l‘)

Check for
updates

Verifiable Certificates for Predicate
Subtyping

Frederic Gilbert(®)

Inria, Cachan, France
frederic.a.gilbert@inria.fr

Abstract. Adding predicate subtyping to higher-order logic yields a very
expressive language in which type-checking is undecidable, making the
definition of a system of verifiable certificates challenging. This work
presents a solution to this issue with a minimal formalization of pred-
icate subtyping, named PVS-Core, together with a system of verifiable
certificates for PVS-Core, named PVS-Cert. PVS-Cert is based on the
introduction of proof terms and explicit coercions. Its design is similar to
that of PTSs with dependent pairs, with the exception of the definition
of conversion, which is based on a specific notion of reduction — g, cor-
responding to [-reduction combined with the erasure of coercions. The
use of this reduction instead of the more standard reduction — g, allows
to establish a simple correspondence between PVS-Core and PVS-Cert.
On the other hand, a type-checking algorithm is designed for PVS-Cert,
built on proofs of type preservation of —g, and strong normalization
of both —g, and —g.. Combining these results, PVS-Cert judgements
are used as verifiable certificates for predicate subtyping. In addition, the
reduction — g, is used to define a cut elimination procedure for predicate
subtyping. This definition provides a new tool to study the properties of
predicate subtyping, as illustrated with a proof of consistency.

Keywords: Higher-order logic + Predicate subtyping - Type theory -
Proof theory

1 Introduction

Extending higher-order logic with predicate subtyping yields a very expressive
type system, used notably at the core of the proof system PVS [17]. However,
proof judgements and typing judgements become entangled in the presence of
predicate subtyping, making type-checking undecidable. As a consequence, defin-
ing a language of verifiable proofs for predicate subtyping becomes challenging.
In pure higher-order logic, complete judgement derivations are too heavy to be
used in practice as certificates, but lighter certificates can be produced by remov-
ing typing rules, recording deduction rules only: as this approach requires the
decidability of type-checking, it doesn’t apply directly to predicate subtyping.
This paper presents a new formal language, PVS-Cert, designed to be used
as a language of verifiable certificates for predicate subtyping. PVS-Cert is built

© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 440-466, 2019.
https://doi.org/10.1007/978-3-030-17184-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_16

Verifiable Certificates for Predicate Subtyping 441

starting from a minimal formalization of predicate subtyping named PVS-Core,
by adding explicit proofs and coercions. PVS-Cert is also equipped with a notion
of cut elimination, which can be used directly to study both PVS-Cert and PVS-
Core meta-theoretical properties.

1.1 Extending Higher-Order Logic with Predicate Subtyping

Higher-order logic is characterized by the coexistence of types and predicates as two
radically different kinds of attributes to mathematical expressions. For instance,
the mathematical expression 1 + 1 can be assigned a type Nat expressing that it
is a natural number, or a predicate Even expressing that it is divisible by two. The
assignment of types remains very simple: in particular, type-checking is decidable
in higher-order logic. In return, most attributes of mathematical expressions for-
mulated as predicates cannot be formulated as types: for instance, being a natural
number different from 0 is expressible as a predicate, but not as a type.

Predicate subtyping allows to recover a symmetrical situation between the
expressivity of types and predicates. It is defined as the addition of new types,
referred to as predicate subtypes. Given a predicate P defined on a domain A (e.g.
Even, defined on the domain Nat), the predicate subtype {z : A | P(x)} is defined.
An expression t can be assigned this type if and only if it can be assigned the type A
and P(t) is provable. For instance, if Nonzero is a predicate of domain Nat express-
ing the difference of a natural number from 0, proving Nonzero(1) allows to con-
clude that 1 admits the type {x : Nat | Nonzero(z)}.

This augmented expressivity of the language of types permits to exclude many
unwanted expressions from reasoning. For instance, defining the denominators
domain of Euclidean division as {x : Nat | Nonzero(z)}, all divisions in which
the denominator is not provably different from zero become ill-typed.

As expressions may have several types, predicate subtyping induces a form
of subtyping: for instance, as any expression of type {z : Nat|Nonzero(z)} also
admits the type Nat, the former can be considered as a subtype of the latter.

As previously mentioned, a major counterpart of this extension of higher-order
logic is the fact that typing judgements and proof judgements become entangled.
For instance, proving the equality (1/1) = 1 requires that 1 can be assigned the
type {z : Nat|Nonzero(x)}, which, in turn, requires to prove Nonzero(1). As a
direct consequence, type-checking is not decidable in the presence of predicate sub-

typing.

1.2 Contributions

PVS-Core. Higher-order logic, as well as its extension with predicate subtyp-
ing, can be defined in various ways. The first contribution of this paper is the for-
malization, in Sect. 2, of a minimal system for predicate subtyping, denoted PVS-
Core. Besides its minimality, the main design choice for this system is the use of
(-equivalence as a conversion relation (or definitional equality).

442 F. Gilbert

PVS-Cert and Its Basic Properties. Starting from PVS-Core, the second
contribution of this work is the formalization, in Sect.3, of a language of veri-
fiable proofs for PVS-Core. This new language, denoted PVS-Cert, is designed
from PVS-Core with the addition of explicit proof terms, formalized as A-terms,
as well as the addition, at the level of expressions, of explicit coercions based on
these proof terms. The addition of explicit proof terms follows the Curry-Howard
isomorphism in the sense that PVS-Cert proofs terms are typed by their corre-
sponding formulas.

PVS-Cert is an extension of the Pure Type System (PTS) A-HOL (see for
instance [4], where \-HOL as well as the general notion of PTS are defined). More
precisely, PVS-Cert is designed to extend A-HOL in the same way that PVS-Core
extends higher-order logic (denoted HOL in the following). This situation is illus-
trated in this diagram, where vertical arrows represent extensions and horizontal
arrows represent the introduction of explicit proofs (and, in the case of PVS-Core
and PVS-Cert, of explicit coercions).

PVS-Core PVS-Cert

HOL A-HOL

This choice of a PTS-like system is well-suited to describe reasoning modulo
(: all steps of B-reduction or S-expansion are kept implicit in proof terms, which
allows to keep them compact. As detailed in Sect. 3.3, PVS-Cert is comparable to
the formalism of PTSs with dependent pairs. However, conversion in PVS-Cert
is neither defined as =3 nor as its extension =g, (see for instance [16]) used in
PTSs with dependent pairs: instead, it uses a new conversion relation =g, corre-
sponding to syntactical equality modulo S-reduction and coercion erasure (defined
in Sect. 3.1). This distinctive definition allows to define a simple correspondence
between PVS-Core and PVS-Cert — presented later in Sect. 9.

