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Abstract. We present a behavioural typing system for a higher-order
timed calculus using session types to model timed protocols. Behavioural
typing ensures that processes in the calculus perform actions in the time-
windows prescribed by their protocols. We introduce duality and subtyp-
ing for timed asynchronous session types. Our notion of duality allows
typing a larger class of processes with respect to previous proposals.
Subtyping is critical for the precision of our typing system, especially in
the presence of session delegation. The composition of dual (timed asyn-
chronous) types enjoys progress when using an urgent receive semantics,
in which receive actions are executed as soon as the expected message
is available. Our calculus increases the modelling power of extant calculi
on timed sessions, adding a blocking receive primitive with timeout and
a primitive that consumes an arbitrary amount of time in a given range.

Keywords: Session types · Timers · Duality · π-calculus

1 Introduction

Time is at the basis of many real-life protocols. These include common client-
server interactions as for example, “An SMTP server SHOULD have a timeout
of at least 5minutes while it is awaiting the next command from the sender” [22].
By protocol, we intend application-level specifications of interaction patterns (via
message passing) among distributed applications. An extensive literature offers
theories and tools for formal analysis of timed protocols, modelled for instance
as timed automata [3,26,34] or Message Sequence Charts [2]. These works allow
to reason on the properties of protocols, defined as formal models. Recent work,
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based on session types, focus on the relationship between time-sensitive proto-
cols, modelled as timed extensions of session types, and their implementations
abstracted as processes in some timed calculus. The relationship between pro-
tocols and processes is given in terms of static behavioural typing [12,15] or
run-time monitoring [6,7,30] of processes against types. Existing work on timed
session types [7,12,15,30] is based on simple abstractions for processes which do
not capture time sensitive primitives such as blocking (as well as non-blocking)
receive primitives with timeout and time consuming actions with variable, yet
bound, duration. This paper provides a theory of asynchronous timed session
types for a calculus that features these two primitives. We focus on the asyn-
chronous scenario, as modern distributed systems (e.g., web) are often based
on asynchronous communications via FIFO channels [4,33]. The link between
protocols and processes is given in terms of static behavioural typing, checking
for punctuality of interactions with respect to protocols prescriptions. Unlike
previous work on asynchronous timed session types [12], our type system can
check processes against protocols that are not wait-free. In wait-free protocols,
the time-windows for corresponding send and receive actions have an empty
intersection. We illustrate wait-freedom using a protocol modelled as two timed
session types, each owning a set of clocks (with no shared clocks between types).

SC =!Command(x < 5, {x}).S′
C SS =?Command(y < 5, {y}).S′

S (1)

The protocol in (1) involves a client SC with a clock x, and a server SS with a
clock y (with both x and y initially set to 0). Following the protocol, the client
must send a message of type Command within 5 min, reset x, and continue as S′

C.
Dually, the server must be ready to receive a command with a timeout of 5 min,
reset y, and continue as S′

S. The model in (1) is not wait-free: the intersection
of the time-windows for the send and receive actions is non-empty (the time-
windows actually coincide). The protocol in (2), where the server must wait until
after the client’s deadline to read the message, is wait-free.

!Command(x < 5, {x}).S′′
C ?Command(y = 5, {y}).S′′

S (2)

Patterns like the one in (1) are common (e.g., the SMPT fragment mentioned
at the beginning of this introduction) but, unfortunately, they are not wait-free,
hence ruled out in previous work [12]. Arguably, (2) is an unpractical wait-free
variant of (1): the client must always wait for at least 5 min to have the message
read, no matter how early this message was sent. The definition of protocols
for our typing system (which allows for not wait-free protocols) is based on a
notion of asynchronous timed duality, and on a subtyping relation that provides
accuracy of typing, especially in the case of channel passing.

Asynchronous timed duality. In the untimed scenario, each session type has one
unique dual that is obtained by changing the polarities of the actions (send vs.
receive, and selection vs. branching). For example, the dual of a session type S
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that sends an integer and then receives a string is a session type S that receives
an integer and then sends a string.

S =!Int.?String S =?Int.!String

Duality characterises well-behaved systems: the behaviour described by the com-
position of dual types has no communication mismatches (e.g., unexpected mes-
sages, or messages with values of unexpected types) nor deadlocks. In the timed
scenario, this is no longer true. Consider a timed extension of session types (using
the model of time in timed automata [3]), and of (untimed) duality so that dual
send/receive actions have equivalent time constraints and resets. The example
below shows a timed type S with its dual S, where S owns clock x, and S owns
clock y (with x and y initially set to 0):

S =!Int(x � 1, x).?String(x � 2) S =?Int(y � 1, y).!String(y � 2)

Here S sends an integer at any time satisfying x � 1, and then resets x. After
that, S receives a string at any time satisfying x � 2. The timed dual of S
is obtained by keeping the same time constraints (and renaming the clock—
to make it clear that clocks are not shared). To illustrate our point, we use
the semantics from timed session types [12], borrowed from Communicating
Timed automata [23]. This semantics is separated, in the sense that only time
actions may ‘take time’, while all other actions (e.g., communications) are
instantaneous.1 The aforementioned semantics allows for the following execu-
tion of S | S:

S | S
0.4−→ Int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
0.6−→ Int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0.6, y = 0)
2−→!String−→ ?String(x � 2) (clocks values: x = 2.6, y = 2)

where: (i) the system makes a time step of 0.4, then S sends the integer and
resets x, yielding a state where x = 0 and y = 0.4; (ii) the system makes a
time step of 0.6, then S receives the integer and resets y, yielding a state where
x = 0.6 and y = 0; (iii) the system makes a time step of 2, then the continuation
of S sends the string, when y = 2 and x = 2.6. In (iii), the string was sent too
late: constraint x � 2 of the receiving endpoint is now unsatisfiable. The system
cannot do any further legal step, and is stuck.

Urgent receive semantics. The example above shows that, in the timed asyn-
chronous scenario, the straightforward extension of duality to the timed scenario
does not necessarily characterise well-behaved communications. We argue, how-
ever, that the execution of S | S, in particular the time reduction with label
0.6, does not reflect the semantics of most common receive primitives. In fact,
most mainstream programming languages implement urgent receive semantics
1 Separated semantics can describe situations where actions have an associated

duration.
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for receive actions. We call a semantics urgent receive when receive actions are
executed as soon as the expected message is available, given that the guard of
that action is satisfied. Conversely, non-urgent receive semantics allows receive
actions to fire at any time satisfying the time constraint, as long as the message
is in the queue. The aforementioned reduction with label 0.6 is permitted by
non-urgent receive semantics such as the one in [23], since it defers the reception
of the integer despite the integer being ready for reception and the guard (y � 2)
being satisfied, but not by urgent receive semantics. Urgent receive semantics
allows, instead, the following execution for S | S:

S | S
0.4−→ !int−→ ?String(x � 2) | S (clocks values: x = 0, y = 0.4)
?int−→ ?String(x � 2) |!String(x � 2) (clocks values: x = 0, y = 0)
2−→!String−→ ?String(x � 2) (clocks values: x = 2, y = 2)

If S sends the integer when x = 0.4, then S must receive the integer imme-
diately, when y = 0.4. At this point, both endpoints reset their respective
clocks, and the communication will continue in sync. Urgent receive primitives
are common; some examples are the non-blocking WaitFreeReadQueue.read()
and blocking WaitFreeReadQueue.waitForData() of Real-Time Java [13], and
the receive primitives in Erlang and Golang. Urgent receive semantics make
interactions “more synchronous” but still as asynchronous as real-life programs.

