
Chapter 6
Higher-Order Ambisonic Microphones
and the Wave Equation (Linear, Lossless)

…a turning point has been the design of HOA microphones,
opening an exciting experimental field in terms of real 3D sound
field recording …

Jérôme Daniel [1] at Ambisonics Symposium 2009.

Abstract Unlikepressure-gradient transducers, single-transducermicrophoneswith
higher-order directivity apparently turned out to be difficult to manufacture at rea-
sonable audio quality. Therefore nowadays, higher-order Ambisonic recording with
compact devices is based on compact spherical arrays of pressure transducers. To
prepare for higher-order Ambisonic recording based on arrays, we first need a model
of the sound pressure that the individual transducers of such an array would receive
in an arbitrary surrounding sound field. The lossless, linear wave equation is the
most suitable model to describe how sound propagates when the sound field is com-
posedof surrounding sound sources. Fundamentally, thewave equationmodels sound
propagation by how small packages of air react (i) when being expanded or com-
pressed by a change of the internal pressure, and to (ii) directional differences in the
outside pressure by starting to move. Based there upon, the inhomogeneous solu-
tions of the wave equation describe how an entire free sound field builds up if being
excited by an omnidirectional sound source, as a simplified model of an arbitrary
physical source, such as a loudspeaker, human talker, or musical instrument. After
adressing these basics, the chapter shows a way to get Ambisonic signals of high
spatial and timbral quality from the array signals, considering the necessary diffuse-
field equalization, side-lobe suppression, and trade off between spatial resolution
and low-frequeny noise boost. The chapter concludes with application examples.

Gary Elko and Jens Meyer are the well-known inventors of the first commercially
available compact spherical microphone array that is able to record higher-order
Ambisonics [2], the Eigenmike. There are several inspiring scientific works with
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valuable contributions that can be recommended for further reading [3–12], above
all Boaz Rafaely’s excellent introductory book [13].

This mathematical theory might appear extensive, but it cannot be avoided when
aiming at an in-depth understanding of higher-order Ambisonic microphones. The
theory enables processing of the microphone signals received such that the surround-
ing sound field excitation is retrieved in terms of an Ambisonic signal. Some readers
may want to skip the physical introduction and resume in Sect. 6.5 on spherical
scattering or Sect. 6.6 on the processing of the array signals.

6.1 Equation of Compression

Wave propagation involves reversible short-term temperature fluctuations becoming
effective when air is being compressed by sound, causing the specific stiffness of
air in sound propagation. The Appendix A.6.1 shows how to derive this adiabatic
compression relation based on the first law of thermodynamics and the ideal gas
law. It relates the relative volume change V

V0
to the pressure change p = −K V

V0

by the bulk modulus of air. After expressing the bulk modulus by more common
constants1 K = ρ c2 and differentially formulating the volume change over time
using the change of the sound particle velocity in space, e.g. in one dimension ṗ =
−ρ c2 ∂vx

∂x , cf. Appendix A.6.1, we get the three-dimensional compression equation:

∂p

∂t
= −ρ c2 ∇Tv. (6.1)

Here the inner product of the Del symbol ∇T = ( ∂
∂x , ∂

∂y , ∂
∂z ) with v yields what is

called divergence div(v) = ∇Tv = ∂vx
∂x + ∂vy

∂y + ∂vz
∂z . The equation means: Indepen-

dently of whether the outer boundaries of a small package of air are traveling at a
common velocity: If there are directions into which their velocity is spatially increas-
ing, the resulting gradual volume expansion over time causes a proportional decrease
of interior pressure over time.

6.2 Equation of Motion

The equation of motion is relatively simple to understand from the Newtonian equa-
tion of motion, e.g. for the x direction, Fx = m ∂vx

∂t equates the external force to
mass m times acceleration, i.e. increase in velocity ∂v

∂t . For a small package of
air with constant volume V0 = �x�y�z, the mass is obtained by the air den-
sity m = ρ V0, and the force equals the decrease of in pressure over the three
space directions, times the corresponding partial surface, e.g. for the x direction

1Typical constants are: density ρ = 1.2 kg/m3, speed of sound c = 343 m/s.
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Fx = −[p(x + �x) − p(x)]�y�z. For the x direction, this yields after expanding
by �x

�x

−�p

�x
V0 = ρ V0

∂vx
∂t

.

Dividing by −V0 and letting V0 → 0, we obtain the typical shape of the equation of
motion for all three space directions

∇ p = −ρ
∂v
∂t

. (6.2)

The equation of motion means: Independently of the common exterior pressure load
on all the outer boundaries of a small air package, an outer pressure decrease
into any direction implies a corresponding pushing force on the package causing a
proportional acceleration into this direction.

