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Abstract. Parametric timed automata (PTA) extend timed automata
by allowing parameters in clock constraints. Such a formalism is for
instance useful when reasoning about unknown delays in a timed sys-
tem. Using existing techniques, a user can synthesize the parameter con-
straints that allow the system to reach a specified goal location, regard-
less of how much time has passed for the internal clocks.

We focus on synthesizing parameters such that not only the goal loca-
tion is reached, but we also address the following questions: what is the
minimal time to reach the goal location? and for which parameter val-
ues can we achieve this? We analyse the problem and present a semi-
algorithm to solve it. We also discuss and provide solutions for minimiz-
ing a specific parameter value to still reach the goal.

We empirically study the performance of these algorithms on a bench-
mark set for PTAs and show that minimal-time reachability synthesis
is more efficient to compute than the standard synthesis algorithm for
reachability. Data or code related to this paper is available at: [26].

1 Introduction

Timed Automata (TA) [2] extend finite automata with clocks, for instance to
model real-time systems. Timed automata allow for reasoning about temporal
properties of the designed system. In addition to reachability problems, it is
possible to compute for TAs the minimal or maximal time required to reach a
specific goal location. Such a result is valuable in practice, as it can describe the
response time of a system or it may indicate when a component failure occurs.
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Fig. 1. Train delay scheduling problem: Alice (depicted in dotted red), located at A,
wants to go to station D. Bob (depicted in dashed blue), located at B, wants to go to A.
By setting the train delays D1 and D2 for train 1 and 2, make sure that both Alice

and Bob reach their target station in minimum total time. (Color figure online)

It may not always be possible to describe a real-time system with a TA.
There are often uncertainties in the timing constraints, for instance how long
it takes between sending and receiving a message. Optimising specific timing
delays to improve the overall throughput of the system may also be considered,
as shown in Example 1. Such uncertainties can however be modelled using a
parametric timed automaton (PTA) [3]. A PTA adds parameters, or unknown
constants, to the TA formalism. By examining the reachability of a goal location,
the parameters get constrained and we can observe which parameter valuations
preserve the reachability of the goal location.

This process, also called parameter synthesis, is definitely useful for analysing
reachability properties of a system. However, this technique does disregard tim-
ing aspects to some extent. Given the parameter constraints, it is no longer pos-
sible to give clear boundaries on the time to reach the goal, as this may depend
on the parameter valuations. We focus on the parameter synthesis problem while
reaching the goal location in minimal time, as demonstrated in Example 1.

Example 1. Consider the example in Fig. 1, which depicts a train network con-
sisting of two trains. Both trains share locations B and D (the station platforms)
while locations A′, B′, C′, D′, B′′, and D′′ represent a train travelling (tracks). The
travel time for train 1 between any two stations is 100, and 55 for train 2. Train 1
stops at stations A, B, C, and D, for time D1 (and train 2 stops for D2 time units
at B and D). Here, the train delays D1 and D2 are parameters and x1 and x2 are
clocks. Both clocks start at 0 and reset after every transition. We assume that
the trains use different tracks and changing trains at the platform of a station
can be done in negligible time.

Alice is starting her journey from A and would like to go to D. Bob is located
at B and wants to go to A. Train 1 and/or 2 can be used to travel, if both the
train and the person are at the same location. Initially, both Alice and Bob wait
for a train, since the initial positions of train 1 and 2 are respectively C’ and D”.
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We would like to set the train delays D1 and D2 in such a way that the total
time for Alice and Bob to reach their target location, i. e. the PTA location for
which Alice is at station D and Bob is at station A, is minimal. The optimal
solution is D1 = 25 ∧ D2 = 15, which leads to a total time of 405 units1. Note
that this is neither optimal for Alice (the fastest would be D1 = 0 ∧ D2 = 5),
nor optimal for Bob (D1 = 10 ∧ D2 = 0).

Note that in other instances, the time to reach a goal location may be an
interval, describing the lower- and upper-bound on the time. This can be achieved
in the example by changing the travel time from train 1 to be between 95 and
105, by guarding the outgoing transitions from locations A′, B′, C′ and D′ with
95 ≤ x1 ≤ 105 (instead of x1 = 100). We focus on the lower-bound global time,
meaning that we look at the minimal total time passed in the system, which
may differ from the clock values as the clocks can be reset.
In this paper, we address the following problems:

– minimal-time reachability : synthesizing a single parameter valuation for
which the goal location can be reached in minimal (lower-bound) time,

– minimal-time reachability synthesis: synthesizing all parameter valuations
such that the time to reach the goal location is minimized, and

– parameter minimization synthesis: synthesizing all parameter valuations such
that a particular parameter is minimized and the goal location can still be
reached (this problem can also address the minimal-time reachability synthesis
problem by adding a parameter to equal with the final clock value).