A calculus for timed asynchronous processes. Our calculus features two time-
sensitive primitives. The first is a parametric receive operation an(b). P on a
channel a, with a timeout n that can be ∞ or any number in R�0. The para-
metric receive captures a range of receive primitives: non-blocking (n = 0),
blocking without timeout (n = ∞), or blocking with timeout (n ∈ R>0). The
second primitive is a time-consuming action, delay(δ). P , where δ is a constraint
expressing the time-window for the time consumed by that action. Delay pro-
cesses model primitives like Thread.sleep(n) in real-time Java [13] or, more
generally, any time-consuming action, with δ being an estimation of the delay of
computation.

Processes in our calculus abstract implementations of protocols given as pairs
of dual types. Consider the processes below.

PC = delay(x < 3). a HELO.P ′
C PS = delay(x = 5). a0(b).P ′

S QS = a5(b).Q′
S

Processes abiding the protocols in (2) could be as follows: PC for the client SC ,
and PS for the server SS . The client process PC performs a time consuming action
for up to 3 min, then sends command HELO to the server, and continues as P ′

C .
The server process PS sleeps for exactly 5 min, receives the message immediately
(without blocking), and continues as P ′

S . A process for the protocol in (1) could,
instead be the parallel composition of PC , again for the client, and QS for the
server. Process QS uses a blocking primitive with timeout; the server now blocks
on the receive action with a timeout of 5 min, and continues as Q′

S as soon as
a message is received. The blocking receive primitive with timeout is crucial
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to model processes typed against protocols one can express with asynchronous
timed duality, in particular those that are not wait-free.

A type system for timed asynchronous processes. The relationship between types
and processes in our calculus is given as a typing system. Well-typed processes
are ensured to communicate at the times prescribed by their types. This result
is given via Subject Reduction (Theorem 4), establishing that well-typedness is
preserved by reduction. In our timed scenario, Subject Reduction holds under
receive liveness, an assumption on the interaction structure of processes. This
assumption is orthogonal to time. To characterise the interaction structures of a
timed process we erase timing information from that processes (time erasure).
Receive liveness requires that, whenever a time-erased processes is waiting for
a message, the corresponding message is eventually provided by the rest of the
system. While receive liveness is not needed for Subject Reduction in untimed
systems [21], it is required for timed processes. This reflects the natural intuition
that if an untimed-process violates progress, then its timed counterpart may miss
deadlines. Notably, we can rely on existing behavioural checking techniques from
the untimed setting to ensure receive liveness [17].

Receive liveness is not required for Subject Reduction in a related work on
asynchronous timed session types [12]. The dissimilarity in the assumptions is
only apparent; it derives from differences in the two semantics for processes.
When our processes cannot proceed correctly (e.g., in case of missed deadlines)
they reduce to a failed state, whereas the processes in [12] become stuck (indi-
cating violation of progress).

Synopsis. In Sect. 2 we introduce the syntax and the formation rules for asyn-
chronous timed session types. In Sect. 3, we give a modular Labelled Transition
System (LTS) for types in isolation (Sect. 3.1) and for compositions of types
(Sect. 3.3). The subtyping relation is given in Sect. 3.2 and motivated in Example
8, after introducing the typing rules. We introduce timed asynchronous duality
and its properties in Sect. 4. Remarkably, the composition of dual timed asyn-
chronous types enjoys progress when using an urgent receive semantics (Theo-
rem 1). Section 5 presents a calculus for timed processes and Sect. 6 introduces its
typing system. The properties of our typing system—Subject Reduction (The-
orem 4) and Time Safety (Theorem 5)—are introduced in Sect. 7. Conclusions
and related works are in Sect. 8. Proofs and additional material can be found in
the online report [11].

2 Asynchronous Timed Session Types

Clocks and predicates. We use the model of time from timed automata [3]. Let
X be a finite set of clocks, let x1, . . . , xn range over clocks, and let each clock
take values in R�0. Let t1, . . . , tn range over non-negative real numbers and
n1, . . . , nn range over non-negative rationals. The set G(X) of predicates over X

is defined by the following grammar.

δ :: = true | x > n | x = n | x − y > n | x − y = n | ¬δ | δ1 ∧ δ2 where x, y ∈ X
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We derive false, <, �, � in the standard way. Predicates in the form x−y > n
and x − y = n are called diagonal predicates; in these cases we assume x �= y.
Notation cn(δ) stands for the set of clocks in δ.

Clock valuation and resets. A clock valuation ν : X �→ R�0 returns the time of
the clocks in X. We write ν + t for the valuation mapping all x ∈ X to ν(x) + t,
ν0 for the initial valuation (mapping all clocks to 0), and, more generally, νt for
the valuation mapping all clocks to t. Let ν |= δ denote that δ is satisfied by ν.
A reset predicate λ over X is a subset of X. When λ is H then no reset occurs,
otherwise the assignment for each x ∈ λ is set to 0. We write ν [λ �→ 0] for the
clock assignment that is like ν everywhere except that its assigns 0 to all clocks
in λ.

Types. Timed session types, hereafter just types, have the following syntax:

T :: = (δ, S) | Nat | Bool | . . .

S :: = !T (δ, λ).S | ?T (δ, λ).S | ⊕ {li(δi, λi) : Si}i∈I | &{li(δi, λi) : Si}i∈I |
μα.S | α | end

Sorts T include base types (Nat, Bool, etc.), and sessions (δ, S). Messages of
type (δ, S) allow a participant involved in a session to delegate the remaining
behaviour S; upon delegation the sender will no longer participate in the dele-
gated session and receiver will execute the protocol described by S under any
clock assignment satisfying δ. We denote the set of types with T.

Type !T (δ, λ).S models a send action of a payload with sort T . The sending
action is allowed at any time that satisfies the guard δ. The clocks in λ are
reset upon sending. Type ?T (δ, λ).S models the dual receive action of a payload
with sort T . The receiving types require the endpoint to be ready to receive the
message in the precise time window specified by the guard.

Type ⊕{li(δi, λi) : Si}i∈I is a select action: the party chooses a branch i ∈ I,
where I is a finite set of indices, selects the label li, and continues as prescribed
by Si. Each branch is annotated with a guard δ and reset λ. A branch j can
be selected at any time allowed by δj . The dual type is &{li(δi, λi) : Si}i∈I

for branching actions. Each branch is annotated with a guard and a reset. The
endpoint must be ready to receive the label for j at any time allowed by δj (or
until another branch is selected).

Recursive type μα.S associates a type variable α to a recursion body S. We
assume that type variables are guarded in the standard way (i.e., they only occur
under actions or branches). We let A denote the set of type variables.

Type end models successful termination.

2.1 Type Formation

The grammar for types allow to generate types that are not implementable in
practice, as the one shown in Example 1.
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Example 1 (Junk-types). Consider S in (3) under initial clock valuation ν0.

S =?T (x < 5, H).!T (x < 2, H).end (3)

The specified endpoint must be ready to receive a message in the time-window
between 0 and 5 time units, as we evaluate x < 5 in ν0. Assume that this
receive action happens when x = 3, yielding a new state in which: (i) the clock
valuation maps x to 3, and (ii) the endpoint must perform a send action while
x < 2. Evidently, (ii) is no longer possible in the new clock valuation, as the
x < 2 is now unsatisfiable. We could amend (3) in several ways: (a) by resetting
x after the receive action; (b) by restricting the guard of the receive action (e.g.,
x < 2 instead of x < 5); or (c) by relaxing the guard of the send action. All
these amendments would, however, yield a different type.