6.3 Wave Equation

We can combine the compression equation ∂p
∂t = −ρ c2 ∇Tv with the equation of

motion∇ p = −ρ ∂v
∂t by deriving the first one with regard to time ∂2 p

∂t2 = −ρ c2 ∇T ∂v
∂t

and the second one with the gradient ∇T yielding the Laplacian ∇T∇ = �, hence
�p = −ρ∇T ∂v

∂t . Division of the first result by c2 and equating both terms yields the

lossless wave equation �p = 1
c2

∂2

∂t2 p that is typically written as

(
� − 1

c2
∂2

∂t2

)
p = 0. (6.3)

Obviously, the wave equation relates the curvature in space (expressed by the Lapla-
cian) to curvature in time (expressed by the second-order derivative).

If p is a pure sinusoidal oscillation sin(ω t + φ0), the second derivative in time
corresponds to a factor −ω2, and by substitution with the wave-number k = ω

c , we
can write the frequency-domain wave equation as

(� + k2) p = 0, Helmholtz equation. (6.4)

6.3.1 Elementary Inhomogeneous Solution: Green’s
Function (Free Field)

The Green’s function is an elementary prototype for solutions to inhomogeneous
problems (� + k2)p = −q, which is defined as

(� + k2
)
G = −δ.
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A general excitation q of the equation can be represented by its convolution with the
Dirac delta distribution

∫
q(s) δ(r − s) dV (s) = q(r). Consequently, as the wave

equation is linear, the general solution must therefore also equal the convolution of
theGreen’s functionwith the excitation function p(r) = ∫

q(s) G(r − s) dV (s) over
space; if formulated in the time domain: also over time. The integral superimposes
acoustical responses of any point in time and space of the source phenomenon,
weighted by the corresponding source strength in space and time.

TheGreen’s function in three dimensions is derived inAppendixA.6.3,Eq. (A.91),

G = e−ik r

4πr
, (6.5)

with the wave number k = ω
c and distance between source and receiver

r = √‖r − rs‖2.
Acoustic source phenomena are characterized by the behavior of the Green’s

function: far away, the amplitude decays with 1
r and the phase −kr = −ω r

c corre-
sponds to the radially increasing delay r

c . Both is expressed in Sommerfeld’s radiation
condition limr→∞ r

(
∂
∂r p + ik p

) = 0.

Plane waves. The radius coordinate of the Green’s function is the distance between
two Cartesian position vectors rs and r , the source and receiver location. Letting one
of them become large is denoted by re-expressing it in terms of radius and direction
vector rs = rsθ s. This permits far-field approximation

rs = ‖rs − r‖ =
√

(rsθ s − r)T(rsθ s − r) =
√

r2s − 2rsθ
T
s r + r2 (6.6)

lim
rs→∞ rs = lim

rs→∞ rs

√
1 − 2 θT

s r
rs

+
�
�r2

r2s
= rs − θT

s r. (with lim
x→0

√
1 − 2x = 1 − x).

For the phase approximation, for instance at a wave-length of 30cm, we notice even
for a relatively small distance difference, e.g. between 15m and 15m + 15cm, we
could change the sign of the wave. To approximate the phase of the Green’s function,
we must therefore at least use rs − θT

s r as approximation. By contrast, this level of
precision is irrelevant for the magnitude approximation, e.g., it would be negligible
if we used 1

15m instead of the magnitude 1
15m+15 cm .

At a large distance rs assumed to be constant, the Green’s function is proportional
to a plane wave from the source direction θ s

lim
rs→∞ G = e−ik rs

4π rs
eik θT

s r . (6.7)

The plane-wave part is of unit magnitude |p| = 1

p = eik θT
s r (6.8)
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and its phase evaluates the projection of the position vector onto the plane-wave
arrival direction θ s. Towards the direction θ s, the phase grows positive, i.e. the signal
arrives earlier. Towards the plane-wave propagation direction −θ s the phase grows
negatively, implying an increasing time delay, which is constant on any plane per-
pendicular to θ s.