Basic properties of PVS-Cert are presented in Sect. 4, containing notably the
Church-Rosser property for the reduction — g, underlying the conversion =g., as
well as the uniqueness of types: contrary to the case of PVS-Core, a well-typed
term admits a unique type up to =g..

Asin \-HOL, well-typed terms are organized according to a stratification, pre-
sented in Sect. 5, which includes a class of types, a class of expressions (containing
notably propositions), and a class of proof terms. This stratification is at the core
of the correspondence between PVS-Cert and PVS-Core.

Type Preservation and Strong Normalization. In contrast to the case of
the reduction —g, in PTSs with dependent pairs, — g, is not a type preserving
reduction in PVS-Cert. We prove however in Sect. 6 that — g, is a type preserving
reduction in PVS-Cert (Theorem 6).

In Sect. 7, we present the main ideas leading to a proof of strong normalization
for both — g, and —g, (Theorem 7) — the details of the proof can be found in the

Verifiable Certificates for Predicate Subtyping 443

author’s PhD dissertation [1]. Moreover, the strong normalization of the type pre-
serving reduction — g, defines a cut elimination theorem (Theorem 8). This theo-
rem is used in the remainder of this section to prove the consistency of PVS-Cert.
This result is used in turn at the very end of this work to conclude the consistency
of PVS-Core, illustrating how cut elimination in PVS-Cert can be used to study
the meta-theoretical properties of predicate subtyping.

Type-Checking in PVS-Cert. We present in Sect.8 the design of a type-
checking algorithm for PVS-Cert, showing that, contrary to the case of PVS-Core,
type-checking is decidable in PVS-Cert. This algorithm is based on the type preser-
vation of — g, as well as the strong normalization of — g, and —g,.

Using PVS-Cert as a System of Verifiable Certificates for PVS-Core.
The connection between PVS-Core and PVS-Cert is formalized in Sect. 9. On the
one hand, a translation from PVS-Cert to PVS-Core is defined through the era-
sure of coercions. On the other hand, the choice of conversion =g, in PVS-Cert
allows to define a very simple translation from PVS-Core derivations to PVS-Cert
derivable judgements (Definition 7 and Theorem 11).

These translations are used in Sect. 10 together with the PVS-Cert type-
checking algorithm to define how to use PVS-Cert judgements as verifiable cer-
tificates for PVS-Core, reaching the first purpose of this paper. Such certificates
are much lighter than the PVS-Core derivations represented through them, as they
only require to record one single judgement.

Last, the translations between PVS-Core and PVS-Cert are exploited to trans-
pose the consistency property, established in PVS-Cert using cut elimination, to
PVS-Core. This illustrates how the PVS-Cert cut elimination theorem can be used
to study both PVS-Cert and PVS-Core meta-theoretical properties.

1.3 Related Works

The most important related work is the author’s PhD dissertation [1], which con-
tains detailed versions of all proofs presented in this paper.

The introduction of predicate subtyping can be traced back to the first-order
language OBJ2 [9] and its sort constraints, allowing to restrict some typing rela-
tions to the satisfaction of a predicate. This idea was later refined and combined
with higher-order logic in the proof system PVS, which is one of the most impor-
tant systems based on predicate subtyping. Overviews of the PVS specification
language and its use of predicate subtyping are given for instance in [17] and [20].

In the present work, the issue of the undecidability of predicate subtyping is
handled with the introduction of an alternative system, PVS-Cert. An alternative
approach to this issue is to weaken the definition of predicate subtyping sufficiently
to obtain systems in which type-checking remains decidable. This approach has
been followed in [13,19]. A intermediary situation is followed in [15], in which pred-
icate subtyping is weakened sufficiently to allow for run-time type-checking veri-
fications. However, contrary to the case of PVS, predicate subtyping is not fully
represented in these different systems.

444 F. Gilbert

As mentioned in the previous section, PVS-Cert is an adaptation of the formal-
ism of Pure Type Systems (PTSs) —sometimes also referred to as Generalized Type
Systems (GTSs) —, presented for instance in [4]. The definition of PTSs is itself the
result of several successive works, including notably [3,7,11,24-26]. More specif-
ically, PVS-Cert is derived from the notion of PTSs with dependent pairs, which
has its roots in the system ECC [16]. A subsystem of PVS-Cert, named PVS-Cert ™~
and presented in Sect. 3, corresponds directly to a fragment of ECC (PVS-Cert ™ is
the system obtained from PVS-Cert by replacing =g, by the standard conversion
=g, of PTSs with dependent pairs). PVS-Cert™ is also comparable to the notion
of subset types in Coq [5]. However, contrary to PVS-Cert, PVS-Cert~ and sub-
set types are not well-suited to reflect predicate subtyping, as conversion in these
systems does not reflect conversion in PVS-Core — more precisely, Proposition 5
doesn’t hold with =g,

Another important related work is [8], in which two systems are presented:
ICCy, a type system with implicit type constructions, and AICCyg, a system
obtained from ICC x by adding explicit coercions. ICC 5 contains several advanced
features, including a generalization of predicate subtypes. The construction of
PVS-Cert from PVS-Core follows the same idea as the construction of AICCyx
from ICCx: adding the missing information explicitly in the terms of the language
to recover the decidability of type-checking. The main difference between the two
approaches lies in the complexity of the respective languages. ICCy; is a very rich
and complex language, making its analysis difficult — in particular, strong normal-
ization in ICCy is kept as a conjecture, on which the decidability of type-checking
itself relies. Conversely, PVS-Core is designed as a minimal language including
predicate subtyping, making its analysis simpler.

A variant of predicate subtyping was also formalized as an extension of the cal-
culus of constructions in [22]. As in the present work, this presentation contains
two systems connected with each other. On the one hand, it includes one system,
named Russell, which is comparable to a weakened version of PVS-Core in which
a term t of type A admits the type {z : A | P} even when P[t/x] is not provable.
In this variant of predicate subtyping named subset equivalence, type-checking is
decidable. On the other hand, this work includes a system with explicit coercions
which is comparable to PVS-Cert. Contrary to PVS-Core, Russell derivations are
not intended to contain all information necessary to build complete terms with
explicit coercions: instead, a translation producing incomplete terms in the sys-
tem with explicit coercions is presented. This system allows to write programs and
specifications together in Russell, and to prove their correctness in a second step
by filling all proof holes produced through the translation, in a way which is similar
to the functioning of PVS.

