
nonreach – A Tool for Nonreachability
Analysis

Florian Meßner and Christian Sternagel(B)

University of Innsbruck, Innsbruck, Austria

{florian.g.messner,
christian.sternagel}@uibk.ac.at

Abstract. We introduce nonreach, an automated tool for nonreachabil-
ity analysis that is intended as a drop-in addition to existing termination
and confluence tools for term rewriting. Our preliminary experimental
data suggests that nonreach can improve the performance of existing
termination tools.

Keywords: Term rewriting · Nonreachability analysis · Narrowing ·
Termination · Confluence · Infeasibility

1 Introduction

Nonreachability analysis is an important part of automated tools like TTT2 [1]
(for proving termination of rewrite systems) and ConCon [2] (for proving con-
fluence of conditional rewrite systems). Many similar systems compete against
each other in the annual termination (TermComp)1 and confluence (CoCo)2

competitions, both of which will run as part of TACAS’s TOOLympics3 in 2019.
Our intention for nonreach is to become a valuable component of all of the

above mentioned tools by providing a fast and powerful back end for reachability
analysis. This kind of analysis is illustrated by the following example.

Example 1. Suppose we have a simple program for multiplication represented
by a term rewrite system (TRS, for short) consisting of the following rules:

add(0, y) → y add(s(x ), y) → s(add(x , y))
mul(0, y) → 0 mul(s(x ), y) → add(mul(x , y), y)

For checking termination we have to make sure that there is no infinite sequence
of recursive calls. One specific subproblem for doing so is to check whether it is

This work is supported by the Austrian Science Fund (FWF): project P27502.
1 http://termination-portal.org/wiki/Termination Competition.
2 http://project-coco.uibk.ac.at/.
3 https://tacas.info/toolympics.php.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 337–343, 2019.
https://doi.org/10.1007/978-3-030-17462-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_19&domain=pdf
http://orcid.org/0000-0001-9864-1014
http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at/
https://tacas.info/toolympics.php
https://doi.org/10.1007/978-3-030-17462-0_19


338 F. Meßner and C. Sternagel

possible to reach t = MUL(s(y), z )4 from s = ADD(mul(w , x ), x ) for arbitrary
instantiations of the variables w , x , y , and z . In other words, we have to check
nonreachability of the target t from the source s.

In the remainder we will: comment on the role we intend for nonreach
(Sect. 2), describe how nonreach is built and used (Sect. 3), give an overview
of the techniques that went into nonreach (Sect. 4), and finally provide some
experimental data (Sect. 5).

2 Role

When looking into implementations of current termination and confluence tools
it soon becomes apparent that many tools use the same techniques for proving
nonreachability. In light of this observation, one of our main goals for nonreach
was to provide a dedicated stand-alone tool for nonreachability that can be
reused for example in termination and confluence tools and can in principle
replace many existing implementations.

In order to make such a reuse desirable for authors of other tools two things
are important: (1) we have to provide a simple but efficient interface, and (2)
we should support all existing techniques that can be implemented efficiently.5

At the time of writing, we already successfully use nonreach as back end in
the termination tool TTT2 [1]. To this end, we incorporated support for external
nonreachability tools into TTT2, with interaction purely via standard input and
output. More specifically, while at the moment only YES/NO/MAYBE answers
are required, the interface is general enough to support more detailed certificates
corroborating such answers. The external tool is launched once per termination
proof and supplied with those nonreachability problems that could not be han-
dled by the existing techniques of TTT2. Our next goal is to achieve the same for
the confluence tool ConCon [2].

Furthermore, a new infeasibility category will be part of CoCo 2019.6 Infea-
sibility is a concept from conditional term rewriting but can be seen as a variant
of nonreachability [3]. Thus, we plan to enter the competition with nonreach.

Another potential application of nonreach is dead code detection or showing
that some error can never occur.

3 Installation and Usage

Our tool nonreach is available from a public bitbucket7 repository which can be
obtained using the following command:
4 We differentiate between recursive calls and normal argument evaluation by capital-

ization of function symbols.
5 Efficiency is especially important under the consideration that, for example, termi-

nation tools may sometimes have to check thousands of nonreachability problems
within a single termination proof.

6 http://project-coco.uibk.ac.at/2019/categories/infeasibility.php.
7 https://bitbucket.org/fmessner/nonreach.

http://project-coco.uibk.ac.at/2019/categories/infeasibility.php
https://bitbucket.org/fmessner/nonreach


nonreach – A Tool for Nonreachability Analysis 339

git clone git@bitbucket.org:fmessner/nonreach.git

To compile and run nonreach, you need an up to date installation of Haskell’s
stack.8 The source code is compiled by invoking stack build in the project
directory containing the stack.yaml file. In order to install the executable in
the local bin path (~/.local/bin/ on Linux), run stack install instead.