For all stated problems we provide algorithms to solve them and empirically
compare them with a set of benchmark experiments for PTAs, obtained from [5].
Interestingly, compared to standard reachability and synthesis, minimal-time
reachability and synthesis is in general computed faster as fewer states have
to be considered in the exploration. We also look at the computability and
intractability of the problems for PTAs and L/U-PTAs (PTAs for which each
parameter only appears as a lower- or upper-bound).

Related work. The earliest work on minimal-time reachability for timed
automata was by Courcoubetis and Yannakis [17], who first addressed the prob-
lem of computing lower and upper bounds. Several algorithms have been devel-
oped since to improve performance [22,24,25], by e. g. using parallelism. Related
problems have been studied, such as minimal-time reachability for weighted
timed automata [4], minimal-cost reachability in priced timed automata [12],
and job scheduling for timed automata [1].

Concerning parametric timed automata, to the best of our knowledge, the
minimal-time reachability problem was not tackled in the past. The reachability-
emptiness problem (“the emptiness of the parameter valuation set for which a
1 Alice waits for train 1 to reach A at time 225, then she hops on and exits the train

on time 350 at B. There she can immediately take train 2 and reach D at time 405.
Bob waits for train 2 to reach B at time 55 and takes this train. At time 125 he
reaches D and can immediately hop on train 1. Bob reaches A at time 225.
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given set of locations is reachable”) is undecidable [3], with various settings con-
sidered, notably a single clock compared to parameters [21] or a single rational-
valued or integer-valued parameter [14,21] (see [6] for a survey). Only severely
limiting the number of clocks (e. g. [3,11,14,16]), and often restricting to integer-
valued parameters, can bring some decidability. Emptiness for the subclass of
L/U-PTAs is also decidable [13]. Minimizing a parameter can however be con-
sidered done in the setting of upper-bound PTAs (PTAs in which the clocks are
only restricted from above): the exact synthesis of integer valuations for which
a location is reachable can be done [15], and therefore the minimum valuation
of a parameter can be obtained.

2 Preliminaries

We assume a set X = {x1, . . . , x|X|} of clocks, i. e. real-valued variables that
evolve at the same rate. A clock valuation is νX : X → R≥0. We write 0 for the
clock valuation assigning 0 to all clocks. Given d ∈ R≥0, νX + d is the valuation
s.t. (νX + d)(x) = νX(x) + d, for all x ∈ X. Given R ⊆ X, we define the reset
of a valuation νX, denoted by [νX]R, as follows: [νX]R(x) = 0 if x ∈ R, and
[νX]R(x) = νX(x) otherwise.

We assume a set P = {p1, . . . , p|P|} of parameters. A parameter valuation νP
is νP : P → Q+. We denote �� ∈ {<,≤,=,≥, >}, � ∈ {<,≤}, and � ∈ {>,≥}.
A guard g is a constraint over X ∪ P defined by a conjunction of inequalities
of the form x �� d or x �� p, with x ∈ X, d ∈ N and p ∈ P. Given a guard g,
we write νX |= νP(g) if the expression obtained by replacing each clock x ∈ C
appearing in g by νX(x) and each parameter p ∈ P appearing in g by νP(p)
evaluates to true.

2.1 Parametric Timed Automata

Definition 1 (PTA). A PTA A is a tuple A = (Σ,L, �0, X, P, I, E), where: (i)
Σ is a finite set of actions, (ii) L is a finite set of locations, (iii) �0 ∈ L is the
initial location, (iv) X is a finite set of clocks, (v) P is a finite set of parameters,
(vi) I is the invariant, assigning to every � ∈ L a guard I(�), (vii) E is a finite
set of edges e = (�, g, a,R, �′) where �, �′ ∈ L are the source and target locations,
a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a guard.

Given a parameter valuation νP and PTA A, we denote by νP(A) the non-
parametric structure where all occurrences of a parameter p ∈ P have been
replaced by νP(p). Any structure νP(A) is also a timed automaton. By assuming
a rescaling of the constants (multiplying all constants in νP(A) by their least
common denominator), we obtain an equivalent (integer-valued) TA.

Definition 2 (L/U-PTA). An L/U-PTA is a PTA where the set of param-
eters is partitioned into lower-bound parameters and upper-bound parameters,
i. e. parameters that appear only in guards and invariants in inequalities of the
form p � x, or of the form p �x, respectively.
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Definition 3 (Semantics of a PTA). Given a PTA A = (Σ,L, �0, X, P, I, E),
and a parameter valuation νP, the semantics of νP(A) is given by the timed
transition system (TTS) (S, s0,→), with:

– S = {(�, νX) ∈ L × R
|X|
≥0 | νX |= νP(I(�))}, s0 = (�0,0),

– → consists of the discrete and (continuous) delay transition relations: (i)
discrete transitions: (�, νX) e	→ (�′, ν′

X
), if (�, νX), (�′, ν′

X
) ∈ S, and there exists

e = (�, g, a,R, �′) ∈ E, such that ν′
X

= [νX]R, and νX |= νP(g), (ii) delay

transitions: (�, νX) d	→ (�, νX +d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (�, νX +d′) ∈ S.