Contrary to the case of PVS-Core and Russell, PVS-Cert and the counterpart
of Russell with explicit coercions have similar characteristics. Although its theo-
retical properties are not formalized, this latter system is presented as a simple
extension of the proof-irrelevant type theory presented in [27]. There exists indeed
a tight connection between proof irrelevance and PVS-Cert: if one considers for
instance the usual predicate Even on natural numbers expressing divisibility by
two, the predicate subtype even = {x : Nat | Even(x)}, and two expressions
with explicit coercions (2, p) even and (2, @) eper, of this type with p and g two proofs

Verifiable Certificates for Predicate Subtyping 445

of Even(2), then the hypothesis of proof irrelevance ensures that the expressions
(2, D) even and (2, q) even are convertible, as does the choice of conversion relation
=3, in PVS-Cert.

This relation between proof irrelevance and predicate subtyping is explored
further in [27]. Besides the fact that this work is based on the calculus of construc-
tions and besides some technical differences in the precise definition of conversion
between the system presented in this paper and PVS-Cert, analyzing the strong
relation between these two systems appears as a very interesting future work. In
particular, it would provide a possible strategy for building a proof of strong nor-
malization for this system from the proof of strong normalization presented in
Sect. 7. Also following the relation between proof irrelevance and predicate sub-
typing, the system IITT presented in [2], which is equipped with explicit occur-
rences of irrelevant terms, also admits some similarities with PVS-Cert. However,
it is restricted to predicative type theory, in which higher-order reasoning cannot
be expressed.

Another important work carried out on predicate subtyping is the presenta-
tion of a formal semantics for PVS in [18]. This work defines, for some fragment
of the PVS language including predicate subtyping but also other features such
as parametric theories, set-theoretical interpretations of types and expressions.
These interpretations are limited to standard interpretations: the interpretation of
a function type is the set of all functions from the interpretation of the domain to
the interpretation of the co-domain, and the interpretation of the type of propo-
sitions is a set containing exactly two elements, distinguishing true propositions
from false ones. Such an approach is complementary to the presented paper, which
is only focused on the distinction between provable propositions and unprovable
ones. As a possible future work, it would be interesting to adapt the work presented
in [18] to obtain a notion of standard model for PVS-Core.

2 PVS-Core: A Minimal Extension of HOL with Predicate
Subtyping

This section is dedicated to the first contribution of this work: the formalization
of a minimal system for predicate subtyping. This system is named PVS-Core,
in reference to PVS [17]. The main distinctive design choice for PVS-Core is the
introduction of a conversion relation (or definitional equality), corresponding to
(-equivalence.

2.1 Definitions

Variables and Terms. We first define a set of variables V as the disjoint union
of two infinite countable sets of symbols Vezpressions and Viypes. We introduce the
generic notation v or w to refer to a variable in general, as well as the following
specific notations:

— The notation X or Y refers to variables in Viypes-
— The notation z or y refers to variables in Vegpressions-

446 F. Gilbert

Then, we define a set of terms as the disjoint union of the three following sets.
The last two are defined together recursively.

— The first set contains a unique symbol: T'ype.

— The second set is the set of types. It is given with the following grammar:
A,B:=X|Prop|Ilx: AB|{x:A|P}

— The last set is the set of expressions. It is given with the following grammar:
tu,P,Q:=a|Ve: AP |P=Q| x:At|tu

Remark 1. There is no formal distinction between the expressions denoted ¢ or u
and the expressions denoted P or @), as all of them refer to expressions in general.
Yet, in the following, the notations P and @ will be often used to refer to expres-
sions admitting the type Prop, also referred to as formulas or propositions.

Declarations, Contexts, Judgements. We define:

— Three kinds of declarations:
X :Type|xz:A|P

— Contexts, denoted I, as lists of declarations:
=g |IX :Type|x:A|I,P

— Four kinds of judgements:
I'-WF|I'A:Type | ’'Ft:A|T'FP

We use the notation DV (I) to refer to the set of variables declared in a context
I": for instance, DV (P,z : A, X : Type) = {z, X }.

Reduction. We equip PVS-Core terms with the usual G-reduction. In the fol-
lowing, we use the notation >g for the reduction of a S-redex, — g for the context
closure of >g, —» g for the reflexive transitive closure of —3, and =g for the sym-
metric closure of —» g, i.e. f-conversion.

Derivation Rules. The rules of PVS-Core are the following;:

Well-formed contexts

————— EMPTY ' wr
o+ WF T X Type F WF X € Viypes \DV(I') TYPEDECL

'+ P: Prop 't A: Type

“TPrWF ASSUMPTION TaArwr *€ Vewpressions \DV (I') ELTDECL

‘Well-formed types

I+~ Wr . '+ Wr
'+ X :Type (X ’ Type) €' TypEVAR '+ Prop : Type Prop
I'z: AF B : Type I''z: AR P: Prop
Pr1 SUBTYPE

I'FIIz: A.B: Type I'-{z:A|P}:Type

Verifiable Certificates for Predicate Subtyping 447

Well-typed expressions

' WF 'tt:{z:A| P}
——————— (x:A) € ' ELTVAR
Tz A (x:A)€ Tt A SUBTYPEELIM1
INz:A+t:B L I'tt:IIx: A.B I'Fu:A App
I'Fac:At:llz: AB MM I'F tu: Blu/a]
Ix:AF P: Prop P I''PFQ: Prop I
I'+-Vz:A.P: Prop ORALL I'P=Q: Prop MPLY
I'kt: A I'+ P[t/z] I't{x:A|P}:Type S I
Tri {z: AP} UBTYPEINTRO
rt: A Ir=B:T
ype A =3 B TYPECONVERSION
I'Ht: B
Deductions
I+ WF I'-P I'Q: Prop o
Trp P eI’ AxioMm Iro P =3 QQ PROPCONVERSION
LPEQ . . r'cP=Q rer -
FFPSQ MPLYINTRO TFo MPLYELIM
x:AFP F I I'-Vz: AP I'Ht: A FORALLELIM
[+Vz:Ap & ORALLINTRO I+ P[t/z]

I'tt:{z:A|P}
I't Plt/z]

SUBTYPEELIM2

2.2 A Minimal System Expressing Predicate Subtyping

Predicate subtyping is expressed in PVS-Core with the term construction {z : A |
P} and the following rules:

— SUBTYPE, the rule of formation of predicate subtypes.
— SUBTYPEINTRO, which is a rule of introduction.
— SuBTYPEELIM1 and SUBTYPEELIM2, which are rules of elimination.

The system obtained from PVS-Core by removing the construction {z : A | P}
and these four rules is a formulation of constructive higher-order logic. In partic-
ular, the types of this subsystem correspond to the expected simple types: for any
type of the form ITx : A.B in this subsystem, x cannot appear free in B, hence this
type is a non-dependent function type. As a consequence, the rule TYPECONVER-
SION can be safely removed from this subsystem to obtain a simpler but equivalent
formulation of higher-order logic.