In the remainder of this section we introduce formation rules to rule out
junk types as the one in Example 1 and characterise types that are well-formed.
Intuitively, well-formed types allow, at any point, to perform some action in the
present time or at some point in the future, unless the type is end.

Judgments. The formation rules for types are defined on judgments of the form

A; δ $ S

where A is an environment assigning type variables to guards, and δ is a guard
in G(X). A is used as an invariant to form recursive types. Guard δ collects the
possible ‘pasts’ from which the next action in S could be executed (unless S is
end). We use notation ↓ δ (the past of δ) for a guard δ′ such that ν |= δ′ if and
only if ∃t : ν + t |= δ. For example, ↓ (1 � x � 2) = x � 2 and ↓ (x � 3) = true.
Similarly, we use the notation δ[λ �→ 0] to denote a guard in which all clocks in
λ are reset. For example, (x � 3 ∧ y � 2)[x �→ 0] = (x = 0 ∧ y � 2). We use the
notation δ1 Ď δ2 whenever, for all ν, ν |= δ1 =⇒ ν |= δ2. The past and reset of
a guard can be inferred algorithmically, and Ď is decidable [8].

A; true $ end
[end]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T base type

A; ↓ δ $ �� T (δ, λ).S
[interact]

�� ∈ {!, ?} A; γ $ S δ[λ �→ 0] Ď γ T = (δ′, S′)
H; γ′ $ S′ δ′ Ď γ′

A; ↓ δ $ �� T (δ, λ).S
[delegate]

�� ∈ {⊕,&} ∀i ∈ I A; γi $ Si δi[λi �→ 0] Ď γi

A; ↓
∨

i∈I
δi $ �� {li(δi, λi) : Si}i∈I

[choice]

A,α : δ; δ $ S

A; δ $ μα.S
[rec]

A,α : δ; δ $ α
[var]
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Rule [end] states that the terminated type is well-formed against any A.
The guard of the judgement is true since end is a final state (as end has no
continuation, morally, the constraint of its continuation is always satisfiable).
Rule [interact] ensures that the past of the current action δ entails the past
of the subsequent action γ (considering resets if necessary): this rules out types
in which the subsequent action can only be performed in the past. Rules [end]
and [interact] are illustrated by the three examples below.

Example 2. The judgment below shows a type being discarded after an applica-
tion of rule [interact] :

H; x � 3 $\ ?Nat(1 � x � 3, H).!Nat(1 � x � 2, H).end (4)

The premise of [interact] would be δ Ď ↓ γ, which does not hold for δ = 1 �
x � 3 and ↓ γ = x � 2. This means that guard (1 � x � 3, H) of the first
action may lead to a state in which guard 1 � x � 2 for the subsequent action
is unsatisfiable. If we amend the type in (4) by adding a reset in the first action,
we obtain a well-formed type. We show its formation below, where for simplicity
we omit obvious preconditions like Nat base type, etc.

[end]H; true $ end 1 � x � 2 Ď true
[interact]H; x � 2 $ !Nat(1 � x � 2, H).end x = 0 Ď x � 2
[interact]H; x � 3 $ ?Nat(1 � x � 3, {x}).!Nat(1 � x � 2, H).end

Rule [delegate] behaves as [interact] , with two additional premises on
the delegated session: (1) S′ needs to be well-formed, and (2) the guard of the
next action in S′ needs to be satisfiable with respect to δ′. Guard δ′ is used to
ensure a correspondence between the state of the delegating endpoint and that
of the receiving endpoint. Rule [choice] is similar to [interact] but requires
that there is at least one viable branch (this is accomplished by considering the
weaker past ↓ ∨

i∈Iδi) and checking each branch for formation. Rules [rec] and
[var] are for recursive types and variables, respectively. In [rec] the guard δ
can be easily computed by taking the past of the next action of the in S (or
the disjunction if S is a branching or selection). An algorithm for deciding type
formation can be found in [11].

Definition 1 (Well-formed types). We say that S is well-formed against
clock valuation ν if H; δ $ S and ν |= δ, for some guard δ. We say that S is
well-formed if it is well formed against ν0.

We will tacitly assume types are well-formed, unless otherwise specified. The
intuition of well-formedness is that if A; δ $ S then S can be run (using the
types semantics given in Sect. 3) under any clock valuation ν such that ν |= δ.
In the sequel, we take (well-formed) types equi-recursively [31].
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3 Asynchronous Session Types Semantics and Subtyping

We give a compositional semantics of types. First, we focus on types in isolation
from their environment and from their queues, which we call simple type con-
figurations. Next we define subtyping for simple type configurations. Finally, we
consider systems (i.e., composition of types communicating via queues).

Fig. 1. LTS for simple type configurations

3.1 Types in Isolation

The behaviour of simple type configurations is described by the Labelled Transi-
tion System (LTS) on pairs (ν, S) over (V×S), where clock valuation ν gives the
values of clocks in a specific state. The LTS is defined over the following labels

� :: = !m | ?m | t | τ m :: = d | l

Label !m denotes an output action of message m and ?m an input action of m.
A message m can be a sort T (that can be either a higher order message (δ, S)
or base type), or a branching label l. The LTS for single types is defined as the
least relation satisfying the rules in Fig. 1. Rules [snd], [rcv], [sel], and [bra] can
only happen if the constraint of the next action is satisfied in the current clock
valuation. Rule [rec] unfolds recursive types, and [time] always lets time elapse.

Let s, s′, si (i ∈ N) range over simple type configurations (ν, S). We write
s �−→ when there exists s′ such that s �−→ s′, and write s t �−→ for s t−→ �−→.

3.2 Asynchronous Timed Subtyping

We define subtyping as a partial relation on simple type configurations. As in
other subtyping relations for session types we consider send and receive actions
dually [14,16,19]. Our subtyping relation is covariant on output actions and
contra-variant on input actions, similarly to that of [14]. In this way, our sub-
typing S < : S′ captures the intuition that a process well-typed against S can be
safely substituted with a process well-typed against S′. Definition 2, introduces
a notation that is useful in the rest of this section.
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Definition 2 (Future enabled send/receive). Action � is future enabled in
s if ∃t : s t �−→. We write s !⇒ (resp. s ?⇒) if there exists a sending action !m
(resp. a receiving action ?m) that is future enabled in s.

As common in session types, the communication structure does not allow for
mixed choices: the grammar of types enforces choices to be either all input
(branching actions), or output (selection actions). From this fact it follows that,
given s, reductions s !⇒ and s ?⇒ cannot hold simultaneously.

Definition 3 (Timed Type Simulation). Fix s1 = (ν1, S1) and s2 =
(ν2, S2). A relation R ∈ (V × S)2 is a timed type simulation if (s1, s2) ∈ R
implies the following conditions:

1. S1 = end implies S2 = end

2. s1
t !m1−→ s′1 implies ∃s′2,m2 : s2

t !m2−→ s′2, (m2,m1) ∈ S, (s′1, s
′
2) ∈ R

3. s2
t ?m2−→ s′2 implies ∃s′1,m1 : s1

t ?m1−→ s′1, (m1,m2) ∈ S, (s′1, s
′
2) ∈ R

4. s1
?⇒ implies s2

?⇒ and s2
!⇒ implies s1

!⇒
where S is the following extension of R to messages: (1) (T, T ′) ∈ S if T
and T ′ are base types, and T ′ is a subtype of T by sorts subtyping, e.g.,
(int, nat) ∈ S; (2) (l, l) ∈ S; (3) ((δ1, S1), (δ2, S2)) ∈ S, if ∀ν1 |= δ1 ∃ν2 |=
δ2 : ((ν1, S1), (ν2, S2)) ∈ R and ∀ν2 |= δ2 ∃ν1 |= δ1 : ((ν1, S1), (ν2, S2)) ∈ R.

