
Computing Coupled Similarity

Benjamin Bisping(B) and Uwe Nestmann

Technische Universität Berlin, Berlin, Germany
{benjamin.bisping,uwe.nestmann}@tu-berlin.de

Abstract. Coupled similarity is a notion of equivalence for systems with
internal actions. It has outstanding applications in contexts where inter-
nal choices must transparently be distributed in time or space, for exam-
ple, in process calculi encodings or in action refinements. No tractable
algorithms for the computation of coupled similarity have been proposed
up to now. Accordingly, there has not been any tool support.

We present a game-theoretic algorithm to compute coupled similarity,
running in cubic time and space with respect to the number of states
in the input transition system. We show that one cannot hope for much
better because deciding the coupled simulation preorder is at least as
hard as deciding the weak simulation preorder.

Our results are backed by an Isabelle/HOL formalization, as well as by
a parallelized implementation using the Apache Flink framework. Data
or code related to this paper is available at: [2].

1 Introduction

Coupled similarity hits a sweet spot within the linear-time branching-time
spectrum [9]. At that spot, one can encode between brands of process cal-
culi [14,22,25], name a branching-time semantics for Communicating Sequential
Processes [10], distribute synchronizations [23], and refine atomic actions [5,28].
Weak bisimilarity is too strong for these applications due to the occurrence of
situations with partially commited states like in the following example.

Example 1 (Gradually committing philosophers). Three philosophers A, B, and
C want to eat pasta. To do so, they must first sit down on a bench s and grab
a fork f. Unfortunately, only either A alone or the thinner B and C together
can fit on the bench, and there is just one fork. From the outside, we are only
interested in the fact which of them gets to eat. So we consider the whole bench-
and-fork business internal to the system. The following CCS structure models
the situation in the notation of [21]. The resources correspond to output actions
(which can be consumed only once) and obtaining the resources corresponds to
input actions.

Pg
def=

(
s | f | s.f.A | s.(f.B | f.C)

) \ {s, f}
A

def= aEats.A B
def= bEats.B

C
def= cEats.C

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 244–261, 2019.
https://doi.org/10.1007/978-3-030-17462-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_14&domain=pdf
http://orcid.org/0000-0002-0637-0171
http://orcid.org/0000-0002-8520-5448
https://doi.org/10.1007/978-3-030-17462-0_14

Computing Coupled Similarity 245

PoPg

gA gBC

A

B

C

τ

τ

τ

aEats

bEats

cEats

τ

τ

τ

τ

τ

R

Fig. 1. A non-maximal weak/coupled simulation R on the philosopher system from
Example 1. (Color figure online)

One might now be inclined to ponder that exactly one of the philosophers will get
both resources and that we thus could merge s and f into a single resource sf:

Po
def=

(
sf | sf.A | sf.B | sf.C

) \ {sf}
The structure of Pg and Po has the transition system in Fig. 1 as its semantics.
Notice that the internal communication concerning the resource allocation turns
into internal τ -actions, which in Pg, gA, and gBC gradually decide who is going
to eat the pasta, whereas Po decides in one step.

Pg and Po are mutually related by a weak simulation (blue dashed lines in
Fig. 1) and hence weakly similar. However, there cannot be a symmetric weak
simulation relating them because Pg

τ→gBC cannot be matched symmetrically by
Po as no other reachable state shares the weakly enabled actions of gBC. Thus,
they are not weakly bisimilar. This counters the intuition that weak bisimilar-
ity ignores how much internal behavior happens between visible actions. There
seems to be no good argument how an outside observer should notice the differ-
ence whether an internal choice is made in one or two steps.

So how to fix this overzealousness of weak bisimilarity? Falling back to weak
similarity would be too coarse for many applications because it lacks the prop-
erty of weak bisimilarity to coincide with strong bisimilarity on systems without
internal behavior. This property, however, is present in notions that refine con-
trasimilarity [31]. There is an easy way to having the cake and eating it, here:
Coupled similarity is precisely the intersection of contrasimilarity and weak sim-
ilarity (Fig. 2). It can be defined by adding a weak form of symmetry (coupling)
to weak simulation. The weak simulation in Fig. 1 fulfills coupling and thus is
a coupled simulation. This shows that coupled similarity is coarse enough for
situations with gradual commitments. At the same time, it is a close fit for weak
bisimilarity, with which it coincides for many systems.

246 B. Bisping and U. Nestmann

Fig. 2. Notions of equivalence for systems with internal actions.

Up to now, no algorithms and tools have been developed to enable a wider use
of coupled similarity in automated verification settings. Parrow and Sjödin [24]
have only hinted at an exponential-space algorithm and formulated as an open
research question whether coupled similarity can be decided in P. For similar-
ity and bisimilarity, polynomial algorithms exist. The best algorithms for weak
bisimilarity [3,19,26] are slightly sub-cubic in time, O(|S|2 log |S|) for transition
systems with |S| states. The best algorithms for similarity [15,27], adapted for
weak similarity, are cubic. Such a slope between similarity and bisimilarity is
common [18]. As we show, coupled similarity inherits the higher complexity of
weak similarity. Still, the closeness to weak bisimilarity can be exploited to speed
up computations.

Contributions. This paper makes the following contributions.

– We prove that action-based single-relation coupled similarity can be defined
in terms of coupled delay simulation (Subsect. 2.2).

– We reduce weak similarity to coupled similarity, thereby showing that deciding
coupled similarity inherits the complexity of weak similarity (Subsect. 2.4).

– We present and verify a simple polynomial-time coupled simulation fixed-point
algorithm (Sect. 3).

