/recSolver


VIAP 1.1 (Competition Contribution) 253

– The Mutual Recurrence Solver (MRS): RS applies this sub solver to a set σ
of the mutual recurrence relations where each σ ∈ σ is the form of

Xi(n + 1) = A ∗ (X1(n) + . . . + Xh(n)) + Ci, for 1 ≤ i ≤ h,

where A and Ci are constants.
– The Conditional Recurrence Solver (CRS): RS applies this sub solver to

conditional recurrence relation(s) of the form

X(n + 1) = ite(θ1, f1(X(n), n), ite(θ2, f2(X(n), n) . . . , fh+1(X(n), n))),

where θ1, θ2, . . . , θh are Boolean expressions, and f1(x, y), f2(x, y), . . . ,
fh+1(x, y) are polynomial functions of x and y.

Instantiation: Instantiation is one of the most important phases of the pre-
processing of axioms before the resulting set of formulae is passed on an SMT-
solver according to some proof strategies. The objective is to help an SMT solver
like Z3 to reason with quantifiers. There are two strategies (1) Instantiating
arrays and (2) Instantiating array indices applied to an array element assign-
ment that occurs inside a loop. More details are provide in the supplementary
information3.

Proof Strategies: As the semantics of P are precisely encoded as ΠX
P , the goal

is to prove that α ∧ ΠX
P |= β, where α is a set of assumption(s) and β is the

set of assertion(s) to prove. We work in a refutation-based proof schema, i.e.,
in order to prove that a formula is valid in a background theory T, we show
that α ∧ ΠX

P ∧ ¬β is T-unsatisfiable. In VIAP, we implemented two different
strategies whose details can be found in our previous work [2].

3 Strength and Weaknesses

VIAP supports user assertions, including reachability of labels in the C-code.
In SV-COMP 2019, these checks are only enabled for ReachSafety-Arrays,
ReachSafety-Loops and ReachSafety-Recursive sub-categories of ReachSafety
category. VIAP translates a program to a set of axioms and then uses off-the-
shelf systems like SymPy and Z3 to prove properties about the program. The
advantage (strength) of this approach comes with a clean separation between
the translation (semantics) and the use of the translation in proving the proper-
ties (computation). The translation part is stable. But as more efficient provers
become available, the capabilities of the system improve. This is seen in our
newer version of VIAP that we entered in this year’s competition: by having a
more powerful system for computing closed-form solutions of recurrences, the
new system becomes more efficient and can prove many properties that our

3 https://github.com/VerifierIntegerAssignment/VIAP ARRAY/blob/master/
Document/TranslatonInsRules.pdf.

https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/TranslatonInsRules.pdf
https://github.com/VerifierIntegerAssignment/VIAP_ARRAY/blob/master/Document/TranslatonInsRules.pdf


254 P. Rajkhowa and F. Lin

previous system were not able to. However, VIAP provides little or no support
for translation and reasoning about dynamic linked data structures or programs
with floating points. We are working in the direction to strengthen our front-
and backhand to handle all types of the program so that we can participate
in all the sub-categories of ReachSafety in the future edition of SV-COMP.
The SVCOMP’19 results show that VIAP can effectively verify a number C
programs from those categories. VIAP came in first in the ReachSafety-Arrays
and ReachSafety-Recursive sub-category. The major disadvantage of the method
which translates loop body to the recurrence relation is that if they failed to find
closed form solution, then they unable to find suitable invariant as a result they
failed to complete the proof. When VIAP fails to come up with a closed-form
solution, it falls back to simple induction using Z3. There is clearly a need of
better way to do induction and we are working on it. In terms of closed-form
solution, in general it is undecidable whether a recurrence has a closed-form
solution or not.

4 Tool Setup and Configuration

The version of VIAP (version 1.1) submitted to SV-COMP 20194 is provided
as a set of binaries and libraries for Linux x86-64 architecture. The options for
running the tool are:

./viap_tool.py --spec=SPEC INPUT

SPEC is the property file, and INPUT is a C file. The output of
VIAP is “VIAP OUTPUT True” when the program is safe. When a coun-
terexample is found, it outputs “VIAP OUTPUT False” and a file named
errorWitness.graphml that contains the witness of error-path is generated in
the VIAP root folder. If VIAP is unable find any result it outputs “UNKNOWN”.

5 Software Project and Contributors

VIAP is an open-source project, mainly developed by Pritom Rajkhowa and
Professor Fangzhen Lin of the Hong Kong University of Science and Technology.
We are grateful to the developers of Z3 and SymPy for making their systems
available for open use.

Acknowledgments. We are very thankful to the anonymous reviewers for their help-
ful comments on an earlier version of this paper.

4 https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/viap.zip.

https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/viap.zip


VIAP 1.1 (Competition Contribution) 255

References

1. Lin, F.: A formalization of programs in first-order logic with a discrete linear order.
Artif. Intell. 235, 1–25 (2016)

2. Rajkhowa, P., Lin, F.: VIAP - automated system for verifying integer assignment
programs with loops. In: Jebelean, T., Negru, V., Petcu, D., Zaharie, D., Ida,
T., Watt, S.M. (eds.) 19th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania, 21–24
September 2017, pp. 137–144. IEEE Computer Society (2017)

3. Rajkhowa, P., Lin, F.: Extending VIAP to handle array programs. In: Piskac, R.,
Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 38–49. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03592-1 3

4. SymPy Development Team: SymPy: python library for symbolic mathematics
(2016)

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-03592-1_3
https://doi.org/10.1007/978-3-540-78800-3_24
http://creativecommons.org/licenses/by/4.0/

	VIAP 1.1
	1 Introduction
	2 VIAP Architecture
	3 Strength and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References