Moreover we write (�, νX)
(d,e)−→ (�′, ν′

X
) for a combination of a delay and dis-

crete transition if ∃ν′′
X

: (�, νX) d	→ (�, ν′′
X
) e	→ (�′, ν′

X
).

Given a TA νP(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of νP(A). A run ρ of νP(A) is a possibly infinite alter-
nating sequence of concrete states of νP(A), and pairs of edges and delays, start-
ing from the initial state s0 of the form s0, (d0, e0), s1, · · · , with i = 0, 1, . . . , and
di ∈ R≥0, ei ∈ E, and (si, ei, si+1) ∈ →. The set of all finite runs over νP(A) is
denoted by Runs(νP(A)). The duration of a finite run ρ = s0, (d0, e0), s1, · · · , si,
is given by duration(ρ) =

∑
0≤j≤i−1 dj .

Given a state s = (�, νX), we say that s is reachable in νP(A) if s is the
last state of a run of νP(A). By extension, we say that � is reachable; and by
extension again, given a set T of locations, we say that T is reachable if there
exists � ∈ T such that � is reachable in νP(A). The set of all finite runs of νP(A)
that reach T is denoted by Reach(νP(A), T ).

Minimal reachability. As the minimal time may not be an integer, but also the
smallest value larger than an integer2, we define a minimum as either a pair in
Q+ × {=, >} or ∞. The comparison operators function as follows: (c,=) < ∞,
(c,>) < ∞, and (c1,
1) < (c2,
2) iff either c1 < c2 or c1 = c2, 
1 is = and 
2

is >3.
Given a set of locations T , the minimal time reachability of T

in νP(A), denoted by MinTimeReach(νP(A), T ) = min{duration(ρ) | ρ ∈
Reach(νP(A), T )}, is the minimal duration over all runs of νP(A) reaching T .

By extension, given a PTA, we denote by MinTimePTA(A, T ) the min-
imal time reachability of T over all valuations, i. e. MinTimePTA(A, T ) =
minνP

MinTimeReach(νP(A), T ). As we will be interested in synthesizing the
valuations leading to the minimal time, let us define MinTimeSynth(A, T ) =
{νP | MinTimeReach(νP(A), T ) = MinTimePTA(A, T )}.

We will also be interested in minimizing the valuation of a given parame-
ter pi (without any notion of time) reaching a given location, and we therefore

2 Consider a TA with a transition guarded by x > 1 from �0 to �1, then the minimal
duration of runs reaching �1 is not 1 but slightly more.

3 When we compute the minimum over a set, we actually calculate its infimum and
combine the value with either = or > to indicate if the value is present in the set.
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define MinParamReach(A, pi, T ) = minνP
{νP(pi) | Reach(νP(A), T ) �= ∅}. Simi-

larly, we will be interested in synthesizing all valuations leading to the minimal
valuation of pi reaching T , so let us define MinParamSynth(A, pi, T ) = {νP |
Reach(νP(A), T ) �= ∅ ∧ νP(pi) = MinParamReach(A, pi, T )}.

2.2 Computation Problems

Minimal-time reachability problem:
Input: A PTA A, a subset T ⊆ L of its locations.
Problem: Compute MinTimePTA(A, T ).

Minimal-time reachability synthesis problem:
Input: A PTA A, a subset T ⊆ L of its locations.
Problem: Compute MinTimeSynth(A, T ).

Before addressing these problems, we will address the slightly different prob-
lem of minimal-parameter reachability, i. e. the minimization of a parameter
reaching a given location (independently of time). We will see in Lemma 1 that
this problem can also give an answer to the minimal-time reachability (synthesis)
problem.
Minimal-parameter reachability problem:
Input: A PTA A, a parameter p, a subset T ⊆ L of the locations of A.
Problem: Compute MinParamReach(A, T, p).

Minimal-parameter reachability synthesis problem:
Input: A PTA A, a parameter p, a subset T ⊆ L of the locations of A.
Problem: Synthesize MinParamSynth(A, T, p).

2.3 Symbolic Semantics

Let us now recall the symbolic semantics of PTAs (see e. g. [8,19]), that we will
use to solve these problems.