Usage. The execution of nonreach is controlled by several command line flags.
The only mandatory part is a rewrite system (with respect to which nonreach-
ability should be checked). This may be passed either as literal string (flag
-d "...") or as file (flag -f filename). Either way, the input follows the for-
mats for (conditional) rewrite systems that are used for TermComp and CoCo.

In addition to a rewrite system we may provide the nonreachability problems
to be worked on (if we do not provide any problems, nonreach will wait indefi-
nitely). For a single nonreachability problem the simple format s -> t is used,
where s and t are terms and we are interested in nonreachability of the target t
from the source s. Again, there are several ways to pass problems to nonreach:

• We can provide white-space-separated lists of problems either literally on the
command line (flag -P "...") or through a file (flag -p filename).

• Alternatively, a single infeasibility problem can be provided as part of
the input rewrite system as specified by the new infeasibility category of
CoCo 2019.

• Otherwise, nonreach waits for individual problems on standard input.

For each given problem nonreach produces one line of output: In its default
mode the output is NO whenever nonreachability can be established and either
MAYBE or TIMEOUT, otherwise. When given an infeasibility problem, the output
is YES if the problem is infeasible and either MAYBE or TIMEOUT, otherwise.

Further flags may be used to specify a timeout (in microseconds; flag -t)
or to give finer control over the individual techniques that are implemented in
nonreach (we will mention those in Sect. 4).

It is high time for an example. Let us check Example 1 using nonreach.

Example 2. Assuming that the TRS of Example 1 is in a file mul.trs we can
have the following interaction (where we indicate user input by a preceding >):

nonreach -f mul.trs
> ADD(mul(w,x),x) -> MUL(s(y),z)
NO

4 Design and Techniques

In this section we give a short overview of the general design decisions and
specific nonreachability techniques that went into nonreach.
8 https://docs.haskellstack.org/en/stable/README.

https://docs.haskellstack.org/en/stable/README


340 F. Meßner and C. Sternagel

Design. Efficiency was at the heart of our concern. On the one hand, from
a user-interface perspective, this was the reason to provide the possibility that
a single invocation of nonreach for a fixed TRS can work on arbitrarily many
reachability problems. On the other hand, this lead us to mostly concentrate on
techniques that are known to be fast in practice. The selection of techniques we
present below (with the exception of narrowing) satisfies this criterion.

Techniques. Roughly speaking, nonreach uses two different kinds of techniques:
(1) transformations that result in disjunctions or conjunctions of easier nonreach-
ability problems, and (2) actual nonreachability checks. We use the notation
s � t for a nonreachability problem with source s and target t.

Reachability checks. The first check we recapitulate is implemented by most
termination tools and based on the idea of computing the topmost part of a term
that does not change under rewriting (its cap) [4]. If the cap of the source s does
not unify with the target t, then there are no substitutions σ and τ such that
sσ →∗ tτ . There are different algorithms to underapproximate such caps. We
use etcap, developed by Thiemann together with the second author [5], due to its
linear time complexity (by reducing unification to ground context matching) but
nevertheless simple implementation. With etcap subterms are matched bottom-
up with left-hand sides of rules. In case of a match, the corresponding subterm
is potentially rewritable and thus replaced by a hole, written �, representing a
fresh variable. We illustrate etcap on the first two (addition) rules of Example 1.

Example 3. We have etcap(s(0)) = s(0) and etcap(s(add(s(z ), s(0)))) = s(�),
since the subterm headed by add matches the second addition rule. Using etcap,
we obtain the following nonreachability check

reachetcap(s � t) =

{
MAYBE if etcap(s) ∼ t

NO otherwise

where ∼ denotes unifiability of terms.

The second reachability check implemented in nonreach [3,6] is based on the
so called symbol transition graph (SG for short) of a TRS. Here, the basic idea
is to build a graph that encodes the dependencies between root symbols induced
by the rules of a TRS. This is illustrated by the following example:

Example 4. Given the TRS R consisting of the four rules

f(x , x ) → g(x ) g(x ) → a h(a) → b h(x ) → x

we generate the corresponding SG shown in Fig. 1(a) on page 5.
For each rule we generate an edge from the node representing the root symbol

of the left-hand side to the node representing the root symbol of the right-hand
side. Since in the last rule, the right-hand side is a variable (which can in principle



nonreach – A Tool for Nonreachability Analysis 341

f

g h

a b

(a) SG of TRS R from Example 4.

s s2

s1

...

sk

t

∗
∗
∗

(b) Decomposition by narrowing.