– We characterize the coupled simulation preorder by a game and give an algo-
rithm, which runs in cubic time and can be nicely optimized (Sect. 4)

– We implement the game algorithm for parallel computation using Apache
Flink and benchmark its performance (Sect. 5).

Technical details can be found in the first author’s Master’s thesis [1]. Isabelle/
HOL [32] proofs are available from https://coupledsim.bbisping.de/isabelle/.

2 Coupled Similarity

This section characterizes the coupled simulation preorder for transition systems
with silent steps in terms of coupled delay simulation. We prove properties that
are key to the correctness of the following algorithms.

https://coupledsim.bbisping.de/isabelle/

Computing Coupled Similarity 247

Fig. 3. Illustration of weak simulation and coupling on transition systems (Definition 4,
black part implies red part). (Color figure online)

2.1 Transition Systems with Silent Steps

Labeled transition systems capture a discrete world view, where there is a current
state and a branching structure of possible state changes (“transitions”) to future
states.

Definition 1 (Labeled transition system). A labeled transition system is a
tuple S = (S,Στ ,→) where S is a set of states, Στ is a set of actions containing
a special internal action τ ∈ Στ , and → ⊆ S ×Στ ×S is the transition relation.
We call Σ :=Στ \ {τ} the visible actions.

The weak transition relation ·̂⇒ is defined as the reflexive transitive closure
of internal steps τ̂⇒ := τ→∗

combined with â⇒ := τ̂⇒ a→ τ̂⇒ (a ∈ Σ).

As a shorthand for τ̂⇒, we also write just ⇒. We call an α̂⇒-step “weak” whereas
an α→-step is referred to as “strong” (α ∈ Στ). A visible action a ∈ Σ is said to
be weakly enabled in p iff there is some p′ such that p

â⇒ p′.

Definition 2 (Stability and divergence). A state p is called stable iff it has
no τ -transitions, p � τ→. A state p is called divergent iff it is possible to perform
an infinite sequence of τ -transitions beginning in this state, p

τ→ω
.

2.2 Defining Coupled Similarity

Coupled simulation is often defined in terms of two weak simulations, but it is
more convenient to use just a single one [10], which extends weak simulation
with a weak form of symmetry, we shall call coupling (Fig. 3).

Definition 3 (Weak simulation). A weak simulation is a relation R ⊆ S ×S

such that, for all (p, q) ∈ R, p
α→ p′ implies that there is a q′ such that q

α̂⇒ q′

and (p′, q′) ∈ R.

Definition 4 (Coupled simulation). A coupled simulation is a weak simula-
tion R ⊆ S × S such that, for all (p, q) ∈ R, there exists a q′ such that q ⇒ q′

and (q′, p) ∈ R (coupling).

248 B. Bisping and U. Nestmann

The coupled simulation preorder relates two processes, p �CS q, iff there
is a coupled simulation R such that (p, q) ∈ R. Coupled similarity relates two
processes, p ≡CS q, iff p �CS q and q �CS p.

Adapting words from [10], p �CS q intuitively does not only mean that “p is ahead
of q” (weak simulation), but also that “q can catch up to p” (coupling). The weak
simulation on the philosopher transition system from Example 1 is coupled.

Coupled similarity can also be characterized employing an effectively stronger
concept than weak simulation, namely delay simulation. Delay simulations [11,
28] are defined in terms of a “shortened” weak step relation α=� where τ=� := id
and a=� := ⇒ a→. So the difference between a=� and â⇒ lies in the fact that the
latter can move on with τ -steps after the strong a→-step in its construction.

Definition 5 (Coupled delay simulation). A coupled delay simulation is a
relation R ⊆ S × S such that, for all (p, q) ∈ R,

– p
α→p′ implies there is a q′ such that q

α=�q′ and (p′, q′) ∈ R (delay simulation),
– and there exists a q′ such that q ⇒ q′ and (q′, p) ∈ R (coupling).

The only difference to Definition 4 is the use of α=� instead of α̂⇒. Some cou-
pled simulations are no (coupled) delay simulations, for example, consider
R = {(c.τ, c.τ), (τ,0), (0, τ), (0,0)} on CCS processes. Still, the greatest cou-
pled simulation �CS is a coupled delay simulation, which enables the following
characterization:

Lemma 1. p �CS q precisely if there is a coupled delay simulation R such that
(p, q) ∈ R.

2.3 Order Properties and Coinduction

Lemma 2. �CS forms a preorder, that is, it is reflexive and transitive. Coupled
similarity ≡CS is an equivalence relation.

Lemma 3. The coupled simulation preorder can be characterized coinductively
by the rule:

∀p′, α. p
α→ p′ −→ ∃q′. q

α=� q′ ∧ p′ �CS q′ ∃q′. q ⇒ q′ ∧ q′ �CS p

p �CS q
.

This coinductive characterization motivates the fixed-point algorithm (Sect. 3)
and the game characterization (Sect. 4) central to this paper.

Lemma 4. If q ⇒ p, then p �CS q.

Corollary 1. If p and q are on a τ -cycle, that means p ⇒ q and q ⇒ p, then
p ≡CS q.

Ordinary coupled simulation is blind to divergence. In particular, it cannot
distinguish two states whose outgoing transitions only differ in an additional
τ -loop at the second state:

Computing Coupled Similarity 249

⊥

τ

τ
τ

τ τ

Fig. 4. Example for S⊥ from Theorem 1 (S in black, S⊥\S in red). (Color figure
online)

Lemma 5. If p
α→ p′ ←→ q

α→ p′ ∨ p′ = p ∧ α = τ for all α, p′, then p ≡CS q.