Constraints. We first define operations on constraints. A linear term over X∪P is
of the form

∑
1≤i≤|X| αixi+

∑
1≤j≤|P| βjpj+d, with xi ∈ X, pj ∈ P, and αi, βj , d ∈

Z. A constraint C (i. e. a convex polyhedron) over X ∪ P is a conjunction of
inequalities of the form lt �� 0, where lt is a linear term. ⊥ denotes the false
parameter constraint, i. e. the constraint over P containing no valuation.

Given a parameter valuation νP, νP(C) denotes the constraint over X obtained
by replacing each parameter p in C with νP(p). Likewise, given a clock valua-
tion νX, νX(νP(C)) denotes the expression obtained by replacing each clock x
in νP(C) with νX(x). We say that νP satisfies C, denoted by νP |= C, if the set of
clock valuations satisfying νP(C) is non-empty. Given a parameter valuation νP
and a clock valuation νX, we denote by νX|νP the valuation over X ∪ P such that
for all clocks x, νX|νP(x) = νX(x) and for all parameters p, νX|νP(p) = νP(p). We
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use the notation νX|νP |= C to indicate that νX(νP(C)) evaluates to true. We say
that C is satisfiable if ∃νX, νP s.t.νX|νP |= C.

We define the time elapsing of C, denoted by C↗, as the constraint over X

and P obtained from C by delaying all clocks by an arbitrary amount of time.
That is, ν′

X
|νP |= C↗ iff ∃νX : X → R+,∃d ∈ R+ s.t. ν′

X
|νP |= C ∧ ν′

X
= νX + d.

Given R ⊆ X, we define the reset of C, denoted by [C]R, as the constraint
obtained from C by resetting the clocks in R, and keeping the other clocks
unchanged. Given a subset P

′ ⊆ P of parameters, we denote by C↓P′ the projec-
tion of C onto P

′, i. e. obtained by eliminating the clock variables and the param-
eters in P \P

′ (e. g. using Fourier-Motzkin). Therefore, C↓P denotes the elimina-
tion of the clock variables only, i. e. the projection onto P. Given p, we denote
by GetMin(C, p) the minimum of p in a form (c,
). Technically, GetMin can
be implemented using polyhedral operations as follows: C↓{p} is computed, and
then the infimum is extracted; then the operator in {=, >} is inferred depending
whether C↓{p} is bounded from below using a closed or an open constraint. We
extend GetMin to accommodate clocks, thus GetMin(C, x) returns the minimal
clock value that x can take, while conforming to C.

A symbolic state is a pair (�, C) where � ∈ L is a location, and C its associated
constraint, called parametric zone.

Definition 4 (Symbolic semantics). Given a PTA A = (Σ,L, �0, X, P, I, E),
the symbolic semantics of A is defined by the labelled transition system called the
parametric zone graph PZG = (E,S, s0,⇒), with

– S = {(�, C) | C ⊆ I(�)}, s0 =
(
�0, (

∧
1≤i≤|X| xi = 0)↗ ∧ I(�0)

)
, and

–
(
(�, C), e, (�′, C ′)

) ∈ ⇒ if e = (�, g, a,R, �′) ∈ E and

C ′ =
(
[(C ∧ g)]R ∧ I(�′)

)↗ ∧ I(�′) with C ′ satisfiable.

That is, in the parametric zone graph, nodes are symbolic states, and arcs are
labeled by edges of the original PTA. Given s = (�, C), if

(
(�, C), e, (�′, C ′)

) ∈ ⇒,
we write Succ(s, e) = (�′, C ′). By extension, we write Succ(s) for ∪e∈ESucc(s, e).
Well-known results (see [19]) connect the concrete and the symbolic semantics.

3 Computability and Intractability

3.1 Minimal-Time Reachability

The following result is a consequence of a monotonicity property of L/U-
PTAs [19]. We can safely replace parameters with some constants in order to
compute the solution to the minimal-time reachability problem, which reduces
to the minimal-time reachability in a TA, which is PSPACE-complete [17]. All
proofs are given in [7].

Proposition 1 (minimal-time reachability for L/U-PTAs). The
minimal-time reachability problem for L/U-PTAs is PSPACE-complete.
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Computing the minimal time for which a location is reached (Proposition 1)
does not mean that we are able to compute exactly all valuations for which this
location is reachable in minimal time. In fact, we show that it is not possible
in a formalism for which the emptiness of the intersection is decidable—which
notably rules out its representation as a finite union of polyhedra. The proof idea
is that representing it in such a formalism would contradict the undecidability
of the emptiness problem for (normal) PTAs.

Proposition 2 (intractability of minimal-time reachability synthesis
for L/U-PTAs). The solution to the minimal-time reachability synthesis prob-
lem for L/U-PTAs cannot be represented in a formalism for which the emptiness
of the intersection is decidable.