Intuitively, if (s1, s2) ∈ R then any environment that can safely interact with
s2, can do so with s1. We write that s2 simulates s1 whenever s1 and s2 are in
a timed type simulation. Below, s2 simulates s1:

s1 = (ν0, !nat(x < 5, H).end) s2 = (ν0, !int(x � 10, H).end)

Conversely, s1 does not simulate s2 because of condition (2). Precisely, s2 can
make a transition s2

10 !int−→ that cannot be matched by s1 for two reasons: guard
x < 5 is no longer satisfiable when x = 10, and (nat, int) �∈ S since int is not
a subtype of nat. For receive actions, instead, we could substitute s with s′ if
s′ had at least the receiving capabilities of s. Condition (4) in Definition 3 rules
out relations that include, e.g., ((ν, ?T (true, H).end), (ν, !T (true, H).end)).

Live simple type configurations. In our subtyping definition we are interested in
simple type configurations that are not stuck. Consider the example below:

(ν, !Int(x � 10, H).end) (5)

The simple type configuration in (5) would not be stuck if ν = ν0, but would
be stuck for any ν = ν′[x �→ 10]. Definition 4 gives a formal definition of simple
type configurations that are not stuck, i.e., that are live.

Definition 4 (Live simple type configuration). A simple configuration
(ν, S) is said live if:

S = end or ∃t, � : (ν, S) t ◦m−→ (◦ ∈ {!, ?})
Observe that for all well-formed S, (ν0, S) is live.
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Subtyping for simple type configurations. We can now define subtyping for simple
type configurations and state its decidability.

Definition 5 (Subtyping). s1 is a subtype of s2, written s1 < : s2, if there
exists a timed type simulation R on live simple type configurations such that
(s1, s2) ∈ R. We write S1 < : S2 when (ν0, S1) < : (ν0, S2). Abusing the notation,
we write m < : m′ iff there exists S such that (m,m′) ∈ S.

Subtyping has been shown to be decidable in the untimed setting [19] and
in the timed first order setting [6]. In [6], decidability is shown through a reduc-
tion to model checking of timed automata networks. The result in [6] can be
extended to higher-order messages using the techniques in [3], based on finite
representations (called regions) of possibly infinite sets of clock valuations.

Proposition 1 (Decidability of subtyping). Checking if (δ1, S1) < : (δ2, S2)
is decidable.

3.3 Types with Queues, and Their Composition

As interactions are asynchronous, the behaviour of types must capture the states
in which messages are in transit. To do this, we extend simple type configurations
with queues. A configuration S is a triple (ν, S, M) where ν is clock valuation, S
is a type and M a FIFO unbounded queue of the following form:

M :: = H | m; M

M contains the messages sent by the co-party of S and not yet received by S. We
write M for M; H, and call (ν, S, M) initial if ν = ν0 and M = H.

Composing types. Configurations are composed into systems. We denote S | S′

as the parallel composition of the two configurations S and S′.
The labelled transition rules for systems are given in Fig. 2. Rule (snd) is

for send actions. A send action can occur only if the time constraint of S is
satisfied (by the premise, which uses either rule [snd] or [sel] in Fig. 1). Rule
(que) models actions on queues. A queue is always ready to receive any message
m. Rule (rcv) is for receive actions, where a message is read from the queue. A
receiving action can only occur if the time constraint of S is satisfied (by the
premise, which uses either rule [rcv] or [bra] in Fig. 1). The message is removed
from the head of the queue of the receiving configuration. The third clause in
the premise uses the notion of subtyping (Definition 3) for basic sorts, labels,
and higher order messages. Rule (crcv) is the action of a configuration pulling a
message of its queue. Rule (com) is for communication between a sending con-
figuration and a buffer. Rule (ctime) lets time elapse in the same way for all
configurations in a system. Rule (time) models time passing for single configu-
rations. Time passing is subject to two constrains, expressed by the second and
third conditions in the premise. Condition (ν, S) !⇒ requires the time action t
to preserve the satisfiability of some send action. For example, in configuration
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Fig. 2. LTS for systems. We omit the symmetric rules of (crcv), and (csnd).

(ν0, !T (x < 2, H).S, H), a transition with label 2 would not preserve any send
action (hence would not be allowed), while a transition with label 1.8 would
be allowed by condition (ν, S) !⇒. Condition ∀t′ < t : (ν + t′, S, M) τÛ in the
premise of rule (time) checks that there is no ready message to be received in
the queue. This is to model urgency: when a configuration is in a receiving state
and a message is in the queue then the receiving action must happen without
delay. For example, (ν0, ?T (x < 2, H).S, H) can make a transition with label 1,
but (ν0, ?T (x < 2, H).S,m) cannot make any time transition. Below we show
two examples of system executions. Example 3 illustrates a good communica-
tion, thanks to urgency. We also illustrate in Example 4 that without an urgent
semantics the system in Example 3 gets stuck.

Example 3 (A good communication). Consider the following types:

S1 =!T (x � 1, x).?T (x � 2).end S2 =?T (y � 1, y).!T (y � 2).end

System (ν[x �→ 0], S1, H) | (ν[x �→ 0], S2, H) can make a time step with label
0.5 by (ctime), yielding the system in (6)

(ν[x �→ 0.5], S1, H) | (ν[x �→ 0.5], S2, H) (6)

The system in (6) can move by a τ step thanks to (com): the left-hand side
configuration makes a step with label !T by (snd) while the right-hand side
configuration makes a step ?T by (que), yielding system (7) below.

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0.5], S2, T ) (7)

The right-hand side configuration in the system in (7) must urgently receive
message T due to the third clause in the premise of rule (time). Hence, the only
possible step forward for (7) is by (crcv) yielding the system in (8).

(ν[x �→ 0], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (8)
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Example 4 (In absence of urgency). Without urgency, the system in (7) from
Example 3 may get stuck. Assume the third clause of rule (time) was removed:
this would allow (7) to make a time step with label 0.5, followed by a step by
(rcv) yielding the system in (9), where clock y is reset after the receive action.

(ν[x �→ 0.5], ?T (x � 2).end, H) | (ν[y �→ 0], !T (y � 2).end, H) (9)

followed by a τ step by (com) reaching the following state:

(ν[x �→ 2.5], ?T (x � 2).end, T ) | (ν[y �→ 0], end, H) (10)

The message in the queue in (10) will never be received as the guard x � 2 is not
satisfiable now or at any point in the future. This system is stuck. Instead, thanks
to urgency, the clocks of the configurations of system (8) have been ‘synchronised’
after the receive action, preventing the system from getting stuck.

4 Timed Asynchronous Duality

We introduce a timed extension of duality. As in untimed duality, we let
each send/select action be complemented by a corresponding receive/branching
action. Moreover, we require time constraints and resets to match.

Definition 6 (Timed duality). The dual type S of S is defined as follows:

!T (δ, λ).S =?T (δ, λ).S ?T (δ, λ).S =!T (δ, λ).S μα.S = μα.S

⊕{li(δi, λi) : Si}i∈I = &{li(δi, λi) : Si}i∈I α = α

&{li(δi, λi) : Si}i∈I = ⊕{li(δi, λi) : Si}i∈I end = end

Duality with urgent receive semantics enjoys the following properties: sys-
tems with dual types fulfil progress (Theorem 1); behaviour (resp. progress) of
a system is preserved by the substitution of a type with a subtype (Theorem 2)
(resp. Theorem 3). A system enjoys progress if it reaches states that are either
final or that allow further communications, possibly after a delay. Recall that
we assume types to be well-formed (cf. Definition 1): Theorems 1, 2, and 3 rely
on this assumption.