Fig. 1. A symbol transition graph and the idea of narrowing.

be turned into an arbitrary term by applying a substitution), we have to add
edges from h to all nodes (including h itself).

From the graph it is apparent that f(x , y) is not reachable from g(z ), no
matter the substitutions for x , y and z , since there is no path from g to f.

We obtain the following SG based nonreachability check:

reachstg(s � t) =

{
MAYBE if there is a path from root(s) to root(t) in the graph

NO otherwise

Which reachability checks are applied by nonreach can be controlled by its -s
flag, which expects a list of checks (in Haskell syntax). Currently the two checks
TCAP and STG are supported.

Transformations. We call the first of our transformations (problem) decomposi-
tion. This technique relies on root-reachability checks to decompose a problem
into a conjunction of strictly smaller subproblems. Thus, we are done if any of
these subproblems is nonreachable.

Decomposition of a problem s � t only works if source and target are of the
form s = f(s1, . . . , sn) and t = f(t1, . . . , tn), respectively. Now the question is
whether t can be reached from s involving at least one root-rewrite step. If this
is not possible, we know that for reachability from s to t, we need all ti to be
reachable from the corresponding si.

For the purpose of checking root-nonreachability, we adapt the two reacha-
bility checks from above:

rootreachetcap(s, t) =

{
True if there is a rule � → r such that etcap(s) ∼ �

False otherwise

rootreachstg(s, t) =

⎧⎨
⎩
True if there is a non-empty path from root(s)

to root(t) in the SG
False otherwise

If at least one of these checks returns False, we can decompose the initial
problem s � t into a conjunction of problems s1 � t1, . . . , sn � tn.



342 F. Meßner and C. Sternagel

The second transformation is based on narrowing. Without going into too
much technical detail let us start from the following consideration. Given a reach-
ability problem s � t, assume that t is reachable from s. Then either the cor-
responding rewrite sequence is empty (in which case s and t are unifiable) or
there is at least one initial rewrite step. Narrowing is the tool that allows us to
capture all possible first steps (one for each rule l → r and each subterm of s
that unifies with l), of the form s → si →∗ t. This idea is captured in Fig. 1(b).

Now, decomposition (which is always applicable and thus has to be handled
with care), transforms a given reachability problem s � t into a disjunction of
new problems (that is, this time we have to show NO for all of these problems
in order to conclude NO for the initial one) s

?∼ t or s1 � t or . . . or sk � t,
where the first one is a unifiability problem and the remaining ones are again
reachability problems.

The maximal number of narrowing applications is specified by the -l flag.

5 Experiments

In order to obtain test data for nonreach we started from the Termination Prob-
lem Data Base (TPDB, for short),9 the data base of problems that are used
also in TermComp. Then we used a patched version of the termination tool
TTT2 to obtain roughly 20,000 non-trivial reachability problems with respect to
730 TRSs. These are available from a public bitbucket repository10 alongside
a small script, that runs nonreach on all the problems and displays the over-
all results. All these problems could, at the time of creating the dataset, not be
solved with the reachability checks used in the competition strategy of TTT2. The
current version11 of nonreach in its default configuration can prove nonreacha-
bility of 369 problems of this set. While this does not seem much, we strongly
suspect that the majority of problems in our set are actually reachable.

References

1. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02348-4 21

2. Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 456–465. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08918-8 31

3. Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence
of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
262–278 (2019)

4. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of
higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717,
pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 12

9 http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB.
10 https://bitbucket.org/fmessner/nonreach-testdata.
11 https://bitbucket.org/fmessner/nonreach/src/77945a5/?at=master.

https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-319-08918-8_31
https://doi.org/10.1007/11559306_12
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
https://bitbucket.org/fmessner/nonreach-testdata
https://bitbucket.org/fmessner/nonreach/src/77945a5/?at=master


nonreach – A Tool for Nonreachability Analysis 343

5. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03359-9 31

6. Yamada, A.: Reachability for termination. In: 4th AJSW (2016). http://cl-
informatik.uibk.ac.at/users/ayamada/AJSW2016-slides.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
http://cl-informatik.uibk.ac.at/users/ayamada/AJSW2016-slides.pdf
http://cl-informatik.uibk.ac.at/users/ayamada/AJSW2016-slides.pdf
http://creativecommons.org/licenses/by/4.0/

	nonreach – A Tool for Nonreachability Analysis
	1 Introduction
	2 Role
	3 Installation and Usage
	4 Design and Techniques
	5 Experiments
	References