3.2 Minimal-Parameter Reachability

For the full class of PTAs, we will see that these problems are clearly out of reach:
if it was possible to compute the solution to the minimal-parameter reachability
or minimal-parameter reachability synthesis, then it would be possible to answer
the reachability emptiness problem—which is undecidable in most settings [6].

We first show that an algorithm for the minimal-parameter synthesis prob-
lem can be used to solve the minimal-time synthesis problem, i. e. the minimal-
parameter synthesis problem is at least as hard as the minimal-time synthesis
problem.

Lemma 1 (minimal-time from minimal-parameter synthesis). An algo-
rithm that solves the minimal-parameter synthesis problem can be used to solve
the minimal-time synthesis problem by extending the PTA.

Proof. Assume we are given an arbitrary PTA A, a set of target locations T ,
and a global clock xglobal that never resets. We construct the PTA A′ from A by
adding a new parameter pglobal , and for every edge (�, g, a,R, �′) in A′ such that
�′ ∈ T , we replace g by g∧xglobal = pglobal . Note that when a target location from
T is reached, we have that xglobal = pglobal , hence by minimizing pglobal we also
minimize xglobal . Thus, by solving MinParamSynth(A′, T, pglobal ), we effectively
solve MinTimeSynth(A, T ).

The following result states that synthesis of the minimal-value of the param-
eter is intractable for PTAs.

Proposition 3 (intractability of minimal-parameter reachability for
PTAs). The solution to the minimal-parameter reachability for PTAs cannot
be computed in general.

Proof (sketch). By showing that testing equality of “p = 0” against the solution
of the minimal-parameter reachability problem for the PTA in Fig. 2 and �′

f is
equivalent to solving reachability emptiness of �f in A—which is undecidable [3].
Therefore, the solution cannot be computed in general.

The intractability of minimal-parameter reachability synthesis for PTAs will
be implied by the upcoming Proposition 4 in a more restricted setting.
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�0 �fA�′
0 �′′

f

�′
f

x = 0 x := 0

x = 0 ∧ x = p

x = 1 ∧ x = p

Fig. 2. Intractability of minimal-parameter reachability for PTAs

Intractability of the synthesis for L/U-PTAs. The following result states that
synthesis is intractable for L/U-PTAs. In particular, this rules out the possibility
to represent the result using a finite union of polyhedra.

Proposition 4 (intractability of minimal-parameter reachability syn-
thesis for L/U-PTAs). The solution to the minimal-parameter reachability
synthesis for L/U-PTAs cannot always be represented in a formalism for which
the emptiness of the intersection is decidable and for which the minimization of
a variable is computable.

Proof. From Lemma 1 and Proposition 2. ��
The minimal-parameter reachability problem remains open for L/U-PTAs

(see Sect. 7). Despite these negative results, we will define procedures that
address not only the class of L/U-PTAs, but in fact the class of full PTAs.
Of course, these procedures are not guaranteed to terminate.

4 Minimal Parameter Reachability Synthesis

We give MinParamSynth(A, T, p) in Algorithm 1. It maintains a set W of wait-
ing symbolic states, a set P of passed states, a current optimum Opt and the
associated optimal valuations K. While W is not empty, a state is picked in
line 6. If it is a target state (i. e. � ∈ T ) then the projection of its constraint
onto p is computed, and the minimum is inferred (line 10). If that projection
improves the known optimum, then the associated parameter valuations K are
completely replaced by the one obtained from the current state (i. e. the projec-
tion of C onto P). Otherwise, if C↓{p} is equal to the known optimum (line 14),
then we add (using disjunction) the associated valuations. Finally, if the current
state is not a target state and has not been visited before, then we compute its
successors and add them to W in lines 17 and 18.

Note that if W is implemented as a FIFO list with “pick” the first element,
then this algorithm is a classical BFS procedure.

Also note that if we replace lines 10–15 with the statement K ← K ∨ C↓P
(i. e. adding the parameter valuations to K every time the algorithm reaches
a target location), we obtain the standard synthesis algorithm EFSynth from
e. g. [20], that synthesizes all parameter valuations for which a set of locations
is reachable.
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Algorithm 1: MinParamSynth(A, T, p)
input : A PTA A with symbolic initial state s0 = (�0, C0), a set of target locations T ,

a parameter p.
output : Constraint K over the parameters.