Definition 7 (Type progress). We say that a system (ν, S, M) is a success if
S = end and M = H. We say that S1 | S2 satisfies progress if:

S1 | S2 −→∗ S′
1 | S′

2 =⇒ S′
1 and S′

2 are success or ∃t : S′
1 | S′

2
t τ−→

Theorem 1 (Duality progress). System (ν0, S, H) | (ν0, S, H) enjoys
progress.

We show that subtyping does not introduce new behaviour, via the usual
notion of timed simulation [1]. Let c, c1, c2 range over systems. Fix c1 =
(ν1

1 , S1
1 , M11) | (ν1

2 , S1
2 , M12), and c2 = (ν2

1 , S2
1 , M21) | (ν2

2 , S2
2 , M22). We say that a binary

relation over systems preserves end if: Si
1 = end∧ Mi

1 = H iff Si
2 = end∧ Mi

2 = H
for all i ∈ {1, 2}. Write c1 � c2 if (c1, c2) are in a timed simulation that preserves
end.
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Theorem 2 (Safe substitution). If S′ < : S, then (ν0, S, H) | (ν0, S′, H) �
(ν0, S, H) | (ν0, S, H).

Theorem 3 (Progressing substitution). If S′ < : S, then (ν0, S, H) |
(ν0, S′, H) satisfies progress.

5 A Calculus for Asynchronous Timed Processes

We introduce our asynchronous calculus for timed processes. The calculus
abstracts implementations that execute one or more sessions. We let P, P ′, Q, . . .
range over processes, X range over process variables, and define n ∈ R�0∪{∞}.
We use the notation a for ordered sequences of channels or variables.

P :: = a v.P
| a 	 l. P
| if v then P else P
| P | P
| 0
| def D in P
| X〈a ; a〉
| (νab)P
| ab : h

| delay(δ). P (time-consuming)
| an(b). P
| an Ź {li : Pi}i∈I

| failed (run-time)
| delay(t). P

D :: = X(a ; a) = P

h :: = H | h · v | h · a

a v.P sends a value v on channel a and continues as P . Similarly, a 	 l. P
sends a label l on channel a and continue as P . Process if v then P else Q
behaves as either P or Q depending on the boolean value v. Process P | Q is
for parallel composition of P and Q, and 0 is the idle process. def D in P is
the standard recursive process: D is a declaration, and P is a process that may
contain recursive calls. In recursive calls X〈a ; a〉 the first list of parameters has
to be instantiated with values of ground types, while the second with channels.
Recursive calls are instantiated with equations X(a ; a) in D. Process (νab)P
is for scope restriction of endpoints a and b. Process ab : h is a queue with name
ab (colloquially used to indicate that it contains messages in transit from a to
b) and content h. (νab) binds endpoints a and b, and queues ab and ba in P .

There are two kind of time-consuming processes: those performing a time-
consuming action (e.g., method invocation, sleep), and those waiting to receive a
message. We model the first kind of processes with delay(δ). P , and the second
kind of processes with an(b). P (receive) and an Ź {li : Pi}i∈I (branching). In
delay(δ). P , δ is a constraints as those defined for types, but on one single clock
x. The name of the clock here is immaterial: clock x is used as a syntactic tool
to define intervals for the time-consuming (delay) action. In this sense, assume
x is bound in delay(δ). P . Process delay(δ). P consumes any amount of time t
such that t is a solution of δ. For example delay(x � 3). P consumes any value
between 0 to 3 time units, then behaves as P . Process an(b). P receive a message
on channel a, instantiates b and continue as P . Parameter n models different
receive primitives: non-blocking (n = 0), blocking (n = ∞), and blocking with
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timeout (n ∈ R
�0). If n ∈ R

�0 and no message is in the queue, the process
waits n time units before moving into a failed state. If n is set to ∞ the process
models a blocking primitive without timeout. Branching process an Ź{li : Pi}i∈I

is similar, but receives a label li and continues as Pi.
Run-time processes are not written by programmers and only appear upon

execution. Process failed is the process that has violated a time constraint.
We say that P is a failed state if it has failed as a syntactic sub-term. Process
delay(t). P delays for exactly t time units.

Well-formed processes. Sessions are modelled as processes of the following form

(νab)(P | ab : h | ba : h ′)

where P is the process for endpoints a and b, ab is the queue for messages from a
to b, and ba is the queues for messages from b to a. A process can have more than
one ongoing session. For each, we expect that all necessary queues are present
and well-placed. We ensure that queues are well-placed via a well-formedness
property for processes (see [11] for an inductive definition). Well-formedness
rules out processes of the following form:

(νab) (an(c). (ba : h ′ | P ) | Q | ab : h) (11)

The process in (11) in not well-formed since queue ba for communications to
endpoint a is not usable as it is in the continuation of the receive action.
Well-formedness of processes is necessary to our safety results. We check well-
formedness orthogonally to the typing system for the sake of simpler typing rules.
While well-formedness ensures the absence of misplaced queues, the presence of
an appropriate pair of queues for every session is ensured by the typing rules.

Session creation. Usually well-formedness is ensured by construction, as sessions
are created by a specific (synchronous) reduction rule [10,21]. This kind of session
creation is cumbersome in the timed setting as it allows delays that are not
captured by protocols, hence well-typed processes may miss deadlines. Other
work on timed session types [12] avoids this problem by requiring that all session
creations occur before any delay action. Our calculus allows session to be created
at any point, even after delays. In (12) a session with endpoints c and d is created
after a send action (assume P includes the queues for this new session).

(νab) (a v.delay(x � 3). (νcd)(P ) | Q | ab : h | ba : h ′) (12)

A process like the one in (12) may be thought as a dynamic session creation
that happens synchronously (as in [10,21]), but assuming that all participants
are ready to engage without delays. Our approach yields a simplification to
the calculus (syntax and reduction rules) and, yet, a more general treatment of
session initiation than the work in [12].
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Fig. 3. Reduction for processes (rule [IfF], symmetric for [IfT] is omitted).

Fig. 4. Time-passing function Φt(P ). Rule for at′ Ź {li : Pi}i∈I is omitted for brevity.
φt(P ) is undefined in the remaining cases.
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Reduction for processes. Processes are considered modulo structural equivalence,
denoted by ≡, and defined by adding the following rule for delays to the standard
ones [28]: delay(0). P ≡ P . Reduction rules for processes are given in Fig. 3. A
reduction step −→ can happen because of either an instantaneous step ⇀ by
[Red1] or time-consuming step ù by [Red2]. Rules [Send], [Rcv], [Sel], and [Bra]
are the usual asynchronous communication rules. Rule [Det] models the random
occurrence of a precise delay t, with t being a solution of δ. The other untimed
rules, [IfT], [Par], [Def], [Rec], [AStr], and [AScope] are standard. Note that rule
[Par] does not allow time passing, which is handled by rule [Delay]. Rule [TStr]
is the timed version of [AStr]. Rule [Delay] applies a time-passing function Φt

(defined in Fig. 4) which distributes the delay t across all the parts of a process.
Φt(P ) is a partial function: it is undefined if P can immediately make an urgent
action, such as evaluation of expressions or output actions. If Φt(P ) is defined,
it returns the process resulting from letting t time units elapse in P . Φt(P ) may
return a failed state, if delay t makes a deadline in P expire. The definition
of Φt(P1 | P2) relies on two auxiliary functions: Wait(P ) and NEQueue(P ) (see
[11] for the full definition). Wait(P ) returns the set of channels on which P (or
some syntactic sub-term of P ) is waiting to receive a message/label. NEQueue(P )
returns the set of endpoints with a non-empty inbound queue. For example,
Wait(at(b). Q) = Wait(at Ź {li : Pi}i∈I) = {a} and NEQueue(ba : h) = {a} given
that h = H. Φt(P1 | P2) is defined only if no urgent action could immediately
happen in P1 | P2. For example, Φt(P1 | P2) is undefined for P1 = at(b). Q and
P2 = ba : v.