Due to the previous two results, finite systems with divergence can be trans-
formed into ≡CS -equivalent systems without divergence. This connects the orig-
inal notion of stability-coupled similarity [23,24] to our modern formulation and
motivates the usefulness of the next lemma.

Coupling can be thought of as “weak symmetry.” For a relation to be sym-
metric, R−1 ⊆ R must hold whereas coupling means that R−1 ⊆ ⇒R. This
weakened symmetry of coupled similarity can guarantee weak bisimulation on
steps to stable states:

Lemma 6. Assume S is finite and has no τ -cycles. Then p �CS q and p
α̂⇒ p′

with stable p′ imply there is a stable q′ such that q
α̂⇒ q′ and p′ ≡CS q′.

2.4 Reduction of Weak Simulation to Coupled Simulation

Theorem 1. Every decision algorithm for the coupled simulation preorder in
a system S, �S

CS , can be used to decide the weak simulation preorder, �S
WS ,

(without relevant overhead with respect to space or time complexity).

Proof. Let S = (S,Στ ,→) be an arbitrary transition system and ⊥ /∈ S. Then

S⊥ :=
(
S ∪ {⊥}, Στ ,

·→ ∪ {(p, τ,⊥) | p ∈ S ∪ {⊥}}
)

extends S with a sink ⊥ that can be reached by a τ -step from everywhere. For an
illustration see Fig. 4. Note that for p, q �= ⊥, p �S

WS q exactly if p �S⊥
WS q. On S⊥,

coupled simulation preorder and weak simulation preorder coincide, �S⊥
WS =�S⊥

CS ,
because ⊥ is τ -reachable everywhere, and, for each p, ⊥ �S⊥

CS p discharges the
coupling constraint of coupled simulation.

Because �S
WS can be decided by deciding �S⊥

CS , a decision procedure for �CS

also induces a decision procedure for �WS . The transformation has linear time
in terms of state space size |S| and adds only one state to the problem size.

250 B. Bisping and U. Nestmann

1 def fp step(S,Στ ,→)(R):

2 return {(p, q) ∈ R |
3 (∀p′, α. p

α→ p′ −→ ∃q′. (p′, q′) ∈ R ∧ q
α
=� q′)

4 ∧ (∃q′. q ⇒ q′ ∧ (q′, p) ∈ R)}
5 def fp compute cs(S = (S, Στ , →)):
6 R := S × S
7 while fp stepS(R) �= R:
8 R := fp stepS(R)
9 return R
Algorithm 1: Fixed-point algorithm for the coupled simulation preorder.

3 Fixed-Point Algorithm for Coupled Similarity

The coinductive characterization of �CS in Lemma 3 induces an extremely simple
polynomial-time algorithm to compute the coupled simulation preorder as a great-
est fixed point. This section introduces the algorithm and proves its correctness.

3.1 The Algorithm

Roughly speaking, the algorithm first considers the universal relation between
states, S×S, and then proceeds by removing every pair of states from the relation
that would contradict the coupling or the simulation property. Its pseudo code
is depicted in Algorithm 1.

fp step plays the role of removing the tuples that would immediately violate
the simulation or coupling property from the relation. Of course, such a pruning
might invalidate tuples that were not rejected before. Therefore, fp compute cs
repeats the process until fp stepS(R) = R, that is, until R is a fixed point of
fp stepS .

3.2 Correctness and Complexity

It is quite straight-forward to show that Algorithm 1 indeed computes �CS

because of the resemblance between fp step and the coupled simulation property
itself, and because of the monotonicity of fp step.

Lemma 7. If R is the greatest fixed point of fp step, then R =�CS .

On finite labeled transition systems, that is, with finite S and →, the while loop
of fp compute cs is guaranteed to terminate at the greatest fixed point of fp step
(by a dual variant of the Kleene fixed-point theorem).

Lemma 8. For finite S, fp compute cs(S) computes the greatest fixed point of
fp stepS .

Computing Coupled Similarity 251

Theorem 2. For finite S, fp compute cs(S) returns �S
CS .

We verified the proof using Isabelle/HOL. Due to its simplicity, we can trust
implementations of Algorithm 1 to faithfully return sound and complete �CS -
relations. Therefore, we use this algorithm to generate reliable results within test
suites for the behavior of other �CS -implementations.

The space complexity, given by the maximal size of R, clearly is in O(|S|2).
Time complexity takes some inspection of the algorithm. For our considerations,
we assume that ·=� has been pre-computed, which can slightly increase the space
complexity to O(|Σ| |S|2).
Lemma 9. The running time of fp compute cs is in O(|Σ| |S|6).
Proof. Checking the simulation property for a tuple (p, q) ∈ R means that for all
O(|Σ| |S|) outgoing p

·→-transitions, each has to be matched by a q
·=�-transition

with identical action, of which there are at most |S|. So, simulation checking
costs O(|Σ| |S|2) time per tuple. Checking the coupling can be approximated
by O(|S|) per tuple. Simulation dominates coupling. The amount of tuples that
have to be checked is in O(|S|2). Thus, the overall complexity of one invocation
of fp step is in O(|Σ| |S|4).

Because every invocation of fp step decreases the size of R or leads to ter-
mination, there can be at most O(|S|2) invocations of fp step in fp compute cs.
Checking whether fp step changes R can be done without notable overhead. In
conclusion, we arrive at an overall time complexity of O(|Σ| |S|6).
Now, it does not take much energy to spot that applying the filtering in fp step
to each and every tuple in R in every step, would not be necessary. Only after
a tuple (p, q) has been removed from R, the algorithm does really need to find
out whether this was the last witness for the ∃-quantification in the clause of
another tuple. While this observation could inspire various improvements, let us
fast-forward to the game-theoretic approach in the next section, which elegantly
explicates the witness structure of a coupled similarity problem.