1 W ← {s0} // waiting set
2 P ← ∅ // passed set
3 Opt ← ∞ // current optimum
4 K ← ⊥ // current optimum valuations
5 while W �= ∅ do
6 Pick s = (�, C) from W
7 W ← W \ {s}
8 P ← P ∪ {s}
9 if � ∈ T then // s is a target state

10 sopt ← GetMin(C, p) // compute local optimum
11 if sopt < Opt then // the optimum is strictly better
12 Opt ← sopt // we found a new best optimum: replace it
13 K ← C↓P // completely replace the found valuations

14 else if sopt = Opt then // the optimum is equal to the one known
15 K ← K ∨ C↓P // add the found valuations

16 else // otherwise explore successors

17 for each s′ ∈ Succ(s) do
18 if s′ /∈ W ∧ s′ /∈ P then W ← W ∪ {s′}

19 return K

�1 �2

�3

x < p1

∧ x = 2

x < p2

∧ x = 1

x := 0

x = p1

∧ x = 2
∧ x > p2

x = p1

∧ x = 2
∧ x = p3

Fig. 3. PTA exemplifying Algorithm 1.

Example 2. Consider the PTA A in Fig. 3, and run MinParamSynth(A, {�3}, p1).
The initial state is s1 = (�1, x ≥ 0) (we omit the trivial constraints pi ≥ 0). Its
successors s2 = (�3, x ≥ 2∧p1 > 2) and s3 = (�2, x ≥ 0∧p2 > 1) are added to W.
Pick s2 from W: it is a target, and therefore GetMin(C2, p1) is computed, which
gives (2, >). Since (2, >) < ∞, we found a new minimum, and K becomes C2↓P,
i. e. p1 > 2. Pick s3 from W: it is not a target, therefore we compute its successors
s4 = (�3, x ≥ 2∧p1 = 2∧1 < p2 < 2) and s5 = (�3, x ≥ 2∧p1 = p3 = 2∧p2 > 1).
Pick s4: it is a target, with GetMin(C4, p1) = (2,=). As (2,=) < (2, >), we found
a new minimum, and K is replaced with C4↓P, i. e. p1 = 2 ∧ 1 < p2 < 2. Pick
s5: it is a target, with GetMin(C4, p1) = (2,=). As (2,=) = (2,=), we found an
equally good minimum, and K is improved with C5↓P, giving a new K equal to
(p1 = 2 ∧ 1 < p2 < 2) ∨ (p1 = p3 = 2 ∧ p2 > 1). As W = ∅, K is returned.

Algorithm 1 is a semi-algorithm; if it terminates with result K, then K is a
solution for the MinParamSynth problem. Correctness follows from the fact that
the algorithm explores the entire parametric zone graph, except for successors of
target states (from [19,20] we have that successors of a symbolic state can only
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restrict the parameter constraint, hence we cannot improve). Furthermore, the
minimum is tracked and updated whenever a target state is reached.

We show that synthesis can effectively be achieved for PTAs with a single
clock, a decidable subclass.

Proposition 5 (synthesis for one-clock PTAs). The solution to the
minimal-parameter reachability synthesis can be computed for 1-clock PTAs
using a finite union of polyhedra.

5 Minimal Time Reachability Synthesis

For minimal-time reachability and synthesis, we assume that the PTA contains
a global clock xglobal that is never reset. Otherwise, we extend the PTA by
simply adding a ‘dummy’ clock xglobal without any associated guards, invariants
or resets.

Algorithm 2: MinTimeSynth(A, T, xglobal )
input : A PTA A with symbolic initial state s0 = (�0, C0), a set of target locations T ,

a global clock that never resets xglobal .
output : Minimal time Topt constraint K over the parameters.

1 Q ← {(0, s0)} // priority queue ordered by time
2 P ← ∅ // passed set
3 K ← ⊥ // current optimum parameter valuations
4 Topt ← ∞ // current optimum time
5 while Q �= ∅ do
6 (t, s = (�, C)) = Q.Pop() // take head of the queue and remove it
7 P ← P ∪ {s}
8 if t > Topt then break
9 else if � ∈ T then // when s is a target state and t ≤ Topt

10 K ← K ∨ (C ∧ xglobal = t)↓P // valuations for which t = Topt

11 else // otherwise explore successors

12 for each s′ ∈ Succ(s) do
13 if s′ ∈ Q ∨ s′ ∈ P then continue // ignore seen states

14 t′ ← GetMin(s′.C, xglobal ) // get minimal time of s′.C
15 if t′ ≤ Topt then // only add states not exceeding Topt
16 if s′.� ∈ T ∧ t′ < Topt then
17 Topt ← t′ // new lower time to target

18 Q.Push((t′, s′)) // add to the priority queue

19 return (Topt , K)

We give MinTimeSynth(A, T, xglobal ) in Algorithm 2. We maintain a priority
queue Q of waiting symbolic states and order these by their minimal time (for
the initial state this is 0). We further maintain a set P of passed states, a current
time optimum Topt (initially ∞), and the associated optimal valuations K. We
first explain the synthesis algorithm and then the reachability variant.
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Minimal-time reachability synthesis. While Q is not empty, the state with the
lowest associated minimal time t is popped from the head of the queue (line 6).
If this time t is larger than Topt (line 8), then this also holds for all remaining
states in Q. Also all successor states from s (or successors of any state from Q)
cannot have a better minimal time, thus we can end the algorithm.