PVS-Core is a minimal constructive system, which can be extended with clas-
sical reasoning or extensionality principles through the addition of axioms.

The rule PROPCONVERSION allows to consider reasoning modulo 3, which will
be useful in the definition of PVS-Core to keep proof terms compact. The rule

448 F. Gilbert

TyYPECONVERSION is its counterpart at the level of types, allowing to consider
typing modulo (as well.

3 PVS-Cert: Verifiable Certificates for PVS-Core

This section is dedicated to the presentation of an alternative system, PVS-Cert,
which will be used to achieve the purpose of the work: defining a language of veri-
fiable certificates for predicate subtyping.

At first glance, there is no need to introduce any new system to design PVS-
Core certificates: the language of PVS-Core derivations itself is a language of veri-
fiable proofs for PVS-Core. However, this language is heavy as many parts of PVS-
Core derivations contain unnecessary or redundant information. As a comparison,
in higher-order logic, as type-checking is decidable, only the deduction rules need
to be recorded.

The main idea in the definition of PVS-Cert as a language of certificates for
predicate subtyping is to formalize proofs as new kinds of terms, in addition to
the types and expressions which are already present in PVS-Core, and to intro-
duce explicit coercions based on these proof terms in order to ensure the decidabil-
ity of type-checking. As a consequence, a complete certificate is simply the typing
judgement of some proof term with its corresponding theorem. Such certificates are
much lighter than PVS-core derivations, as only one single judgement is recorded.

Moreover, PVS-Cert will be equipped (in Sect. 7) with a definition of cut elim-
ination, defined as a computation rule on proof terms.

3.1 Definitions

As detailed further in Sect. 3.2, the definition of PVS-Cert is strongly related to
the formalism of PTSs, presented for instance in [4].

Terms. We define:

— Sorts S = {Prop, Type, Kind}

We use the notation s to refer to a sort.

— Axioms A = {(Prop, Type), (Type, Kind)}

Rules R = {(Prop, Prop, Prop), (Type, Type, Type), (T'ype, Prop, Prop)}

— Variables The set of variables V is the disjoint union of three infinite countable
sets of SymbOlS Vproofsy Vewpressionsa and Vtypes~ The sets Vewpressions and Vtypes
refer to their respective definitions in PVS-Core, while the set Vp,o0¢5 is new.
We use the notation v to refer to a variable and s(v) to refer to the unique sort
s such that v € V.

— Terms 7 is given by the following grammar:
M,N,T.U:=s|v|X:TM|MN |Iv:TU |{v:T|U} | (M,N)r |
T (M) | mo(M)

Verifiable Certificates for Predicate Subtyping 449

Contexts, Judgements. We define:

— Contexts I':=@ | [v: T
— Judgements '+ WF | '+ M : T

As in PVS-Core, set of variables declared in a context I" is denoted DV (I").

Reduction. The main specificity of PVS-Cert is the use of a distinctive notion
of reduction and conversion. In addition to the usual S-redex reduction (\v :
T.M)N g M[N/v], we introduce a new reduction relation >, defined with the
following rules:

— (My, Ma)p vy My
— 7T1(M) D>y M

We denote the union of >g and >, as >g.. As in the definition of PVS-Core, we use
the notation — g, for the context closure of >g,, =g, for the reflexive transitive
closure of — g,, and =g, for the symmetric closure of —g..

The new relation >, which can be interpreted as the elimination of a coercion
at the head of a term, allows the expression of predicate subtyping in PVS-
Cert. More detailed motivations and justifications for this definition are given in
Sect. 3.3.

Derivation Rules. The rules of PVS-Cert are defined as follows:

srwE MY T U € VAPV Dron
'+~ WF I'=M:T I'-U:s _
—— (v: T =5+ U CONVERSION
Tro.r WiT)El Var TFM:U B
I+ WF
Wysz(shsz)efl SORT
I'ET:s; Lv:THU: s

T'F Io:T.U : s3 (s1,52,53) € R PROD

Hv:THM:U I'tMv:TU:s L

I'tEX:T.M:ITv:T.U AM
I'EM:Iv:T.U I'EN:T

App

I'+ MN : U[N/v]
I'=T:Type Iv:THU: Prop S

I'-{v:T|U}: Type UBTYPE
I'-M:T I'N:U[M/v] I'{v:T|U}: Type

PAIrR
I+ <M7N>{'U:T\U} : {’U :T I U}

I'-M:{v:T|U} I'tM:{v:T|U}
I m@n.T RO TF ma(M) : Ulmi (M) /o] | ROI2

450 F. Gilbert

3.2 An Extension of »-HOL

PVS-Cert is an extension of the PTS A-HOL (see for instance [4]). More precisely,
A-HOL can be obtained from PVS-Cert by removing the term constructions {v :
T | U}, mi(M), and (M, N)r, removing the rules SUBTYPE, PAIR, PROJ1, and
PRroJ2, and replacing =g, by =g in the CONVERSION rule.

As PTS-like systems, the formalism of PVS-Cert allows to describe reasoning
modulo 3: all steps of g-reduction or B-expansion in reasoning are kept implicit,
which allows to keep proof terms compact, making PVS-Cert more scalable. More-
over, the choice of formalization of PVS-Cert as a PTS-like system allows to trans-
pose some PTS properties to PVS-Cert, such as the thinning property and the
substitution property mentioned in the next section. It also allows to describe this
system using a small number of rules in comparison with PVS-Core, making the
proof of certain expected properties of PVS-Cert lighter.

The well-typed terms of PVS-Cert are classified into the same classes as in the
case of A-HOL, involving a class of types, a class of expressions, and a class of proof
terms. This property is presented in Sect. 5, and referred to as stratification.

3.3 Expressing Predicate Subtyping

The expression of predicate subtyping in PVS-Cert is enlightened through the
stratification: indeed, in any derivable judgement,

— terms of the form {v : T'| U} are types, expressing predicate subtypes

— terms of the form (M, N)r or m1 (M) are expressions, and correspond respec-
tively to explicit coercions going from a type to one of its predicate subtypes
and back

— terms of the form mo (M) are proofs, expressing the PVS-Core deduction rule
SUBTYPEELIM2.

As mentioned in the introduction, this formalism used to express predicate sub-
typing is very similar to the formalism of dependent pairs, used for instance in
the type system ECC [16]. More precisely, the terms {v : T' | U} are compara-
ble with types of dependent pairs (usually denoted X'v : T.U), the terms (M, N)r
are comparable with dependent pairs, and the terms m;(M) are comparable with
projections.