In the rest of this section we show the reductions of two processes: one with
urgent actions (Example 5), and one to a failed state (Example 6). We omit
processes that are immaterial for the illustration (e.g., unused queues).

Example 5 (Urgency and undefined Φt). We show the reduction of process P =
(νab)(a ‘Hi’.Q | ab : H | b10(c). P ′) that has an urgent action. Process P can
make the following reduction by [Send]:

P ⇀ (νab)(Q | ab : ‘Hi’ | b10(c). P ′)

At this point, to apply rule [Delay], say with t = 5, we need to apply the time-
passing function as shown below:

Φ5((νab)(a ‘Hi’.Q | ab : ‘Hi’ | b10(c). P ′)) = (νab)(a ‘Hi’.Q | Φ5(ab : ‘Hi’ | b10(c). P ′))

which is undefined. Φ5(ab : H | b10(c). P ′) is undefined because Wait(b10(c). P )X
NEQueue(ab : ‘Hi’) = {b} = H. Since Φ5(P ′) is undefined. Instead, the message
in queue ab can be received by rule [Rcv]:

(νab)(Q | ab : ‘Hi’ | b10(c). P ′) ⇀ (νab)(Q | ab : H | P [‘Hi’/c])

Example 6 (An execution with failure). We show a reduction to a failing state of
a process with a non-blocking receive action (expecting a message immediately)
composed with another process that sends a message after a delay.



600 L. Bocchi et al.

delay(x = 3). a ‘Hi’.Q | ab : H | b0(c). P apply [Det]
⇀ delay(3). a ‘Hi’.Q | ab : H | b0(c). P = P ′ apply [Delay] with t = 3
⇀ Φ3(P ′)

The application of the time-passing function to P ′ yields a failing state (a mes-
sage is not received in time) as shown below, where the second equality holds
since Wait(b0(c). P ) X NEQueue(ab : H) = H:

Φ3(delay(3). a ‘Hi’.Q | b0(c). P | ab : H) =
Φ3(delay(3). a ‘Hi’.Q) | Φ3(b0(c). P | Φ3(ab : H)) =
delay(0). a ‘Hi’.Q | failed | ab : H

6 Typing for Asynchronous Timed Processes

We validate programs against specifications using judgements of the form Γ $
P Ź Δ. Environments are defined as follows:

Δ :: = H | Δ, a : (ν, S) | Δ, ab : M Θ :: = H | Θ ∪ {Δ}
Γ :: = H | Γ, a : T | Γ,X : (T ;Θ)

Environment Δ is a session environment, used to keep track of the ongoing
sessions. When Δ(a) = (ν, S) it means that the process being validated is acting
as a role in session a specified by S, and ν is the clock valuation describing a
(virtual) time in which the next action in S may be executed. We write dom(Δ)
for the set of variables and channels in Δ. Environment Γ maps variables a to
sorts T and process variables X to pairs (T ;Θ), where T is a vector of sorts
and Θ is a set of session environments. The mapping of process variable is used
to type recursive processes: T is used to ensure well-typed instantiation of the
recursion parameters, and Θ is used to model the set of possible scenarios when
a new iteration begins.

Notation, assumptions, and auxiliary definitions. We write Δ+ t for the session
environment obtained by incrementing all clock valuations in the codomain of
Δ by t.

Definition 8. We define the disjoint union A�B of sets of clocks A and B as:

A � B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}

where inl and inr are one to one endofunctions on clocks and, for all x ∈ A and
y ∈ B, inl(x) �= inr(y). With an abuse of notation, we define the disjoint union
of clock valuations ν1, ν2, in symbols ν1 � ν2, as a clock valuation satisfying:

ν1 � ν2(inl(x)) = ν1(x) ν1 � ν2(inr(x)) = ν2(x)

We use the symbol
⊎

for the iterate disjoint union.
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For a configuration (ν, S) we define val((ν, S)) = ν, and type((ν, S)) = S. We
overload function val to session environments Δ as follows:

val(Δ) =
⊎

a∈dom(Δ)

val(Δ(a))

We require Θ to satisfy the following three conditions:

1. If Δ ∈ Θ and Δ(a) = (ν, S), then S is well-formed (Definition 1) against ν;
2. For all Δ1 ∈ Θ, Δ2 ∈ Θ: type(Δ1(a)) = S iff type(Δ2(a)) = S;
3. There is guard δ such that:

{ν | ν |= δ} =
⋃

Δ∈Θ

val(Δ).

The last condition ensures that Θ is finitely representable, and is key for decid-
ability of type checking.

Example 7. We show some examples of Θ that do or do not satisfy the last
requirement above. Let S1 =!T (x � 2).end and S2 =!T (y � 2).end, and let:

Θ1 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) � 2 ∧ ν1(x) = ν2(y)};
Θ2 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) �

√
2 ∧ ν1(x) = ν2(y)};

Θ3 = {Δ | Δ(a) = (ν1, S1) ∧ Δ(b) = (ν2, S2) ∧ ν1(x) + ν2(y) = 2}.
We have that Θ1 satisfies condition (3): let δ1 = x � 2 ∧ y − x = 0. It is easy to
see that {ν | ν |= δ1} =

⋃
Δ∈Θ val(Δ). For Θ2, a candidate proposition would

be δ2 = x �
√

2 ∧ y − x = 0. However, δ2 can not be derived with the syntax of
propositions, as

√
2 is irrational. Indeed, Θ2 does not satisfy the condition. For

Θ3, let δ3 = x + y = 2. Again, δ3 is not a guard, as additive constraints in the
form x + y = n are not allowed. Indeed, also Θ3 does not satisfy the condition.

In the following, we write a : T for a1 : T1, . . . , an : Tn when a = a1, . . . , an and
T = T1, . . . , Tn (assuming a and T have the same number of elements). Similarly
for b : (ν, S). In the typing rules, we use a few auxiliary definitions: Definition 9
(t-reading Δ) checks if any ongoing sessions in a Δ can perform an input action
within a given timespan, and Definition 10 (Compatibility of configurations)
extends the notion of duality to systems that are not in an initial state.

Definition 9 (t-reading Δ). Session environment Δ is t-reading if there exist
some a ∈ dom(Δ), t′ < t and m such that: Δ(a) = (ν, S) ∧ (ν + t′, S) ?m−→.

Namely, Δ is t-reading if any of the open sessions in the mapping prescribe a
read action within the time-frame between ν and ν + t. Definition 9 is used in
the typing rules for time-consuming processes – [Vrcv], [Drcv], and [Delt] – to
‘disallow’ derivations when a (urgent) receive may happen.