Otherwise, if s is a target state, we assume that t ≮ Topt and thus t = Topt
(we guarantee this property when pushing states to the queue). Before adding the
parameter valuations to K in line 10, we intersect the constraint with xglobal = t
in case the clock value depends on parameters, e. g. if C is xglobal = p.4

If s is not a target state, then we consider its successors in lines 12–18. We
ignore states that have been visited before (line 13), and compute the minimal
time of s′ in line 14. We compare t′ with Topt in line 15. All successor states for
which t′ exceeds Topt are ignored, as they cannot improve the result.

If s′ is a target state and t′ < Topt , then we update Topt . Finally, the successor
state is pushed to the priority queue in line 18. Note that we preserve the property
that t ≮ Topt for the states in Q.

Minimal-time reachability. When we are interested in just a single parameter
valuation, we may end the algorithm early. The algorithm can be terminated as
soon as it reaches line 10. We can assert at this point that Topt will not decrease
any further, since all remaining unexplored states have a minimal time that is
larger than or equal to Topt .

Algorithm 2 is a semi-algorithm; if it terminates with result (Topt ,K), then
K is a solution for the MinTimeSynth problem. Correctness follows from the
fact that the algorithm explores exactly all symbolic states in the parametric
zone graph that can be reached in at most Topt time, except for successors of
target states. Note (again) that successors of a symbolic state can only restrict
the parameter constraint. Furthermore, Topt is checked and updated for every
encountered successor to ensure that the first time a target state is popped from
the priority queue Q, it is reached in Topt time (after which Topt never changes).

6 Experiments

We implemented all our algorithms in the IMITATOR tool [9] and compared their
performance with the standard (non-minimization) EFSynth parameter synthesis
algorithm from [20]. For the experiments, we are interested in analysing the
performance (in the form of computation time) of each algorithm, and comparing
that with the performance of standard synthesis.

Benchmark models. We collected PTA models and properties from the IMITA-
TOR benchmarks library [5] which contains numerous benchmark models from

4 In case t is of the form (c, >) with c ∈ Q+, then the intersection of C with the linear
term xglobal = t would result in ⊥, as the exact value t is not part of the constraint.
In the implementation, we intersect C with xglobal = t + ε, for a small ε > 0.
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scientific and industrial domains. We selected all models with reachability prop-
erties and extended these to include: (1) a new clock variable that represents
the global time xglobal , i. e. a clock that does not reset, and (2) a new parame-
ter pglobal along with the linear term xglobal = pglobal for every transition that
targets a goal location, to ensure that when minimizing pglobal we effectively
minimize xglobal . In total we have 68 models, and for every experiment we used
the extended model that includes both the global time clock xglobal and the
corresponding parameter pglobal .

Subsumption. For each algorithm that we consider, it is possible to reduce the
search space with the following two reduction techniques:

– State inclusion [18]: Given two symbolic states s1 = (�1, C1) and s2 = (�2, C2)
with �1 = �2, we say that s1 is included in s2 if all parameter valuations for
s1 are also contained in s2, e. g. C1 is p > 5 and C2 is p > 2. We may
then conclude that s1 is redundant and can be ignored. This check can be
performed in the successor computation (Succ) to remove included states,
without altering correctness for minimal-time (or parameter) synthesis.

– State merging [10]: Two states s1 = (�1, C1) and s2 = (�2, C2) can be merged if
�1 = �2 and C1 ∪ C2 is a convex polyhedron. The resulting state (�1, C1 ∪ C2)
replaces s1 and s2 and is an over-approximation of both states. However,
reachable locations, minimality, and executable actions are preserved.

State inclusion is a relatively inexpensive computational task and preliminary
results showed that it caused the algorithm to perform equally fast or faster than
without the check. Checking for merging is however a computationally expensive
procedure and thus should not be performed for every newly found state. For all
BFS-based algorithms (standard synthesis and minimal-parameter synthesis) we
merge every BFS layer. For the minimal-time synthesis algorithm, we empirically
studied various merging heuristics and found that merging every ten iterations
of the algorithm yielded the best results. We assume that both the inclusion
and merging state-space reductions are used in all experiments (all computation
times include the overhead the reductions), unless otherwise mentioned.

Run configurations. For the experiments we used the following configurations:

– MTReach: Minimal-time reachability,
– MTSynth: Minimal-time synthesis,
– MTSynth-noRed: Minimal time synthesis, without reductions,
– MPReach: Minimal-parameter reachability (of pglobal), and
– MPSynth: Minimal-parameter synthesis (of pglobal), and
– EFSynth: Classical reachability synthesis.