4 Game Algorithm for Coupled Similarity

Checking whether two states are related by a (bi-)simulation preorder �X can be
seen as a game along the lines of coinductive characterizations [30]. One player,
the attacker, challenges that p �X q, while the other player, the defender, has
to name witnesses for the existential quantifications of the definition.

Based on the coinductive characterization from Lemma 3, we here define such
a game for the coupled simulation preorder and transform it into an algorithm,
which basically only amounts to a more clever way of computing the fixed point
of the previous section. We show how this additional layer of abstraction enables
optimizations.

252 B. Bisping and U. Nestmann

Fig. 5. Schematic coupled simulation game. Boxes stand for attacker nodes, circles for
defender nodes, arrows for moves. From the dashed boxes, the moves are analogous to
the ones of the solid box.

4.1 The Coupled Simulation Game

The coupled simulation game proceeds as follows: For p �CS q, the attacker
may question that simulation holds by selecting p′ and a ∈ Σ with p

a→ p′. The
defender then has to name a q′ with q

a=�q′, whereupon the attacker may go on to
challenge p′ �CS q′. If p

τ→p′, the attacker can directly skip to question p′ �CS q.
For coupled simulation, the attacker may moreover demand the defender to name
a coupling witness q′ with q ⇒ q′ whereafter q′ �CS p stands to question. If the
defender runs out of answers, they lose; if the game continues forever, they win.
This can be modeled by a simple game, whose schema is given in Fig. 5, as
follows.

Definition 6 (Games). A simple game G[p0] = (G,Gd,�, p0) consists of

– a (countable) set of game positions G,
• partitioned into a set of defender positions Gd ⊆ G
• and attacker positions Ga :=G \ Gd,

– a graph of game moves � ⊆ G × G, and
– an initial position p0 ∈ G.

Definition 7 (�CS game). For a transition system S = (S,Στ ,→), the cou-
pled simulation game GS

CS [p0] = (G,Gd,�, p0) consists of

– attacker nodes (p, q)a ∈ Ga with p, q ∈ S,
– simulation defender nodes (a, p, q)d ∈ Gd for situations where a simulation

challenge for a ∈ Σ has been formulated, and
– coupling defender nodes (Cpl, p, q)d ∈ Gd when coupling is challenged,

and five kinds of moves

– simulation challenges (p, q)a �(a, p′, q)d if p
a→ p′ with a �= τ ,

– simulation internal moves (p, q)a �(p′, q)a if p
τ→ p′,

Computing Coupled Similarity 253

– simulation answers (a, p′, q)d �(p′, q′)a if q
a=� q′,

– coupling challenges (p, q)a �(Cpl, p, q)d, and
– coupling answers (Cpl, p, q)d �(q′, p)a if q ⇒ q′.

Definition 8 (Plays and wins). We call the paths p0p1... ∈ G∞ with pi � pi+1

plays of G[p0]. The defender wins all infinite plays. If a finite play p0 . . . pn is
stuck, that is, if pn ��, then the stuck player loses: The defender wins if pn ∈ Ga,
and the attacker wins if pn ∈ Gd.

Definition 9 (Strategies and winning strategies). A defender strategy is
a (usually partial) mapping from initial play fragments to next moves f ⊆
{(p0...pn, p′) | pn ∈ Gd ∧ pn � p′}. A play p follows a strategy f iff, for each
move pi � pi+1 with pi ∈ Gd, pi+1 = f(p0...pi). If every such play is won by the
defender, f is a winning strategy for the defender. The player with a winning
strategy for G[p0] is said to win G[p0].

Definition 10 (Winning regions and determinacy). The winning region
Wσ of player σ ∈ {a, d} for a game G is the set of states p0 from which player
σ wins G[p0].

Let us now see that the defender’s winning region of GS
CS indeed corresponds

to �S
CS . To this end, we first show how to construct winning strategies for the

defender from a coupled simulation, and then establish the opposite direction.

Lemma 10. Let R be a coupled delay simulation and (p0, q0) ∈ R. Then the
defender wins GS

CS [(p0, q0)a] with the following positional strategy:

– If the current play fragment ends in a simulation defender node (a, p′, q)d,
move to some attacker node (p′, q′)a with (p′, q′) ∈ R and q

a=� q′;
– if the current play fragment ends in a coupling defender node (Cpl, p, q)d,

move to some attacker node (q′, p)a with (q′, p) ∈ R and q ⇒ q′.

Lemma 11. Let f be a winning strategy for the defender in GS
CS [(p0, q0)a]. Then

{(p, q) | some GS
CS [(p0, q0)a]-play fragment consistent with f ends in (p, q)a} is

a coupled delay simulation.

Theorem 3. The defender wins GS
CS [(p, q)a] precisely if p �CS q.

4.2 Deciding the Coupled Simulation Game

It is well-known that the winning regions of finite simple games can be computed
in linear time. Variants of the standard algorithm for this task can be found
in [12] and in our implementation [1]. Intuitively, the algorithm first assumes
that the defender wins everywhere and then sets off a chain reaction beginning
in defender deadlock nodes, which “turns” all the nodes won by the attacker.
The algorithm runs in linear time of the game moves because every node can
only turn once.