Definition 10 (Compatibility of configurations). Configuration (ν1,
S1, M1) is compatible with (ν2, S2, M2), written (ν1, S1, M1)⊥(ν2, S2, M2), if:
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1. M1 = H ∨ M2 = H,

2. ∀i = j ∈ {1, 2} : Mi = m; M′i ⇒ ∃ν′
i, S

′
i,m

′ : (νi, Si)
?m′
−→ (ν′

i, S
′
i) ∧ m < :

m′ ∧ (ν′
i, S

′
i, M

′
i)⊥(νj , Sj , Mj),

3. M1 = H ∧ M2 = H ⇒ ν1 = ν2 ∧ S1 = S2.

By condition (3) initial configurations are compatible when they include dual
types, i.e., (ν0, S, H)⊥(ν0, S, H). By condition (2) two configurations may tem-
porarily misalign as execution proceeds: one may have read a message from
its queue, while the other has not, as long as the former is ready to receive it
immediately. Thanks to the particular shape of type’s interactions, initial con-
figurations – of the form (ν0, S, H)⊥(ν0, S, H) – will only reach systems, say
(ν1, S1, M1)⊥(ν2, S2, M2), in which at least one between M1 and M2 is empty. Con-
dition (1) requires compatible configurations to satisfy this basic property.

Typing rules. The typing rules are given in Fig. 5. Rule [Vrcv] is for input
processes. The first premise consists of two conditions requiring the time-span
[ν, ν + n] in which the process can receive the message to coincide with δ:

– ν + t |= δ ⇒ t � n rules out processes that are not ready to receive a message
when prescribed by the type.

– t � n ⇒ ν + t |= δ requires that an(b). P can read only at times that satisfy
the type prescription δ.2

The second premise of [Vrcv] requires the continuation P to be well-typed against
the continuation of the type, for all possible session environments where the
virtual time is somewhere between [ν, ν +n], where the virtual valuation ν in the
mapping of session a is reset according to λ. Rule [Drcv], for processes receiving
delegated sessions, is like [Vrcv] except: (a) the continuation P is typed against
a session environment extended with the received session S′, and (b) the clock
valuation ν′ of the receiving session must satisfy δ′. Recall that by formation
rules (Sect. 2.1) S′ is well-formed against all ν′ that satisfy δ′.

Rule [Vsend] is for output processes. Send actions are instantaneous, hence
the type current ν needs to satisfy δ. As customary, the continuation of the
process needs to be well-typed against the continuation of the type (with ν
being reset according to λ, and Γ extended with information on the sort of
b). [Dsend] for delegation is similar but: (a) the delegated session is removed
from the session environment (the process can no longer engage in the delegated
session), and (b) valuation ν′ of the delegated session must satisfy guard δ′.

Rule [Delδ] checks that P is well-typed against all possible solutions of δ.
Rule [Delt] shifts the virtual valuations in the session environment of t. This is
as the corresponding rule in [12] but with the addition of the check that Δ is
not t-reading, needed because of urgent semantics.

Rule [Res] is for processes with scopes.

2 While not necessary for our safety results, this constraint simplifies our theory. Tim-
ing variations between types and programs are all handled in one place: rule [Subt].



Asynchronous Timed Session Types 603

Rule [Rec] is for recursive processes. The rule is as usual [21] except that
we use a set of session environments Θ (instead of a single Δ) to capture a set
of possible scenarios in which a recursion instance may start, which may have
different clock valuations. Rule [Var] is also as expected except for the use of Θ.

Rules [Par] and [Subt] straightforward.

Example 8 (Typing with subtyping). Subtyping substantially increases the
power of our type system, in particular in the presence of channel passing. Intu-
itively, without subtyping, the type of any higher-order send action should be an
equality constraint (e.g., x = 1) rather than more general timeout (e.g., x < 1).
We illustrate our point using P defined below:

P = (νa1b1)(νa2b2)(P1 | P2 | P3 | Q) P1 = delay(x � 1). a1 a2

P2 = b11(c). c
2(d) P3 = delay(1 � x ∧ x � 2). b2 true

where Q contains empty queues of the involved endpoints. Intuitively, P proceeds
as follows: (1) P1 sends channel a2 to P2 within one time unit, and terminates;
(2) P2 reads the message as soon as it arrives, and listens for a message across the
received channel (a2) for two time units; (3) P3 sends value true through channel
b2 at a time in between 1 and 2, unaware that now she is communicating with
P2, and then terminates; (4) P2 reads the message immediately and terminates.
See below for one possible reduction:

P −→∗ (νa1b1)(νa2b2)(a1 a2 | b01(c). c
2(d) | delay(0 � x ∧ x � 1). b2 true) | Q)

−→∗ (νa1b1)(νa2b2)(0 | a2
2(d) | delay(0.5). b2 true | Q)

−→ (νa1b1)(νa2b2)(0 | a1.5
2 (d) | b2 true | Q)

−→∗ (νa1b1)(νa2b2)(0 | 0 | 0 | Q)

Although P executes correctly, the involved processes are well-typed against
types that are not dual:

$ P1 Ź a1 : (ν0, S1), a2 : (ν0, S2) $ P2 Ź b1 : (ν0, S′
1) $ P3 Ź b2 : (ν0, S2)

for S1 =!(y � 1, S2)(x � 1), S2 =?Bool(1 � y ∧ y � 2), S′
1 =?(y = 0, S′

2)(x � 1).
In order to type-check P , we need to apply rule [Res], requiring endpoints of the
same session to have dual types. But clearly: S′

1 = S1. Without subtyping, P
would not be well-typed. By subtyping, however, (y � 1, S2) < : (y = 0, S′

2) with
S′
2 =?Bool(y � 2).end, and then S′

1 < : S′
1. Thanks to the subtyping rule [subt]

we can derive $ P2 Ź b1 : (ν0, S1) and, in turn, $ P Ź H.

7 Subject Reduction and Time Safety

The main properties of our typing system are Subject Reduction and Time
Safety. Time Safety ensures that the execution of well-typed processes will only
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Fig. 5. Selected typing rules for processes

reach fail-free states. Recall, P is fail-free when none of its sub-terms is the
process failed. Time Safety builds on a condition that is not related with time,
but with the structure of the process interactions. If an untimed process gets
stuck due to mismatches in its communication structure, a timed process with
the same communication structure may move to a failed state. Consider P below:

P = (νab)(νcd)Q R = ab : H | ba : H | cd : H | dc : H
Q = a5(e). d e.0 | c5(e). b e.0 | R

(13)

P is well-typed: H $ P Ź a : (ν0, S), b : (ν0, S), c : (ν0, S), d : (ν0, S) with S =
?Int(x � 5, H).end. However, P can only make time steps, and when, overall,
more than 5 time units elapse (e.g., 6 in the reduction below) P reaches a failed
state due to a circular dependency between actions of sessions (νab) and (νcd):

P −→ Φ6(Q) = (νab)(νcd) (failed | failed | R)
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Our typing system does not check against such circularities across different inter-
leaved sessions. This is common in work on untimed [21] and timed [12] session
types. However, in the untimed scenario, progress for interleaved sessions can be
guaranteed by means of additional checks on processes [17]. Time Safety builds
on the results in [17] by using an assumption (receive liveness) on the under-
neath structure of the timed processes. This assumptions is formally captured
in Definition 11, which is based on an untimed variant of our calculus.

The untimed calculus. We define untimed processes, denoted by P̂ , as processes
obtained from the grammar given for timed processes (Sect. 5) without delays
and failed processes. In untimed processes, time annotations of branching/receive
processes are immaterial, hence omitted in the rest of the paper.