Experimental setup. We performed all our experiments on an Intel R© Coretm i7-
4710MQ processor with 2.50 GHz and 7.4GiB memory, using a single thread. The
six run configurations were executed on each benchmark model, with a timeout
of 3600 s. All our models, results, and information on how to reproduce the
results are available on https://github.com/utwente-fmt/OptTime-TACAS19.

https://github.com/utwente-fmt/OptTime-TACAS19
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Results. The results of our experiments are displayed in Fig. 4.
MTSynth vs EFSynth. We observe that for most of the models MTSynth

clearly outperforms EFSynth. This is to be expected since all states that take
more than the minimal time can be ignored. Note that the experiments that
appear on a vertical line between 0.1s < x < 1s are a scaled-up variant of the
same model, indicating that this scaling does not affect minimal-time synthesis.
Finally, the model plotted at (1346, 52) does not heavily modify the clocks. As a
consequence, MTSynth has to explore most of the state space while continuously
having to extract the time constraints, making it inefficient.

Fig. 4. Scatterplot comparisons of different algorithm configurations. The marks on
the red dashed line did not finish computing within the allowed time (3600 s). (Color
figure online)

MPSynth vs EFSynth. We can see that MPSynth performs more similar to
EFSynth than MTSynth, which is to be expected as the algorithms differ less.
Still, MPSynth significantly outperforms EFSynth. This is also because fewer
states have to be explored to guarantee optimality (once a parameter exceeds
the minimal value, all its successors can be ignored).
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MTSynth vs MPSynth. Here, we find that MTSynth outperforms MPSynth,
similar to the comparison with EFSynth. The results also show a second scalable
model around (0.003, 10) and we see that MPSynth is able to solve the ‘bad
performing model’ for MTSynth as quickly as EFSynth. Still, we can conclude
that the minimal-time synthesis problem is in general more efficiently solved
with the MTSynth algorithm.

MTSynth vs MTSynth-noRed. Here we can see the advantage of using the
inclusion and merging reductions to reduce the search space. For most models
there is a non-existent to slight improvement, but for others it makes a large dif-
ference. While there is some computational overhead in performing these reduc-
tions, this overhead is not significant enough to outweigh their benefits.

MTReach vs MTSynth. With MTReach we expect faster execution times as
the algorithm terminates once a parameter valuation is found. The experiments
show that this is indeed the case (mostly visible from the timeout line). How-
ever, we also observe that for quite a few models the difference is not as signifi-
cant, implying that synthesis results can often be quickly obtained once a single
minimal-time valuation is found.

MPReach vs MPSynth. Here we also expect MPReach to be faster than its
synthesis variant. While it does quickly solve six instances for which MPSynth
timed out, other than that there is no real performance gain. We also argue here
that synthesis is obtained quickly when a minimal parameter bound is found.
Of course we are effectively computing a minimal global time, so results may
change when a different parameter is minimized.

7 Conclusion

We have designed and implemented several algorithms to solve the minimal-time
parameter synthesis and related problems for PTAs. From our experiments we
observed in general that minimal-time reachability synthesis is in fact faster to
compute compared to standard synthesis. We further show that synthesis while
minimizing a parameter is also more efficient, and that existing search space
reductions apply well to our algorithms.

Aside from the performance improvement, we deem minimal-time reachabil-
ity synthesis to be useful in practice. It allows for evaluating which parameter
valuations guarantee that the goal is reached in minimal time. We consider it
particularly valuable when reasoning about real-time systems.

On the theoretical side, we did not address the minimal-parameter reacha-
bility problem for L/U-PTAs (we only showed intractability of the synthesis).
While finding the minimal valuation of a given lower-bound parameter is trivial
(the answer is 0 iff the target location is reachable), finding the minimum of an
upper-bound parameter boils down to reachability-synthesis for U-PTAs, a prob-
lem that remains open in general (it is only solvable for integer-valued parame-
ters [15]), as well as to shrinking timed automata [23], but with 0-coefficients in
the shrinking vector—not allowed in [23].
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A direction for future work is to improve performance by exploiting paral-
lelism. Parallel random search could significantly speed up the computation pro-
cess, as demonstrated for timed automata [24,25]. Another interesting research
direction is to look at maximizing the time to reach the target, or to minimize
the upper-bound time to reach the target (e. g. for minimizing the worst-case
response-time in real-time systems); a preliminary study suggests that the latter
problem is significantly more complex than the minimal-time synthesis problem.
One may also study other quantitative criteria, e. g. minimizing cost parameters.
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C., Ölveczky, P.C. (eds.) FTSCS 2018. CCIS, vol. 1008, pp. 75–83. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-12988-0 5
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