The only difference between PVS-Cert and the formalism of dependent pairs
lies in the choice of conversion =g.: in the case of a system with dependent pairs,
=g. is replaced by the more standard conversion =g,. This conversion is defined
from the usual reduction m; (M, Ma)r >, M;. We define the relations >g,, —go,
— g0, and =g, in a similar way to the definitions of >g., —g«, = g«, and =g..

Applied to types or expressions, the conversion =g, includes the more standard
conversion =g, (this property is a direct consequence of Theorem 5 together with
the Church-Rosser property of — 3,). However, this inclusion is strict: for instance,
it is not difficult to find two well-typed terms (M, Ny)r and (M, No)r which are
not convertible using =g, although they are convertible using =g..

Verifiable Certificates for Predicate Subtyping 451

Asadirect consequence of this property, PVS-Cert is an extension of the system
obtained from it by replacing =g. by =3, and this extension is strict. In this paper,
this subsystem will be referred to as PVS-Cert ™. It is a PTS with dependent pairs,
and corresponds more precisely to the system obtained from the PTS A-HOL by
adding the single dependent pair rule (T'ype, Prop, T'ype). It is strictly included in
the type system ECC presented in [16].

An mentioned in the introduction, this choice of a strictly more flexible con-
version allows to define a very simple translation from PVS-Core derivations to
PVS-Cert derivable judgements. Indeed, using =g. ensures that two PVS-Cert
types (resp. expressions) are convertible as long as the corresponding types (resp.
expressions) in PVS-Core are also convertible, which allows to define a very simple
translation from PVS-Core derivations to PVS-Cert derivable judgements (Defi-
nition 7 and Theorem 11).

The reduction —g. underlying conversion does not preserve typing: for
instance, the judgement z : Prop,h : & {(z,h)r : T with T = {y : Prop | y}
is derivable, and (z,h)r —g« =, but : Prop,h : F x : T is not derivable.
However, as presented in Sect. 6, the reduction — g, is type preserving, and will
be used both as a definition of cut elimination for PVS-Cert proofs (Sect.7) and
in the definition of a type checking-algorithm (Sect. 8).

4 Properties of PVS-Cert

One of the most important properties satisfied by PVS-Cert is the Church-Rosser
property.

Theorem 1 (Church-Rosser for —g3.). Whenever My =g, Ma, there exists N
such that My =g, N and My —g, N.

Proof. T equipped with — g, is an orthogonal combinatory reduction system (as
defined in [14]), as rules are left-linear and non-overlapping. As proved in [14], such
a system admits the Church-Rosser property.

In the case of PTSs, the Church-Rosser property of —g is at the core of the
type preservation of —g. In the case of PVS-Cert, the situation is different, as
— 34 is not a type preserving reduction. However, in a first step, the Church-Rosser
property of — g, will be used to establish the expected stratification theorem, pre-
sented in Sect. 5. In a second step, the Church-Rosser property of — g, will be used
again together with the stratification theorem to establish the type preservation of
an alternative reduction, — g, used both as a definition of cut elimination (Sect. 7)
and at the core of the definition of a type-checking algorithm (Sect. 8).

Another important property of PVS-Cert used to design a type-checking algo-
rithm is the uniqueness of types modulo conversion. As presented in Sect. 8, this
property allows — together with the decidability of =g, on well-typed terms — to
reduce the problem of type-checking to a problem of type inference. This property
also underlines the fact that, even though PVS-Cert is designed to reflect predicate
subtyping, it doesn’t admit any subtyping itself. The proof of type uniqueness is
standard, and does not involve any specific difficulty.

452 F. Gilbert

Theorem 2 (Uniqueness of types). If two judgements I' = M : Ty and I'
M : T are derivable, then Ty =g, T1.

PVS-Cert also satisfies several other standard properties expected from PTSs
and PTSs extended with dependent pairs, among which thinning and substitution,
described for instance in [4], as well as context conversion, described for instance in
[21], which is based on the extension of conversion to contexts. In these three cases,
the corresponding proofs are straightforwardly adapted from the case of PTS.

We end this section with the following important theorem, which also holds in
A-HOL. The proof is adapted from the case of A-HOL and does not involve any
specific difficulty.

Theorem 3. IfI' = M : T is derivable and T # Kind, there ezists a sort s such
that ' =T : s.

5 Stratification in PVS-Cert

The stratification of terms in PVS-Cert reveals a strong link between PVS-Cert
and PVS-Core (defined in Sect. 9), in the same way that the stratification of terms
in A-HOL reveals its link with higher-order logic. The property of stratification
holds for several other systems, such as the injective PTSs presented in [11] —in this
paper, PTSs are referred to as GTSs, and this result is referred to as classification.

The main lemma used to establish such a result is the fact that, whenever the
rule of conversion is used in some derivation, the two terms involved in the con-
version belong to the same class of terms. The simplest way to prove this result is
to choose classes of terms that are stable under reduction and to conclude using
the Church-Rosser theorem. In the case of injective PT'Ss, these classes are specific
classes of well-typed terms, and the stability under reduction follows from the type
preservation of — 3.

However, as mentioned in Sect. 3.3, type preservation does not hold for — g, in
PVS-Cert. For this reason, we will choose a relaxed definition of stratified terms,
where the different classes are not restricted to well-typed terms. Using this relaxed
definition, it will be possible to prove, even in the absence of type preservation for
— 3, that most classes of stratified terms are stable by reduction with —g,.

We first present three classes of terms: types, expressions, and proofs. The
expected property of stability by reduction will only be proved for types and
expressions (Proposition 1), which is not problematic as the conversion rules are
never directly applied to proofs in valid derivations.

Definition 1 (Variables stratification). We introduce the notations:

- XY, Z for variables in Viypes
- x,9, 2 for variables in Vezpressions
— h for variables in Vproofs

Verifiable Certificates for Predicate Subtyping 453

Definition 2 (Stratified terms). We define stratified terms as follows.

—- Types A,B:=X | Prop | IIx: A.B|{z:A| P}
-~ Expressions

t,u,P,Q:=x |IIx: AP|ITh: PQ | x: At |tu]| {t, M)a|mi(t)
— Proofsp,q:=h|Ah:Pp|Xx:Ap|pq|pt]|m(t)

Remark 2. As in the case of PVS-Core (Remark 1), there is no formal distinction
between the notations ¢, u, P, and @ although, in the following, the notations of
expressions P,) will be preferred for expressions of type Prop.

The most important remark on the definition of stratified terms is the fact that
any pair (t, M) 4 (where t is an expression and A is a type) is accepted as a cor-
rect expression: the term M used in it can be arbitrary, and in particular it is not
required to be a proof term. This choice is due to the fact that proofs are not sta-
ble by — g, for instance, (Ah : z.h)y is a proof, but y is not. Hence, compared to
the alternative of restricting pairs to terms of the form (¢, p) 4, the present relaxed
definition is necessary to ensure the stability of types and expressions under — g,
which is formalized in the following proposition — the proof does not involve any
specific difficulty, as the definitions of types and expressions are designed to satisfy
this property.