Plane waves are an invaluable tool to locally approximate sound fields from
sources that are sufficiently far away, within a small region.2

6.4 Basis Solutions in Spherical Coordinates

Figure 4.11 shows spherical coordinates [14, 15] using radius r , azimuth ϕ, and
zenith ϑ . For simplification, zenith is replaced by ζ = cosϑ = z

r , here. We may
solve the Helmholtz equation (� + k2)p = 0 in spherical coordinates by the radial
and directional parts of the Laplacian � = �r + �ϕ,ζ, as identified in Appendix A.3

�r = ∂2

∂r2
+ 2

r

∂

∂r
, �ϕ,ζ = 1 − ζ 2

r2
∂2

∂ζ 2
− 2

r2
ζ

∂

∂ζ
+ 1

r2(1 − ζ 2)

∂2

∂ϕ2
. (6.9)

We already know the spherical harmonics as directional eigensolutions fromSect. 4.7

�ϕ,ζY
m
n = −n(n + 1)

r2
Y m

n (6.10)

and assume them to be a factor of the solution pm
n = R Y m

n determining the value
of �ϕ,ζ in (�r + k2 + �ϕ,ζ)pm

n = 0. We find a separated radial differential equation
after insertion, multiplication by r2

Y m
n
, and re-expressing the differentials ∂

∂r = k ∂
∂kr

and ∂2

∂r2 = k2 ∂2

∂(kr)2

[
(kr)2

∂2

∂(kr)2
+ 2(kr)

∂

∂(kr)
+ (kr)2 − n(n + 1)

]
R = 0. (6.11)

AppendixA.6.4 shows how to get physical solutions for R of this, so-called, spherical
Bessel differential equation: spherical Hankel functions of the second kind h(2)

n (kr)

able to represent radiation (radially outgoing into every direction), consistently with
Green’s function G, diverging with an (n + 1)-fold pole at kr = 0, a physical behav-
ior that would also be observed after spatially differentiatingG, see Fig. 6.1; spherical
Bessel functions jn(kr) = ℜ{h(2)

n (kr)} are real-valued, converge everywhere, exhibit

2This is because, strictly speaking, an entire plane-wave sound field is unphysical and of infinite
energy: either the exhaustive in-phase vibration of an infinite plane is required, or an infinite-
amplitude point-source infinitely far away is required with infinite anticipation ts → +∞ (non-
causal).



136 6 Higher-Order Ambisonic Microphones and the Wave Equation (Linear, Lossless)

0 5 10 15

0

0.5

1

0 5 10 15

0

0.5

1

0.03 0.1 0.32 1 3.2 10 32

−20

0

20

40

ℜ{h(2)
0 (kr)}

ℜ{h(2)
1 (kr)}

ℜ{h(2)
2 (kr)}

ℜ{h(2)
3 (kr)}

ℑ{h(2)
0 (kr)}

ℑ{h(2)
1 (kr)}

ℑ{h(2)
2 (kr)}

ℑ{h(2)
3 (kr)}

|h(2)
0 (kr)|dB

|h(2)
1 (kr)|dB

|h(2)
2 (kr)|dB

|h(2)
3 (kr)|dB

Fig. 6.1 Spherical Bessel functions jn(kr) = ℜ{h(2)
n (kr)} (top left), imaginary part of spherical

Hankel functions ℑ{h(2)
n (kr)} (top right), and magnitude/dB of |h(2)

n (kr)| (bottom), over kr

an n-fold zero at kr = 0, and can’t represent radiation. Implementations typically
rely on the accurate standard libraries implementing cylindrical Bessel and Hankel
functions:

jn(kr) =
√

π

2

1

kr
Jn+ 1

2
(kr), h(2)

n (kr) =
√

π

2

1

kr
H (2)

n+ 1
2
(kr). (6.12)

Wave spectra and spherical basis solutions. Any sound field evaluated at a radius r
where the air is source-free and homogeneous in any direction can be represented by
spherical basis functions for enclosed jn(kr)Y m

n (θ) and radiating fields hn(kr)Y m
n (θ)

p =
∞∑

n=0

n∑
m=−n

[
bnm jn (kr) + cnmhn (kr)

]
Y m

n (θ) . (6.13)

Here, bnm are the coefficients for incoming waves that pass through and emanate
from radii larger than r and cnm are the coefficients of outgoing waves radiating
from sources at radii smaller than r ; the coefficients are called wave spectra of the
incoming and outgoing waves, cf. [16].

Ambisonic plane-wave spectrum, plane wave. Plane waves only use the coeffi-
cients bnm , while cnm = 0 in Eq. (6.13). The sum of incoming plane waves from
all directions, whose amplitudes are given by the spherical harmonics coefficients
χnm as a set of Ambisonic signals are described by the incoming wave spectrum, see
Appendix A.6.5, Eq. (A.119)

bnm = 4π in χnm . (6.14)

Figure6.2 shows a single plane wave incoming from the direction θ s represented by

bnm = 4π in Y m
n (θ s) (6.15)
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Fig. 6.2 Plane wave from y axis ϕ = ϑ = π
2 in horizontal cross section; time steps correspond

to 0◦, 60◦, 120◦, and 180◦ phase shifts φ in the plot ℜ{p eiφ} showing p from Eq. (6.13) with
cnm = 0 and bnm of Eq. (6.15) with bnm = 4π inY m

n ( π
2 , π

2 ); long wave (top), short wave (bottom);
simulation uses N = 25 and area shows |kx |, |ky| < 2π and 8π

at four different time steps corresponding to 0◦, 60◦, 120◦ and 180◦ time shifts for
the two wave lengths shown.