254 B. Bisping and U. Nestmann

1 def game compute cs(S):
2 GS

CS = (G, Ga, �) := obtain cs game(S)

3 win := compute winning region(GS
CS)

4 R := {(p, q) | (p, q)a ∈ Ga ∧ win[(p, q)a] = d}
5 return R
Algorithm 2: Game algorithm for the coupled simulation preorder �CS .

With such a winning region algorithm for simple games, referred to as
compute winning region in the following, it is only a matter of a few lines to deter-
mine the coupled simulation preorder for a system S as shown in game compute cs
in Algorithm 2. One starts by constructing the corresponding game GS

CS using
a function obtain cs game, we consider given by Definition 7. Then, one calls
compute winning region and collects the attacker nodes won by the defender for
the result.

Theorem 4. For a finite labeled transition systems S, game compute cs(S)
from Algorithm 2 returns �S

CS .

Proof. Theorem 3 states that the defender wins GS
CS [(p, q)a] exactly if p �S

CS q.
As compute winning region(GS

CS), according to [12], returns where the defender
wins, line 4 of Algorithm 2 precisely assigns R =�S

CS .

The complexity arguments from [12] yield linear complexity for deciding the
game by compute winning region.

Proposition 1. For a game G = (G,Ga,�), compute winning region runs in
O(|G| + |�|) time and space.

In order to tell the overall complexity of the resulting algorithm, we have to look
at the size of GS

CS depending on the size of S.

Lemma 12. Consider the coupled simulation game GS
CS = (G,Ga,�) for vary-

ing S = (S,Στ ,→). The growth of the game size |G| + |�| is in O(| ·=�| |S|).
Proof. Let us reexamine Definition 7. There are |S|2 attacker nodes. Collectively,
they can formulate O(| ·→| |S|) simulation challenges including internal moves and
|S|2 coupling challenges. There are O(| ·=�| |S|) simulation answers and O(|⇒| |S|)
coupling answers. Of these, O(| ·=�| |S|) dominates the others.

Lemma 13. game compute cs runs in O(| ·=�| |S|) time and space.

Proof. Proposition 1 and Lemma 12 already yield that line 3 is in O(| ·=�| |S|)
time and space. Definition 7 is completely straight-forward, so the complexity of
building GS

CS in line 2 equals its output size O(| ·=�| |S|), which coincides with the
complexity of computing ·=�. The filtering in line 4 is in O(|S|2) (upper bound
for attacker nodes) and thus does not influence the overall complexity.

Computing Coupled Similarity 255

4.3 Tackling the τ -closure

We have mentioned that there can be some complexity to computing the
τ -closure ⇒ = τ→∗

and the derived ·=�. In theory, both the weak delay tran-
sition relation ·=� and the conventional transition relation ·→ are bounded in size
by |Στ | |S|2. But for most transition systems, the weak step relations tend to be
much bigger in size. Sparse ·→-graphs can generate dense ·=�-graphs. The compu-
tation of the transitive closure also has significant time complexity. Algorithms
for transitive closures usually are cubic, even though the theoretical bound is a
little lower.

There has been a trend to skip the construction of the transitive closure
in the computation of weak forms of bisimulation [3,13,19,26]. With the game
approach, we can follow this trend. The transitivity of the game can emulate the
transitivity of ·=� (for details see [1, Sec. 4.5.4]). With this trick, the game size,
and thus time and space complexity, reduces to O(|Στ | | τ→| |S|+| ·→| |S|). Though
this is practically better than the bound from Lemma 13, both results amount
to cubic complexity O(|Σ| |S|3), which is in line with the reduction result from
Theorem 1 and the time complexity of existing similarity algorithms.

4.4 Optimizing the Game Algorithm

The game can be downsized tremendously once we take additional over- and
under-approximation information into account.

Definition 11. An over-approximation of �CS is a relation RO of that we know
that �CS ⊆ RO. Conversely, an under-approximation of �CS is a relation RU

where RU ⊆�CS .

Regarding the game, over-approximations tell us where the defender can win,
and under-approximations tell us where the attacker is doomed to lose. They can
be used to eliminate “boring” parts of the game. Given an over-approximation
RO, when unfolding the game, it only makes sense to add moves from defender
nodes to attacker nodes (p, q)a if (p, q) ∈ RO. There just is no need to allow the
defender moves we already know cannot be winning for them. Given an under-
approximation RU , we can ignore all the outgoing moves of (p, q)a if (p, q) ∈ RU .
Without moves, (p, q)a is sure to be won by the defender, which is in line with
the claim of the approximation.

Corollary 2. ⇒−1 is an under-approximation of �CS . (Cf. Lemma 4)

Lemma 14. {(p, q) | all actions weakly enabled in p are weakly enabled in q} is
an over-approximation of �CS .

The fact that coupled simulation is “almost bisimulation” on steps to stable
states in finite systems (Lemma 6) can be used for a comparably cheap and
precise over-approximation. The idea is to compute strong bisimilarity for the
system S⇒| = (S,Στ ,⇒|), where maximal weak steps, p

α⇒| p′, exist iff p
α̂⇒ p′

and p′ is stable, that is, p′ � τ→. Let ≡⇒| be the biggest symmetric relation where
p ≡⇒| q and p

α⇒| p′ implies there is q′ such that p′ ≡⇒| q′ and q
α⇒| q′.

256 B. Bisping and U. Nestmann

Lemma 15. R⇒| = {(p, q) | ∀p′. p α⇒| p′ −→ q
α⇒|≡⇒| p′} is an over-approxima-

tion of �CS on finite systems.