Proposition 1. Whenever M —g. N and M is a type (resp. an expression), so
s N.

Beyond its use in the proof of the stratification theorem (Theorem 4), this sta-
bility property is also directly useful in the proof of the strong normalization the-
orem for — g, and —g,, as briefly mentioned in Sect. 7.

Finally, we present the expected stratification theorem, based on the following
definitions.

Definition 3 (Stratified contexts, stratified judgements). We define

- stratified contexts as contexts in which all declarations have the form X :
Type, x : A (for some type A), or h : P (for some expression P).

- stratified judgements as judgements of one of the following forms, in which
I’ is a stratified context:

'+ WFr I' F Type : Kind
'+ A:Type I'Ht: A
I'kp:P

Theorem 4 (Stratification). Any derivable judgement is stratified.

Proof. The proof is straightforward by induction on the derivation. In the case
of CONVERSION, Proposition 1 and the Church-Rosser property of — g, are used
together to conclude that the two convertible terms are either both expressions,
both types, both Type, or both Kind. Basic stability properties of types and
expressions under substitution are also involved in the cases PROJ2 and APP. They
are proved directly by induction.

454 F. Gilbert

6 A Type Preserving Reduction

Contrary to the case of PTSs (resp. PTSs with dependent pairs), in which —g
(resp. — o) is a type preserving reduction, — g, is not a type preserving reduc-
tion in PVS-Cert. Instead, we present in this section the type preservation of the
reduction — g, in PVS-Cert. This reduction will be used both as a definition of
cut elimination for PVS-Cert proofs (Sect. 7) and in the type-checking algorithm
(Sect. 8).

The specificity of this proof of type preservation compared to similar results
for PTSs lies in the fact that M —g, N does not imply M =g, N in general.
However, this implication always holds if M is either a type or an expression — the
corresponding proof involves no particular difficulty.

Theorem 5. Whenever M —g, N and M is a type (resp. an expression), so is
N, and M =g, N.

Finally, the type preservation theorem for — g, is the following.

Theorem 6. Given a derivable judgement I' = M : T, and N such that M —g,
N, the judgement I' = N : T is derivable.

Proof. The proof is done by induction on the derivation. The situations where
M g, N and the cases where M g, N are separated. We present here one case
for each situation — the full proof can be found in the author’s PhD dissertation [1].

— We illustrate the situation where M £3, N with the case of the rule PROD,
which involves Theorem 5. Discarding the notations of the original statement,
we describe the last inference step with the following new notations:

I'ET:s; Lv:THU: s
I'EIv:T.U : s3

If the reduction occurs in U, we conclude directly by induction hypothesis. If the
reduction occursin T, we write T' — g, T”. By induction hypothesis, I' - T" : s4
is derivable. By the stratification theorem, v € Vs, , hence I'lv : T = WF' is
derivable using the DECL rule. By the stratification theorem and Theorem 5,
T =g, T". Hence, using the second premise and context conversion (mentioned
in Sect.4), v : T' - U : s9 is derivable. Finally, using PrROD, I' - ITv : T".U :
s3 is derivable.

— We illustrate the situation where M >g, N with the case of the rule PrROJ1. As
M is a first projection and M >g, N, M is a o-redex. We replace the notation
M and T of the original statement by 71 (M, N)p>g, M and T”. In this setting,
the last inference step has the following form:

I't(M,N)r :{v:T"|U'}
F|_7T1<M,N>TZT/

(81,82753) € R PRroD

ProJl

Analyzing the derivation of the premise (and more precisely the last rule differ-
ent from CONVERSION used in it, which is necessarily PAIR), we conclude that
T has the form {v : T” | U"} where {v : TV | U’} =g, {v : T | U"} and

Verifiable Certificates for Predicate Subtyping 455

't (M,N)p:{v:T" | U"} admits a derivation ending with an inference step

of the form

't M:T" 't N:U"[M/v 't{v:T"|U"}: Type
I't(M,N)r :{v:T"|U"}

We derive the expected judgement I" - M : T from the first premise of this
latter derivation using conversion. For this, we need to prove T” =g, T’ and
to derive I' = T” : s for some s. These two requirements are proved as follows.
On the one hand, we establish 7" =g, T’ from {v : T | U"} =g« {v : T' |
U’} using the Church-Rosser property (Theorem 1). On the other hand, by the
stratification theorem, 77 # Kind, hence we can use Theorem 3 on the original
conclusion to establish that I" = T” : s is derivable for some sort s, as expected.

PAIrR

7 Strong Normalization and Cut Elimination

This section is dedicated to the strong normalization of both — g, and — g, on well-
typed PVS-Cert terms. These two reductions will be used separately in Sect. 8 to
define a type-checking algorithm for PVS-Cert: more precisely, the reduction — g,
is used to decide whether two well-typed terms are convertible with =g., while
the type preserving reduction — g, will be used in the type-checking of applica-
tions. Moreover, the strong normalization of — g, combined with its type preser-
vation property provides a cut elimination theorem, which is a powerful tool to
study properties of both PVS-Cert and PVS-Core. Its use is illustrated in a proof
of consistency of PVS-Cert (Theorem 9), used in turn to establish the consistency
of PVS-Core (Theorem 12) at the end of this paper.

7.1 Strong Normalization

A direct approach to prove the strong normalization of —g, and — g, for well-
typed terms would be to prove the strong normalization for well-typed terms of
their union, referred to as — ... Unfortunately, this reduction is not strongly ter-
minating on well-typed terms, as shown in the following proposition.

Proposition 2. There exists a well-typed term admitting an infinite reduction
USING — Box -

Proof. We first define two well-typed terms M and N such that M N admits an
infinite reduction. It is simple to find two such terms, using the fact that PVS-Cert
is an extension of System F [12]. For instance:

— Wetake T = IIP : Prop.Ilh : P.P together with M = Ah : T.h T h and
N=X:TMN:T.RTh

— M admits the type ITh : T.T and N admits the type ITh' : T.ITh : T.T.

— MN admits an infinite reduction MN —gox N T N —goe MN —ggs ...

Using these terms, we build the expected counter-example of normalization of
—gox as follows:

456 F. Gilbert

— We define N = AP : Prop.A\h : Ph,T ={xz: Prop| IIh : T.ITh: T.T}, and
U={y:T|T}

— It is straightforward to show that M w3 ((T, N)7, N')y admits the type T.

— M m{({T,N)pr, N')u = g0+ M N, hence it admits an infinite reduction.