6.5 Scattering by Rigid Higher-Order Microphone Surface

Higher-order Ambisonic microphone arrays are typically mounted on a rigid sphere
of some radius r = a, such as the Eigenmike EM32, see Fig. 6.3. The physical bound-
ary of the rigid spherical surface is expressed as a vanishing radial component of
the sound particle velocity. The radial sound particle velocity is obtained via the

Fig. 6.3 32-channel
higher-order Ambisonic mic.
Eigenmike EM32
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Fig. 6.4 Plane waves scattered by rigid sphere ka = π (top) or ka = 4π (bottom); time steps
correspond to 0◦, 60◦, 120◦, and 180◦ phase shifts φ in the plot ℜ{p eiφ} showing p from Eq. (6.13)
with bnm and cnm from Eq. (6.15) with bnm = 4π inY m

n ( π
2 , π

2 ) and Eq. (6.16); simulation uses
N = 25

equation of motion Eq. (6.2) by deriving Eq. (6.13). This requires to evaluate dif-
ferentiated spherical radial solutions j ′

n(x) as well as h′(2)
n (x), which is implemented

by f ′
n(x) = n

x fn(x) − fn+1(x) for either of the functions, cf. e.g. [16]. A sound-hard
boundary condition at the radius a requires

vr
∣∣
r=a = i

ρ c

∞∑
n=0

n∑
m=−n

[
bnm j ′

n(kr) + cnm h′(2)
n (kr)

]
r=aY

m
n (θ) = 0,

which is fulfilled by a vanishing term in square brackets. The rigid boundary responds
to incoming surround-sound by velocity-canceling outgoing waves h′(2)

n (ka) cnm =
− j ′

n(ka) bnm . The coefficients ψnm yield the sound pressure in Fig. 6.4,

p =
∞∑

n=0

n∑
m=−n

ψnm Y m
n (θ), with ψnm =

[
jn(kr) − h(2)

n (kr)
j ′
n(ka)

h′(2)
n (ka)

]
r=a

bnm .

(6.16)

The two terms of the bracket are typically further simplified by a common
denominator and recognizing the Wronskian Eq. (A.97) in the numerator
jn(x)h′

n(x)− j ′
n(x)hn(x)

h′
n(x)

= i
x2h′

n(x)

ψnm |r=a = i

(ka)2 h′(2)
n (ka)

bnm . (6.17)
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Fig. 6.5 Attenuation/dB of Ambisonic signals of different orders for varying values of ka

Relation of recorded sound pressure to Ambisonic signal. The scattering equa-
tion relates the recorded sound pressure expanded in spherical harmonics to the
Ambisonic signal of surround sound scene, see frequency responses in Fig. 6.5,

ψnm |r=a = 4π in+1

(ka)2 h′(2)
n (ka)

χnm . (6.18)

It is formally convenient that as soon as the sound pressure is given in terms
of its spherical harmonic coefficient signals ψnm , the Ambisonic signals χnm of a
concentric playback system are obviously just an inversely filtered version thereof,
with no need for further unmixing/matrixing.

Recognizable from Fig. 6.6 and following our intuition, waves of lengths larger
than the diameter 2a of the sphere will only weakly map to complicated high-order
patterns. It is therefore easily understood that the transfer function in+1[(ka)2 h′(2)

n
(ka)]−1 attenuates the reception of high-order Ambisonic signals at low frequencies,
see Fig. 6.5.

6.6 Higher-Order Microphone Array Encoding

The block diagram of Ambisonic encoding of higher-order microphone array signals
is shown in Fig. 6.7. The first processing step is about decomposing the pressure
samples p(t) from the microphone array into its spherical harmonics coefficients
ψN(t): Towhich amount do the samples contain omnidirectional, figure-of-eight, and
other spherical harmonic patterns, up to which the microphone arrangement allows
decomposition. The frequency-independent matrix (YT

N)† does the conversion. It is
the left-inverse to the spherical harmonics sampled at the microphone positions, as
shown in the upcoming section.