Computing ≡⇒| can be expected to be cheaper than computing weak bisimilarity

≡WB . After all, ·⇒| is just a subset of ·̂⇒. However, filtering S × S using subset
checks to create R⇒| might well be quartic, O(|S|4), or worse. Nevertheless,
one can argue that with a reasonable algorithm design and for many real-world
examples, α⇒|≡⇒| will be sufficiently bounded in branching degree, in order for
the over-approximation to do more good than harm.

For everyday system designs, R⇒| is a tight approximation of �CS . On the
philosopher system from Example 1, they even coincide. In some situations, R⇒|
degenerates to the shared enabledness relation (Lemma 14), which is to say it
becomes comparably useless. One example for this are the systems created by
the reduction from weak simulation to coupled simulation in Theorem1 after
τ -cycle removal. There, all ⇒|-steps are bound to end in the same one τ -sink
state ⊥.

5 A Scalable Implementation

The experimental results by Ranzato and Tapparo [27] suggest that their simula-
tion algorithm and the algorithm by Henzinger, Henzinger, and Kopke [15] only
work on comparably small systems. The necessary data structures quickly con-
sume gigabytes of RAM. So, the bothering question is not so much whether some
highly optimized C++-implementation can do the job in milliseconds for small
problems, but how to implement the algorithm such that large-scale systems are
feasible at all.

To give first answers, we implemented a scalable and distributable prototype
of the coupled simulation game algorithm using the stream processing framework
Apache Flink [4] and its Gelly graph API, which enable computations on large
data sets built around a universal data-flow engine. Our implementation can be
found on https://coupledsim.bbisping.de/code/flink/.

5.1 Prototype Implementation

We base our implementation on the game algorithm and optimizations from
Sect. 4. The implementation is a vertical prototype in the sense that every feature
to get from a transition system to its coupled simulation preorder is present, but
there is no big variety of options in the process. The phases are:

Import Reads a CSV representation of the transition system S.
Minimize Computes an equivalence relation under-approximating ≡CS on the

transition system and builds a quotient system SM . This stage should at least
compress τ -cycles if there are any. The default minimization uses a parallelized
signature refinement algorithm [20,33] to compute delay bisimilarity (≡S

DB).

https://coupledsim.bbisping.de/code/flink/

Computing Coupled Similarity 257

Table 1. Sample systems, sizes, and benchmark results.

system S
·→ ·

=� S/≡DB
� �σ. S/≡CS

�S/≡CS
CS time/s

phil 10 14 86 6 234 201 5 11 5.1

ltbts 88 98 2,599 27 4,100 399 25 38 5.5

vasy 0 1 289 1,224 52,641 9 543 67 9 9 5.7

vasy 1 4 1,183 4,464 637,585 4 73 30 4 4 5.3

vasy 5 9 5,486 9,676 1,335,325 112 63,534 808 112 112 6.0

cwi 1 2 1,952 2,387 593,734 67 29,049 1,559 67 137 6.9

cwi 3 14 3,996 14,552 15,964,021 2 15 10 2 2 7.8

vasy 8 24 8,879 24,411 2,615,500 170 225,555 3,199 169 232 6.7

vasy 8 38 8,921 38,424 46,232,423 193 297,643 2,163 193 193 6.7

vasy 10 56 10,849 56,156 842,087 2,112 o.o.m. 72,617 2,112 3,932 13.8

vasy 25 25 25,217 25,216 50,433 25,217 o.o.m. 126,083 25,217 25,217 117.4

Compute over-approximation Determines an equivalence relation over-ap-
proximating ≡SM

CS . The result is a mapping σ from states to signatures (sets
of colors) such that p �SM

CS q implies σ(p) ⊆ σ(q). The prototype uses the
maximal weak step equivalence ≡⇒| from Subsect. 4.4.

Build game graph Constructs the τ -closure-free coupled simulation game GSM

CS

for SM with attacker states restricted according to the over-approximation
signatures σ.

Compute winning regions Decides for GSM

CS where the attacker has a winning
strategy following the scatter-gather scheme [16]. If a game node is discovered
to be won by the attacker, it scatters the information to its predecessors.
Every game node gathers information on its winning successors. Defender
nodes count down their degrees of freedom starting at their game move out-
degrees.

Output Finally, the results can be output or checked for soundness. The winning
regions directly imply �SM

CS . The output can be de-minimized to refer to the
original system S.

5.2 Evaluation

Experimental evaluation shows that the approach can cope with the smaller exam-
ples of the “Very Large Transition Systems (VLTS) Benchmark Suite” [6] (vasy *
and cwi * up to 50,000 transitions). On small examples, we also tested that the
output matches the return values of the verified fixed-point �CS -algorithm from
Sect. 3. These samples include, among others, the philosopher system phil contain-
ing Pg and Po from Example 1 and ltbts, which consists of the finitary separating
examples from the linear-time branching-time spectrum [9, p. 73].

Table 1 summarizes the results for some of our test systems with pre-
minimization by delay bisimilarity and over-approximation by maximal weak step
equivalence. The first two value columns give the system sizes in number of states

258 B. Bisping and U. Nestmann

S and transitions ·→. The next two columns present derived properties, namely an
upper estimate of the size of the (weak) delay step relation ·=�, and the number
of partitions with respect to delay bisimulation S/≡DB

. The next columns list the
sizes of the game graphs without and with maximal weak step over-approximation
(� and �σ, some tests without the over-approximation trick ran out of mem-
ory, “o.o.m.”). The following columns enumerate the sizes of the resulting coupled
simulation preorders represented by the partition relation pair (S/≡CS

,�S/≡CS

CS),
where S/≡CS

is the partitioning of S with respect to coupled similarity ≡CS , and

�S/≡CS

CS the coupled simulation preorder projected to this quotient. The last col-
umn reports the running time of the programs on an Intel i7-8550U CPU with four
threads and 2 GB Java Virtual Machine heap space.