Because of Proposition 2, we keep the expected strong normalization theorem
in PVS-Cert formulated as follows.

Theorem 7 (Strong normalization). For any derivable judgement ' = M : T,
M is strongly normalizing under both — g, and —g.:

— any reduction sequence starting from M and using — g, terminates
— any reduction sequence starting from M and using — g, terminates

The proof of this theorem is left out of the scope of this paper. It is detailed in
the author’s PhD dissertation [1]. We simply highlight here some of its specifici-
ties, which illustrate the consequences of the choice, in PVS-Cert, of a conversion
relation which is not based on a type-preserving reduction.

— The proof uses Tait’s approach based on saturated sets (see for instance [23]).
However, only one single notion of saturated set is used: saturated sets are
defined here as specific subsets of the set of terms which are both strongly nor-
malizing under — g, and strongly normalizing under —g.. As a consequence,
compatibility properties for such saturated sets must be proved with respect to
both reductions.

— Following Tait’s approach, an interpretation function is defined in order to
prove that, whenever term M admits a type 7', it belongs to the interpretation
of T', which is the main theorem established to conclude strong normalization.
The definition of this function is inspired from the definitions of Girard in [12]
for the strong normalization of F'’ — which corresponds to A-HOL without type
declarations —, but several ideas are also taken from [10], which presents, among
other things, a proof of strong normalization of an extension of the calculus of
constructions with dependent pairs.

— As the interpretation function is expected to be stable under — g, its domain
cannot be restricted to well-typed terms only, as well-typed terms are not stable
under — g,.. For this reason, it is chosen to define this interpretation function on
the classes of types and expressions, as presented in the definition of stratified
terms (Definition 3): indeed, this specific definition, which uses arbitrary terms
instead of proof terms in the construction (t, M) 4, is designed to ensure the
stability of types and expressions under — g..

7.2 Cut Elimination in PVS-Cert

The following cut elimination theorem is a direct corollary of the strong normal-
ization theorem and the type preservation of —g,.

Theorem 8 (Cut elimination). Whenever some PVS-Cert judgement of the
form I' & p : P is derivable for some proposition P and some proof p, p can
be reduced using the reduction — g, to a normal form q such that the judgement
I'tq: P is derivable.

Verifiable Certificates for Predicate Subtyping 457

Proof. By the strong normalization theorem, p can be reduced to a normal form
q using the reduction —g,. By the type preservation theorem (Theorem 6), the
judgement I' I ¢ : P is derivable.

We conclude this section showing how the cut elimination theorem can be used
together with the properties of terms in normal form with respect to — g, as a tool
to analyze some meta-theoretical properties of PVS-Cert. As presented at the end
of this work, this approach will also allow to use cut elimination in PVS-Cert to
analyze some meta-theoretical properties of PVS-Core. This use of cut elimination
is illustrated with the following proof of consistency.

Theorem 9. PVS-Cert is consistent: there exists no proof term p such that b p :
Ilx : Prop.z is derivable.

We use the following notion of elimination context in the proof:

Definition 4 (Elimination contexts). We define the set of elimination contexts
E with the grammare := o | w;(e) | e M.
For any term N we define the instantiation e[N] by

[N =N mi(e)[N] = mi(e[V]) (eM)[N] = (e[N])M

Proof (Theorem 9). We suppose that there exists a proof p such that the judge-
ment - p : IIx : Prop.z admits some derivation, and find a contradiction in the
following way. Using the thinning property (mentioned in Sect.4), z : Prop b p :
Ilx : Prop.z is also derivable. Hence, applying the rule LAaM followed by the rule
APp,F Az : Prop.(px) : Iz : Prop.z is derivable.

By the cut elimination Theorem 8, Az : Prop.(pz) admits a normal form Az :
Prop.q with respect to — g, which is such that the judgement - Az : Prop.q :
IIx : Prop.x is derivable.

Considering the last rule different from CONVERSION used in such a deriva-
tion (which is necessarily LAM), and using the stratification theorem, there exists
a derivable judgement = : Prop I- g : t for some expression t =g, x. Hence, using
CONVERSION, z : Prop F q : z is also derivable. We consider D a possible deriva-
tion of this judgement.

As ¢ is a proof and is in normal form with respect to — g, we conclude from
a careful case analysis that ¢ has one of the following forms: Av : T.M or e[v].
We discard the first possibility as follows. If ¢ = Av : T.M, considering the last
rule different from CONVERSION used in D (which is necessarily LAM), there exists
some term of the form ITv' : T".U’ such that ITv' : T".U’ =g, z. By the Church-
Rosser property (Theorem 1), this conversion cannot hold. As a consequence, g
has the form e[v] for some elimination context e and some variable v.

Considering the last rule different from CONVERSION, PROJ1, PROJ2, or APP
used in D (which is necessarily VAR), some judgement of the form « : Propt v : T
is derivable, and v = z. As ¢ is a proof, e[z] = ¢ # x. Hence, D admits some
subderivation of a judgement of the form x : Prop b at' : T or x : Prop - m;(z) :
T’. Considering the last rule different from CONVERSION in such a derivation, and
using the uniqueness of types (Theorem 2), this implies that there exists a term U

458 F. Gilbert

of the form ITv' : Ty. T or {v' : Ty | T»} such that U =g, Prop. By the Church-
Rosser property (Theorem 1), this conversion cannot hold. As a consequence, there
exists no proof term p such that the judgement - p : ITx : Prop.x is derivable.

8 Type-Checking in PVS-Cert

The purpose of this section is to present the main ideas leading to the definition of
a type-checking algorithm for PVS-Cert. The decidability of type-checking is one
of the most important results expected for PVS-Cert. In particular, it will be used
in Sect. 10 together with the translation from PVS-Core derivations to PVS-Cert
established in Sect. 9 to show that PVS-Cert judgements can be used as verifiable
certificates for PVS-Core.

This algorithm is mainly based on the type preservation Theorem 6 and the
strong normalization Theorem 7 presented in the previous sections. In this section,
we will only focus on the main specificities of the algorithm. Its precise definition,
as well as the proofs of its soundness, termination, and completeness can be found
in the author’s PhD dissertation [1].

The algorithm is comparable to the algorithm presented in [6] for the general
case of injective PTSs (which applies to A-HOL). Besides the fact that our algo-
rithm is extended to handle predicate subtypes, coercions (M, N')r and projections
m; (M), the main difference between the two is the use of both reductions — g, and
— 3¢ in the case of PVS-Cert, while only — 4 is used for injective PTSs.