The second step then sharpens the sound pressure image to anAmbisonic signal by
filtering the spherical harmonic coefficient signals. The basic relation between sound
pressure coefficients and Ambisonic signals is given in Eq. (6.18) and describes a
filter for every coefficient signal, differing only in filter characteristics for different
spherical harmonic orders. Robustness to noise, microphone matching and position-
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(a) 1
32 -wave-length diameter,i.e. ka = π

32 (b) 1
2 -wave-length diameter,i.e. ka = π

2

(c) 1
16 -wave-length diameter,i.e. ka = π

16 (d) 1-wave-length diameter,i.e. ka = π

(e) 1
8 -wave-length diameter,i.e. ka = π

8 (f) 2-wave-length diameter,i.e. ka = 2π

(g) 1
4 -wave-lengths diameter,i.e. ka = π

4 (h) 4-wave-lengths diameter,i.e. ka = 4π

Fig. 6.6 Plane-wave sound pressure image ℜ{p e−ika} on rigid sphere with varying ka using ψnm
from Eq. (6.17) expanded over the spherical harmonics p = ∑

ψnmY m
n and χnm = Y m

n (0, 0) for
a plane wave from z. With the wave length λ = c

f , the value ka is related to a diameter 2a of
ka
π

= 2π f a
π c = 2a

λ
in wave lengths to express frequency dependency; simulation uses N = 50; for

a = 4.2 cm, ka values correspond to f = 125, 250, 500, 1000, 2000, 4000, 8000, 16000 Hz
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Fig. 6.7 Higher-order
Ambisonic microphone
encoding: sound pressure
samples p(t) are
spherical-harmonics
decomposed by the matrix
(YT

N)†, and the resulting
coefficient signals ψN(t) are
converted to Ambisonic
signals χN(t) by the
sharpening filters ρn(ω)

ing is the key here, and only achieved by the careful design of these filters, as shown
in a further sections below. The design considers a gradually increasing sharpening
over frequency, for which it moreover employs a filter bank with separate, max-rE
weighted and E normalized bands, in order to provide (i) limitation of noise and
errors, (ii) a frequency response perceived as flat, and (iii) optimal suppression of
the sidelobes.

6.7 Discrete Sound Pressure Samples in Spherical
Harmonics

To determine the Ambisonics signals χnm , we obviously need to find ψnm based
on all sound pressure samples p(θi ) recorded by the microphones distributed on
the rigid-sphere array. To accomplish this, we set up a system of model equations
equating the pressure samples to the unknown coefficients ψnm expanded over the
spherical harmonics Y m

n (θi ) sampled at every microphone position. A vector and
matrix notation p = [p(θi )]i and YT

N = [ y(θi )
T]i,nm is helpful

⎡
⎢⎣

p(θ1)
...

p(θM)

⎤
⎥⎦ =

⎡
⎢⎣

Y 0
0 (θ1) . . . YN

N (θ1)
...

...
...

Y 0
0 (θM) . . . YN

N (θM)

⎤
⎥⎦

⎡
⎢⎣

ψ00
...

ψNN

⎤
⎥⎦

pN = YT
N ψN. (6.19)

Left inverse (MMSE). The equation can be (pseudo-)inverted if the matrix YN is
well conditioned. Typically more microphones are used than coefficients searched
M ≥ (N + 1)2. Inversion is a matter of mean-square error minimization: As the M
dimensions may contain more degrees of freedom than (N + 1)2, the coefficient
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vector ψN giving the closest model pN to the measurement p is searched,

min
ψN

‖e‖2, with e = pN − p = YT
N ψN − p. (6.20)

Theminimum-mean-square-error (MMSE) solution is, seeAppendixA.4,Eq. (A.65),

ψN = (YNYT
N)−1YN p = (YT

N)† p. (6.21)

The resulting left inverse (YNYT
N)−1YN inverts the thin matrix YT

N from the left.
(YT

N)† symbolizes the pseudo inverse; it is left-inverse for thin matrices.
If the microphones are arranged in a t-design and the order N is chosen suitably,

then the transpose matrix times 4π
L is equivalent to the left inverse. A more thorough

discussion on spherical point sets can be found in [17–19].
The maximum determinant points [20] are a particular kind of critical directional

sampling scheme that allows to use exactly as few microphones M = (N + 1)2

as spherical harmonic coefficients obtained, yielding a well-conditioned square
matrix YN, so that it can be inverted directly without left/pseudo-inversion. The 25
maximum-determinant points for N = 4 are used in the simulation example below.3

Finite-order assumption and spatial aliasing. An important implication of estimat-
ing ψnm is that we need to assume that the distribution of the sound pressure is of
limited spherical harmonic order on the measurement surface. This could be done
by restricting the frequency range, as high-order harmonics are attenuated well-
enough according above suitable frequency limits, cf. Fig. 6.5. However, low-pass
filtered signals are unacceptable in practice. Instead, one has to accept spatial alias-
ing at high frequencies, i.e. directional mapping errors and direction-specific comb
filters. Figure6.8 shows spatial aliasing of ψN = (YT

N)−1 p in the angular domain
p = ∑

ψnmY m
n .