Given a (timed) process P , one can obtain its untimed counter-part by eras-
ing delays and failed processes; we denoted the result of such erasure on P by
erase(P ). The semantics of untimed processes is defined as the one for timed
processes (Sect. 5) except that reduction rules [Delay], [TStr], and [Red2], are
removed. Abusing the notation, we write P̂ −→ P̂ ′ when an untimed process P̂
moves to a state P̂ ′ using the semantics for untimed processes. The definitions of
Wait(P̂ ) and NEQueue(P̂ ) can be derived from the definitions for timed processes
in the straightforward way.

Definition 11 (receive liveness) formalises our assumption on the interaction
structures of a process.

Definition 11 (Receive liveness). P̂ is said to satisfy receive liveness (or is
live, for short) if, for all P̂ ′ such that P̂ −→∗ P̂ ′:

P̂ ′ ≡ (νab)Q̂ ∧ a ∈ Wait(Q̂) =⇒ ∃Q̂′ : Q̂ −→∗ Q̂′ ∧ a ∈ NEQueue(Q̂′)

In any reachable state P̂ ′ of a live untimed process P̂ , if any endpoint a in P̂ ′ is
waiting to receive a message (a ∈ Wait(Q̂)), then the overall process is able to
reach a state Q̂′ where a can perform the receive action (a ∈ NEQueue(Q̂′)).

Consider process P in (13). The untimed process erase(P ) is not live
because Wait(erase(P )) = {a, c} and a, c �∈ NEQueue(erase(P )), since
NEQueue(erase(P )) is the empty set. Syntactically, erase(P ) is as P , but it
does not have the same behaviour. P can only make time steps, reaching a failed
process, while erase(P ) is stuck, as untimed processes only make communication
steps.

Properties. Time safety relies on Subject Reduction Theorem 4, which estab-
lishes a relation (preserved by reduction) of well-typed processes and their types.

Theorem 4 (Subject reduction for closed systems). Let erase(P ) be
live. If H $ P Ź H and P −→ P ′ then H $ P ′ Ź H.

Note that Subject Reduction assumes erase(P ) to be live. For instance, the
example of P in (13) is well-typed, but erase(P ) is not live. The process can
reduce to a failed state (as illustrated earlier in this section) that cannot be
typed (failed processes are not well-typed). Time Safety establishes that well-
typed processes only reduce to fail-free states.
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Theorem 5 (Time safety). If erase(P ) is live, $ P ŹH and P −→∗ P ′,
then P ′ is fail-free.

Typing is decidable if one uses processes annotated with the following informa-
tion: (1) scope restrictions (νab : S)P are annotated with the type S of the
session for endpoint a (the type of b is implicitly assumed to be S and both
endpoints are type checked in the initial clock valuation ν0); (2) receive actions
an(b : T ). P are annotated with the type T of the received message; (3) recur-
sion X(a : T ; a : S, δ) = P are annotated with types for each parameter, and
a guard modelling the state of the clocks. We call annotated programs those
annotated processes derived without using productions marked as run-time (i.e.,
failed and delay(t). P ), and where n in an(b : T ). P ranges over Q�0 ∪ {∞}.
Proposition 2. Type checking for annotated programs is decidable.

8 Conclusion and Related Work

We introduced duality and subtyping relations for asynchronous timed session
types. Unlike for untimed and timed synchronous [6] dualities, the composition
of dual types does not enjoy progress in general. Compositions of asynchronous
timed dual types enjoy progress when using an urgent receive semantics. We
propose a behavioural typing system for a timed calculus that features non-
blocking and blocking receive primitives (with and without timeout), and time
consuming primitives of arbitrary but constrained delays. The main properties
of the typing system are Subject Reduction and Time Safety; both results rely
on an assumption (receive liveness) of the underneath interaction structure of
processes. In related work on timed session types [12], receive liveness is not
required for Subject Reduction; this is because the processes in [12] block (rather
than reaching a failed state) whenever they cannot progress correctly, hence
e.g., missed deadline are regarded as progress violations. By explicitly capturing
failures, our calculus paves the way for future work on combining static checking
with run-time instrumentation to prevent or handle failures.

Asynchronous timed session types have been introduced in [12], in a multi-
party setting, together with a timed π-calculus, and a type system. The direct
extension of session types with time introduces unfeasible executions (i.e., types
may get stuck), as we have shown in Example 1. [12] features a notion of fea-
sibility for choreographies, which ensures that types enjoy progress. We ensure
progress of types by formation and duality. The semantics of types in [12] is
different from ours in that receive actions are not urgent. The work in [12] gives
one extra condition on types (wait-freedom), because feasible types may still
yield undesirable executions in well-typed processes. Thanks to our duality, sub-
typing, and calculus (in particular the blocking receive primitive with timeout)
this condition is unnecessary in this work. As a result, our typing system allows
for types that are not wait-free. By dropping wait-freedom, we can type a class
of common real-world protocols in which processes may be ready to receive mes-
sages even before the final deadline of the corresponding senders. Remarkably,
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SMTP mentioned in the introduction is not wait-free. For some other aspects,
our work is less general than the one in [12], as we consider binary sessions rather
than multiparty sessions. A theory of timed multiparty asynchronous protocols
that encompasses the protocols in [12] and those considered here is an interesting
future direction. The work in [6] introduces a theory of synchronous timed ses-
sion types, based on a decidable notion of compatibility, called compliance, that
ensures progress of types, and is equivalent to synchronous timed duality and
subtyping in a precise sense [6]. Our duality and subtyping are similar to those
in [6], but apply to the asynchronous scenario. The work in [15] introduces a
typed calculus based on temporal session types. The temporal modalities in [15]
can be used as a discrete model of time. Timed session types, thanks to clocks
and resets, are able to model complex timed dependencies that temporal session
types do not seem able to capture. Other work studies models for asynchronous
timed interactions, e.g., Communicating Timed Automata [23] (CTA), timed
Message Sequence Charts [2], but not their relationships with processes. The
work in [5] introduces a refinement for CTA, and presents a notion of urgency
similar to the one used in this paper, preliminary studied also in [29].

Several timed calculi have been introduced outside the context of behavioural
types. The work in [32] extends the π- calculus with time primitives inspired in
CTA and is closer, in principle, to our types than our processes. Another timed
extension of the π-calculus with time-consuming actions has been applied to the
analysis the active times of processes [18]. Some works focus on specific aspects
of timed behaviour, such as timeouts [9], transactions [24,27], and services [25].
Our calculus does not feature exception handlers, nor timed transactions. Our
focus in on detecting time violations via static typing, so that a process only
moves to fail-free states.

The calculi in [7,12,15] have been used in combination with session types.
The calculus in [12] features a non-blocking receive primitive similar to our
a0(b). P , but that never fails (i.e., time is not allowed to flow if a process tries
to read from an empty buffer—possibly leading to a stuck process rather than
a failed state). The calculus in [7] features a blocking receive primitive without
timeout, equivalent to our a∞(b). P . The calculus in [15], seems able to encode
a non-blocking receive primitive like the one of [12] and a blocking receive prim-
itive without timeout like our a∞(b). P . None of these works features blocking
receive primitives with timeouts. Furthermore, existing works feature [7,12] or
can encode [15] only precise delays, equivalent to delay(x = n). P . Such punc-
tual predictions are often difficult to achieve. Arbitrary but constrained delays
are closer abstractions of time-consuming programming primitives (and possibly,
of predictions one can derive by cost analysis, e.g., [20]).

As to applications, timed session types have been used for run-time mon-
itoring [7,30] and static checking [12]. A promising future direction is that of
integrating static typing with run-time verification and enforcement, towards a
theory of hybrid timed session types. In this context, extending our calculus with
exception handlers [9,24,27] could allow an extension of the typing system, that
introduces run-time instrumentation to handle unexpected time failures.
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