The systems in Table 1 are a superset of the VLTS systems for which Ranzato
and Tapparo [27] report their algorithm SA to terminate. Regarding complex-
ity, SA is the best simulation algorithm known. In the [27]-experiments, the
C++ implementation ran out of 2 GB RAM for vasy 10 56 and vasy 25 25 but
finished much faster than our setup for most smaller examples. Their time advan-
tage on small systems comes as no surprise as the start-up of the whole Apache
Flink pipeline induces heavy overhead costs of about 5 s even for tiny examples
like phil. However, on bigger examples such as vasy 18 73 their and our imple-
mentation both fail. This is in stark contrast to bi -simulation implementations,
which usually cope with much larger systems single-handedly [3,19].

Interestingly, for all tested VLTS systems, the weak bisimilarity quotient sys-
tem S/≡WB

equals S/≡CS
(and, with the exception of vasy 8 24, S/≡DB

). The pre-

order �S/≡CS

CS also matches the identity in 6 of 9 examples. This observation about
the effective closeness of coupled similarity and weak bisimilarity is two-fold. On
the one hand, it brings into question how meaningful coupled similarity is for min-
imization. After all, it takes a lot of space and time to come up with the output
that the cheaper delay bisimilarity already minimized everything that could be
minimized. On the other hand, the observation suggests that the considered VLTS
samples are based around models that do not need—or maybe even do avoid—the
expressive power of weak bisimilarity. This is further evidence for the case from
the introduction that coupled similarity has a more sensible level of precision than
weak bisimilarity.

6 Conclusion

The core of this paper has been to present a game-based algorithm to compute
coupled similarity in cubic time and space. To this end, we have formalized cou-
pled similarity in Isabelle/HOL and merged two previous approaches to defining
coupled similarity, namely using single relations with weak symmetry [10] and
the relation-pair-based coupled delay simulation from [28], which followed the
older tradition of two weak simulations [24,29]. Our characterization seems to be
the most convenient. We used the entailed coinductive characterization to devise
a game characterization and an algorithm. Although we could show that deciding

Computing Coupled Similarity 259

coupled similarity is as hard as deciding weak similarity, our Apache Flink imple-
mentation is able to exploit the closeness between coupled similarity and weak
bisimilarity to at least handle slightly bigger systems than comparable similar-
ity algorithms. Through the application to the VLTS suite, we have established
that coupled similarity and weak bisimilarity match for the considered systems.
This points back to a line of thought [11] that, for many applications, branch-
ing, delay and weak bisimilarity will coincide with coupled similarity. Where
they do not, usually coupled similarity or a coarser notion of equivalence is
called for. To gain deeper insights in that direction, real-world case studies—
and maybe an embedding into existing tool landscapes like FDR [8], CADP [7],
or LTSmin [17]—would be necessary.

References

1. Bisping, B.: Computing coupled similarity. Master’s thesis, Technis-
che Universität Berlin (2018). https://coupledsim.bbisping.de/bisping
computingCoupledSimilarity thesis.pdf

2. Bisping, B.: Isabelle/HOL proof and Apache Flink program for TACAS 2019
paper: Computing Coupled Similarity (artifact). Figshare (2019). https://doi.org/
10.6084/m9.figshare.7831382.v1

3. Boulgakov, A., Gibson-Robinson, T., Roscoe, A.W.: Computing maximal weak and
other bisimulations. Formal Aspects Comput. 28(3), 381–407 (2016). https://doi.
org/10.1007/s00165-016-0366-2

4. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache Flink: stream and batch processing in a single engine. In: Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 36, no. 4
(2015)

5. Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement. In:
Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp.
127–147. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44880-2 10

6. Garavel, H.: The VLTS benchmark suite (2017). https://doi.org/10.18709/
perscido.2017.11.ds100. Jointly created by CWI/SEN2 and INRIA/VASY as a
CADP resource

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

8. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

9. van Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-57208-2 6

10. van Glabbeek, R.J.: A branching time model of CSP. In: Gibson-Robinson, T.,
Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol.
10160, pp. 272–293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51046-0 14

https://coupledsim.bbisping.de/bisping_computingCoupledSimilarity_thesis.pdf
https://coupledsim.bbisping.de/bisping_computingCoupledSimilarity_thesis.pdf
https://doi.org/10.6084/m9.figshare.7831382.v1
https://doi.org/10.6084/m9.figshare.7831382.v1
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/s00165-016-0366-2
https://doi.org/10.1007/3-540-44880-2_10
https://doi.org/10.18709/perscido.2017.11.ds100
https://doi.org/10.18709/perscido.2017.11.ds100
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/978-3-319-51046-0_14
https://doi.org/10.1007/978-3-319-51046-0_14

260 B. Bisping and U. Nestmann

11. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM (JACM) 43(3), 555–600 (1996). https://doi.org/10.1145/
233551.233556

12. Grädel, E.: Finite model theory and descriptive complexity. In: Grädel, E., et al.
(eds.) Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science an EATCS Series, pp. 125–130. Springer, Heidelberg (2007). https://doi.
org/10.1007/3-540-68804-8 3

13. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.J.: An O(m log n) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Com-
put. Logic (TOCL) 18(2), 13:1–13:34 (2017). https://doi.org/10.1145/3060140