6.8 Regularizing Filter Bank for Radial Filters

The filters in
[
(ka)2 h′(2)

n (ka)
]−1

of Fig. 6.5 exhibit an nth-order zero at 0 Hz, ka = 0.
To retrieve the Ambisonic signals χnm from the sound pressure signals ψnm , their
inverse would have a n-fold (unstable) pole at 0 Hz. Considering that microphone
self noise and array imperfection cause erroneous signals louder than the acoustically
expected nth-order vanishing signals around 0 Hz, filter shapes will moreover cause
an excessive boost of erroneous signals unless implemented with precaution. Filters
of the different orders n must be stabilized by high-pass slopes of at least the order
n, see also [6, 9, 21–25], and with (n + 1)th-order high-pass slopes, see Fig. 6.9,
such errors are being cut off by first-order high-pass slopes at exemplary cut-on
frequencies at 90, 680, 1650, 2600 Hz for the Ambisonic orders 1, 2, 3, 4, yielding a

3md04.0025 on https://web.maths.unsw.edu.au/~rsw/Sphere/Images/MD/md_data.html.

https://web.maths.unsw.edu.au/~rsw/Sphere/Images/MD/md_data.html
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(a) 1
32 -wave-length diameter, i.e. ka = π

32 (b) 1
2 -wave-length diameter, i.e. ka = π

2 ,

(c) 1
16 -wave-length diameter, i.e. ka = π

16 (d) 1-wave-length diameter, i.e. ka = π

(e) 1
8 -wave-length diameter, i.e. ka = π

8 (f) 2-wave-length diameter, i.e. ka = 2π

(g) 1
4 -wave-lengths diameter, i.e. ka = π

4 (h) 4-wave-lengths diameter, i.e. ka = 4π

Fig. 6.8 Interpolated plane-wave sound pressure image ℜ{p e−ika} on rigid-sphere array with 25
microphones allowing decomposition up to the order N = 4; simulation uses orders up to 25, and
the aliasing-free operation can only be expected within kr < N
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32Hz 63Hz 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz 8kHz
-10dB

-0dB
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n=0
n=1
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Fig. 6.9 Filters (ka)2 h′(2)
n (ka)/dB over frequency/Hz, regularized with (n + 1)th-order high-pass

filters
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Fig. 6.10 Stabilizing filter bank/dB over frequency/Hz: signal orders n > b are excluded from the
band b

noise boost of 20 dB for a 4th-order microphone with a = 4.2 cm, at most. However,
just cutting on the frequencies of each order is not enough: every cut-on frequency
causes a noticeable loudness drop below due to the discarded signal contributions. It
is better to design a filter bank with crossovers instead, which allows compensation
for the loudness loss in every band. A zero-phase, nth-order Butterworth high-pass
response is defined by Hhi = ωn

1+ωn and amplitude-complementary to the low pass
Hlo = 1

1+ωn , so that Hhi + Hlo = 1.
Using this filter type, the filter bank in Fig. 6.10 can be constructed as follows: The

band-pass filters Hb(ω) are composed of a (b + 1)th-order high- and (b + 2)th-order
low-pass skirt at ωb, and ωb+1, respectively, except for the band b = 0 (low-pass)
and b = N (high-pass)

Ĥ0(ω) = 1

1 + (
ω
ω1

)2 , Ĥb(ω) =
(

ω
ωb

)b+1

1 + (
ω
ωb

)b+1

1

1 + (
ω

ωb+1

)b+2 , ĤN(ω) =
(

ω
ωN

)N+1

1 + (
ω
ωN

)N+1 .

(6.22)

To make the bands perfectly reconstructing, filters are normalized by the sum
response

Hb = Ĥb∑N
b=0 Ĥb(ω)

. (6.23)
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By adjusting the cut-on frequencies ωb of the different orders b = 1, . . . ,N, the
noise and mapping behavior of the microphone array is adjusted; only the zeroth
order is present in every band down to 0 Hz.

This filter bank design moreover allows to adjust loudness and sidelobe suppres-
sion in every frequency band, separately.

6.9 Loudness-Normalized Sub-band Side-Lobe
Suppression

The filter bank design shown above would only yield Ambisonic signals whose
order increases with the frequency band. Ideally, this variation of the order comes
with the necessity of individual max-rE sidelobe suppression in every band. More-
over, Ambisonic signals of different orders are differently loud, so also diffuse-field
equalization of the E measure is desirable in every band.

To fulfill the above constraints, we propose to use the following set of FIR fil-
ter responses as given in [26, 27], that are modified by a filter bank employing
diffuse-field normalized max-rE-weights in separate frequency bands b = 0, . . . ,N,
cf. Fig. 6.11, with the nth order discarded for bands below b < n:

ρn(ω) =
[

N∑
b=n

an,b Hb(ω)

]
i−n−1 (ka)2 h′(2)

n (ka) eika. (6.24)

Here, eika removes the linear phase of h′(2)
n , and an,b is the set of diffuse-field (

√
E)

equalized max-rE weights for the band b in which the Ambisonic orders retrieved
are 0 ≤ n ≤ b

an,b =

⎧⎪⎨
⎪⎩

Pn
(
cos 137.9◦

b+1.51

)
√∑N

n=0(2n+1)
[

Pn

(
cos 137.9◦

N+1.51

)]2
∑b

n=0(2n+1)
[

Pn

(
cos 137.9◦

b+1.51

)]2 , for n ≤ b

0, otherwise.

(6.25)

Figure6.12 shows the polar patterns of the corresponding direction-spread functions.
For the implementationofρn(ω)by fast blockfiltering,ω = 2π f and k = ω/c are

uniformly sampled with frequency, and the inverse discrete Fourier transform yields
the associated impulse responses (attention: the value at 0 Hz must be replaced for
stable results, and cyclic time-domain shifts and windows are necessary).

The direction-spread function of a plane-wave sound pressure mapped to a direc-
tional Ambisonic signal becomes frequency-dependent as shown in Fig. 6.13, and it
has minimal side lobes.
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Fig. 6.11 Filter-bank-regularized/dB over frequency/Hz, diffuse-field equalized max-rE weighted
spherical microphone array responses using inρn(ω) = ∑N

b=n an,b Hb(ω) (ka)2 h′(2)
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Fig. 6.12 Diffuse-field equalized (to E = 1) max-rE direction-spread functions; even orders are
plotted on upper, odd orders on lower semi-circle

Fig. 6.13 Direction spread/dB over frequency/Hz in zenithal cross section/degrees through
Ambisonic signal of simulated microphone processing response to plane wave from zenith and
the parameters a = 4.2 cm, M = 25 mics., max-rE-weighted in bands 90, 680, 1650, 2600 Hz for
the cut on of the orders 1, 2, 3, 4. Simulation is done with the order Nsim = 30 and spatial aliasing
will occur above 5.2 kHz. Gain matching was assumed to be up to < ±0.5 dB accurate; the map
shows the direction spread normalized to its value at 0◦ for every frequency to make its shape easier
to read

6.10 Influence of Gain Matching, Noise, Side-Lobe
Suppression

Typical gain mismatch between the microphones is not always more accurate than
0.5 dB. The result is that the physically dominant omnidirectional signalwill leak into
the higher-order signals by directionally random gain variations. However, acousti-
cally, higher-order components are expected to be weak and to require amplification.



6.10 Influence of Gain Matching, Noise, Side-Lobe Suppression 147

(a) 50, 160, 500, 1600 cut on with < ±0.5 dB gain matching, no sidelobe suppression

(b) 50, 160, 500, 1600 cut on with only 4th-order sidelobe suppression, assuming perfect gain
match

(c) 50, 160, 500, 1600 cut on with individual max-rE sidelobe suppression per band, assuming
perfect gain match

Fig. 6.14 Influence of carelessly selected cut-on frequencies for regularization (top), and of non-
individual sidelobe suppression per band (middle), in contrast to ideal results (bottom); the maps
show direction spreads normalized to their values at 0◦ for every frequency to make side lobes
easier to read

The effect on mapping is equivalent to one of microphone self noise, however gain
mismatch yields a correlated signal exciting the microphones, whereas self-noise
yields low-frequency noise.

If regularization filters were set to 50, 160, 500, 1600 and sidelobe suppression
turned off for testing, onewould get the poor image as in Fig. 6.14a, where high-order
signals at low frequencies are highly boosted.

If a noise-free case is assumed, and only the max-rE side-lobe suppression of the
highest band is used for all bands, one gets the image in Fig. 6.14b, which improves
with individual max-rE weights in Fig. 6.14c.