14. Hatzel, M., Wagner, C., Peters, K., Nestmann, U.: Encoding CSP into CCS. In:
Proceedings of the Combined 22th International Workshop on Expressiveness in
Concurrency and 12th Workshop on Structural Operational Semantics, and 12th
Workshop on Structural Operational Semantics, EXPRESS/SOS, pp. 61–75 (2015).
https://doi.org/10.4204/EPTCS.190.5

15. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, pp. 453–462 (1995). https://doi.org/10.1109/SFCS.
1995.492576

16. Kalavri, V., Vlassov, V., Haridi, S.: High-level programming abstractions for dis-
tributed graph processing. IEEE Trans. Knowl. Data Eng. 30(2), 305–324 (2018).
https://doi.org/10.1109/TKDE.2017.2762294

17. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

18. Kučera, A., Mayr, R.: Why is simulation harder than bisimulation? In: Brim, L.,
Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp.
594–609. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5 39

19. Li, W.: Algorithms for computing weak bisimulation equivalence. In: Third IEEE
International Symposium on Theoretical Aspects of Software Engineering, 2009.
TASE 2009, pp. 241–248. IEEE (2009). https://doi.org/10.1109/TASE.2009.47

20. Luo, Y., de Lange, Y., Fletcher, G.H.L., De Bra, P., Hidders, J., Wu, Y.: Bisimula-
tion reduction of big graphs on MapReduce. In: Gottlob, G., Grasso, G., Olteanu,
D., Schallhart, C. (eds.) BNCOD 2013. LNCS, vol. 7968, pp. 189–203. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39467-6 18

21. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

22. Nestmann, U., Pierce, B.C.: Decoding choice encodings. Inf. Comput. 163(1), 1–59
(2000). https://doi.org/10.1006/inco.2000.2868

23. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer,
Heidelberg (1992). https://doi.org/10.1007/BFb0084813

24. Parrow, J., Sjödin, P.: The complete axiomatization of Cs-congruence. In: Enjal-
bert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp.
555–568. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57785-8 171

25. Peters, K., van Glabbeek, R.J.: Analysing and comparing encodability criteria.
In: Proceedings of the Combined 22th International Workshop on Expressive-
ness in Concurrency and 12th Workshop on Structural Operational Semantics,
EXPRESS/SOS, pp. 46–60 (2015). https://doi.org/10.4204/EPTCS.190.4

https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/3-540-68804-8_3
https://doi.org/10.1007/3-540-68804-8_3
https://doi.org/10.1145/3060140
https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/TKDE.2017.2762294
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/3-540-45694-5_39
https://doi.org/10.1109/TASE.2009.47
https://doi.org/10.1007/978-3-642-39467-6_18
https://doi.org/10.1006/inco.2000.2868
https://doi.org/10.1007/BFb0084813
https://doi.org/10.1007/3-540-57785-8_171
https://doi.org/10.4204/EPTCS.190.4

Computing Coupled Similarity 261

26. Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract
interpretation. Inf. Comput. 206(5), 620–651 (2008). https://doi.org/10.1016/j.ic.
2008.01.001. Special Issue: The 17th International Conference on Concurrency The-
ory (CONCUR 2006)

27. Ranzato, F., Tapparo, F.: An efficient simulation algorithm based on abstract inter-
pretation. Inf. Comput. 208(1), 1–22 (2010). https://doi.org/10.1016/j.ic.2009.06.
002

28. Rensink, A.: Action contraction. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 290–305. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44618-4 22

29. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2012). https://doi.org/10.1017/CBO9780511777110

30. Stirling, C.: Modal and Temporal Properties of Processes. Springer, New York
(2001). https://doi.org/10.1007/978-1-4757-3550-5

31. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Inf. Process. Lett.
80(1), 51–58 (2001). https://doi.org/10.1016/S0020-0190(01)00217-4

32. Wenzel, M.: The Isabelle/Isar Reference Manual (2018). https://isabelle.in.tum.
de/dist/Isabelle2018/doc/isar-ref.pdf

33. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref –
a symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006.
LNCS, vol. 4218, pp. 477–492. Springer, Heidelberg (2006). https://doi.org/10.
1007/11901914 35

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.ic.2008.01.001
https://doi.org/10.1016/j.ic.2008.01.001
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1007/3-540-44618-4_22
https://doi.org/10.1007/3-540-44618-4_22
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.1007/978-1-4757-3550-5
https://doi.org/10.1016/S0020-0190(01)00217-4
https://isabelle.in.tum.de/dist/Isabelle2018/doc/isar-ref.pdf
https://isabelle.in.tum.de/dist/Isabelle2018/doc/isar-ref.pdf
https://doi.org/10.1007/11901914_35
https://doi.org/10.1007/11901914_35
http://creativecommons.org/licenses/by/4.0/

	Computing Coupled Similarity
	1 Introduction
	2 Coupled Similarity
	2.1 Transition Systems with Silent Steps
	2.2 Defining Coupled Similarity
	2.3 Order Properties and Coinduction
	2.4 Reduction of Weak Simulation to Coupled Simulation

	3 Fixed-Point Algorithm for Coupled Similarity
	3.1 The Algorithm
	3.2 Correctness and Complexity

	4 Game Algorithm for Coupled Similarity
	4.1 The Coupled Simulation Game
	4.2 Deciding the Coupled Simulation Game
	4.3 Tackling the -closure
	4.4 Optimizing the Game Algorithm

	5 A Scalable Implementation
	5.1 Prototype Implementation
	5.2 Evaluation

	6 Conclusion
	References