Self-noise behavior. Assuming that self-noise of the microphones is uncorre-
lated, it will also remain uncorrelated and of equal strength after decomposing the
M microphone signals pi = N into the (N + 1)2 spherical harmonic coefficient sig-
nals ψnm = (N+1)2

M N , if M ≈ (N + 1)2 and the microphone arrangement permits a
well-conditioned pseudo inversion Y †

N. The spectral change of the microphone self
noise due to the radial filters ρn(ω) can be described by the noise of the (2n + 1)
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Fig. 6.15 Self-noise modification |G(ω)|2/dB over frequency/Hz for the filter bank configurations
using the cut on frequencies 2k, 3k, 4k, 5k (no noise amplification), 600, 2k, 3.5k, 4.2k (5 dB noise
amplification), 280, 1.3k, 2.6k, 3.6k (10 dB noise amplification), 150, 950, 2k, 3.15k (15 dB noise
amplification), and 90, 680, 1.65k, 2.6k (20 dB noise amplification)

signals of the same order, amplified by |ρn(ω)|2, in comparison to the zeroth-order
signal:

|G(ω)|2 =
∑N

n=0(2n + 1)|ρn(ω)|2
|(ka)2 h′(2)

0 (ka)|2 . (6.26)

Figure6.15 analyzes the noise amplification for the simulation example (max-rE
weighting in each sub band, a = 4.2 cm) and shows the dependency on exemplary
cut on frequencies configured to tune the filterbank to 0, 5, 10, 15, and 20 dB noise
boosts. The trade here is: the more noise boost one can allow, the more directional
resolution one gets, see Fig. 6.16.

Open measurement data (SOFA format) characterizing the directivity
patterns of the 32 Eigenmike em32 transducers are provided under the link
http://phaidra.kug.ac.at/o:69292. They are measured on a 12◦ × 11.25◦ azimuth×
zenith grid, yielding 480 × 256 pt impulse responses for each of the 32 transducers.

6.11 Practical Free-Software Examples

6.11.1 Eigenmike Em32 Encoding Using Mcfx and IEM
Plug-In Suites

We give a practical signal processing example for the Eigenmike em32 which is
applicable e.g. in digital audioworkstations. First the 32 signals are encodedbymatrix
multiplication (IEM MatrixMultiplier), cf. Fig. 6.17a, yielding 25 fourth-order
signals. The preset (jsonfile) is providedonline http://phaidra.kug.ac.at/o:79231.The
radial filtering that sharpens the surround sound image uses mcfx-convolver, see
Fig. 6.17b, with 25 SISO filters, one for each Ambisonic signal, using the 5 different
filter curves for the orders n = 0, . . . , 4 as defined above. The convolver presets (wav

http://phaidra.kug.ac.at/o:69292
http://phaidra.kug.ac.at/o:79231
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(a) 0 dB noise boost (2k , 3k , 4k , 5k ) individual max-rE weighting

(b) 5 dB noise boost (600, 2k , 3.5k , 4.2k ) individual max-rE weights

(c) 10 dB noise boost (280, 1.3k , 2.6k , 3.6k ) individual max-rE weights

(d) 15 dB noise boost (150, 950, 2k , 3.15k ) individual max-rE weights

(e) 20 dB noise boost (90, 680, 1.65k , 2.6k ) individual max-rE weights

Fig. 6.16 Direction spread/dB for over frequency/Hz and zenith/degrees of filterbankwith different
settings to achieve 0, 5, 10, 15, 20 dB noise boosts; the maps show direction spreads normalized to
their values at 0◦ at every frequency as above
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(a) em 32 encoding (b) em 32 radial filters

Fig. 6.17 IEM MatrixMultiplier encoding the Eigenmike em32 signals and mcfx-
convolver applying radial filters to encoded em32 recording

Fig. 6.18 Practical equalization of the em32 transducer characteristics by two parametric shelving
filters of the mcfx_filter, cf. [28]

files and config files for mcfx-convolver) are provided online http://phaidra.kug.
ac.at/o:79231 and are available for the different noise boosts 0, 5, 10, 15, 20 dB.
As found in [28], the em32 transducers exhibit a frequency response that favors
low frequencies and attenuates high frequencies. This behavior is sufficiently well
equalized in practice using two parametric shelving filters, a low shelf at 500 Hz
with a gain of −5 dB, and a high shelf at 5 kHz using a gain of +5 dB, see Fig. 6.18.

6.11.2 SPARTA Array2SH

The SPARTA suite by Aalto University includes the Array2SH plug-in shown in
Fig. 6.19 to convert the transducer signals of a microphone array into Ambisonics. It
provides both encoding of the signals, as well as calculation and application of radial-
focusing filters based on the geometry of the array. It supports rigid and open arrays

http://phaidra.kug.ac.at/o:79231
http://phaidra.kug.ac.at/o:79231
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Fig. 6.19 SPARTA Array2SH encoding for, e.g., em32

and comes with presets for several arrays, such as the Eigenmike em32. The plug-in
allows to adjust the radial filters in terms of regularization type and maximum gain.
The Reg. Type called Z-Style corresponds to the linear-phase design of Sect. 6.9.
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