On the one hand, — g,-normalization is used to check =g.-conversion on well-
typed terms: by the Church-Rosser property and strong normalization, two well-
typed terms are =g.-equivalent if and only if they admit the same normal form,
which is unique. As in [6], this decision procedure for conversion on well-typed
terms is used in turn together with the uniqueness of types (Theorem 2) to define
type-checking from type inference, which is itself defined recursively.

Remark 3. In order to avoid redundant context well-formedness verifications in
the multiple recursive calls of the type inference algorithm, we choose here to check
the well-formedness of a context I" beforehand when inferring a type for some term
M in I'. For this reason, type inference and type-checking are defined in two steps.
First, we define auxiliary type inference and type-checking algorithms which are
only ensured to operate soundly with well-formed contexts. Then, we use these
auxiliary functions to define context well-formedness verification as well as com-
plete type inference and type-checking algorithms, which operate soundly with any
context.

On the other hand, — g, is used in type inference to handle applications:
I'EM:IIv:T,.15 I'EN:Ty
I' MN : T5[N/v]
In this situation, the recursive call on the first premise may produce a term

U such that I' M : U is derivable, but U is not ensured to have the form
ITv : U;.U; — counterexamples can be easily found when M is a proof and U is

App

Verifiable Certificates for Predicate Subtyping 459

a proposition. The usual solution to this issue, used e.g. in [6], is to reduce U using
the reduction underlying conversion (or more specifically its restriction to weak
head reduction, which is more economic): indeed, using the uniqueness of types as
well as strong normalization, type preservation, and the Church-Rosser property,
it can be proved that a term U’ will be obtained, that M admits the type U’, and
that U’ has the form ITv : U;.Us if M admits a type of this form.

However, in the case of PVS-Cert, this approach cannot be followed directly,
as the reduction underlying conversion, which is — ., is not type preserving: U’
is not necessary a valid type for M. For this reason, we use instead the type pre-
serving reduction — g, (again, we use more specifically its restriction to weak head
reduction, which is more economic). Using the strong normalization theorem, this
operation terminates and yields some term U”'. As a direct corollary of type preser-
vation (based on Theorems 3 and 5), M admits the type U”. What is left is to prove
that U"” has the form ITv : U;.Us if M admits a type of this form, which is done
as follows. If M admits a type of the form ITv : T1.T3, then U" =5, ITv : T1. 1%
by the uniqueness of types. Hence, analyzing the possible forms of the weak head
normal form U” and using the Church-Rosser property, we conclude that U” has
the form ITv : U;.Us, as expected.

Compared to [6], new cases must be added for predicate subtypes, coercions
(M, N)r, and projections m; (M). These cases are handled in a similar way as in the
case of PT'Ss with dependent pairs (see for instance ECC [16]), and don’t involve
any specific difficulty. Instead, a more distinctive specificity of the algorithm lies
in the case of A-abstraction:

Fv:THM:U I'-Mv:TU:s
I'tX:TM:Hv:T.U

LAM

As in the case of injective PTSs studied in [6], applying a recursive call on this
second premise would be problematic. On the one hand, it would make the algo-
rithm slower. On the other hand, it would break the simplicity of the proof of termi-
nation, based on the fact that recursive calls of type inference are done on subterms
exclusively.

A general solution for this issue, applicable to any injective PTSs, is presented
in [6] using some classification of terms to avoid this unwanted recursive call. The
solution selected for PVS-Cert follows the same approach, adapted to the strati-
fied terms of PVS-Cert. It relies on a classifying algorithm LEVEL(+), which ensures
that whenever M is either an expression, a type, T'ype, or Kind, then LEVEL(M)
is either 1, 2, 3, or 4 respectively. As it is specifically suited to PVS-Cert, this def-
inition is simpler than the classification presented in [6], which is intended to be
applicable to a wide family of type systems. The algorithm is defined as follows:

Definition 5. We define the algorithm LEVEL(:) by recursion on its argument.
The possible cases are the following.

— LEVEL(Kind) = 4, LEVEL(Type) = 3, LEVEL(Prop) = 2

— LEVEL(IIv : T.U) = LEVEL(U), LEVEL({v : T | U}) = 2, LEVEL(X) = 2
— In all other cases, LEVEL(M) = 1

460 F. Gilbert

9 Expressing PVS-Core in PVS-Cert

The final purpose of PVS-Cert is to encode PVS-Core derivations as PVS-Cert
judgements, and to use the type-checking algorithm presented in Sect. 8 to use
these judgements as verifiable certificates. In this perspective, we define a corre-
spondence between PVS-Core and PVS-Cert. This correspondence reflects the fact
that, even though these two systems are very different at the level of terms and
judgements, they are almost identical at the level of derivations.

9.1 An Erasing Function from PVS-Cert to PVS-Core

We begin the description of this correspondence with a translation from PVS-Cert
to PVS-Core, referred to as erasing. This translation mainly consists in the erasure
of PVS-Cert explicit coercions (-, M) 4 and 7y (+).

Definition 6. We define an erasure function [-] from PVS-Cert expressions,
types, and Type to PVS-Core terms recursively as follows.

[Type] = Type [] == [{t, M) a] = [1]
[Prop] = Prop [Me : At] = Az : [A].[t] [()] = [t]
[X] =X [t u] = [t][u]

[[1x : A.B] = Iz : [A].[B] [[Iz : A.P] = Vx : [A].[P]

He: Al P ={=:[A] [P} [Ih: PQ]=[P]=[C]

Then, we extend straightforwardly [-] from PVS-Cert stratified contexts to PVS-
Core contexts: for instance, [P,z : A, X : Type] = [P],x : [A], X : Type.

Last, we extend straightforwardly [-] from all PVS-Cert stratified judgements
except those of the form I' + Type : Kind to PVS-Core judgements. For instance,
[x: A, X : Typetp: P] =z : [A], X : Type b [P]. The PVS-Cert judgements
of the form I' = Type : Kind are not translated.

By the stratification theorem in PVS-Cert, all PVS-Cert derivable judgements
are stratified judgements. Hence, unless they have the form I' - Type : Kind,
their erasure in PVS-Core is well-defined. We will prove in Theorem 10 that they
are derivable in PVS-Core. This theorem relies in particular on the fact that con-
version in PVS-Cert and PVS-Core are related through the erasure function [-],
established in the following proposition. The corresponding proof does not involve
any specific difficulty.

Proposition 3. For all terms M and N which are either expressions, types, or
Type, whenever M =g, N, then [M] =g [N].

Using the two previous propositions and the stratification theorem in PVS-
Cert, we conclude the following theorem, which allows to map PVS-Cert deriva-
tions to PVS-Core derivations.

Verifiable Certificates for Predicate Subtyping 461

Theorem 10. Every derivable PVS-Cert judgement either has the form I' +
Type : Kind or admits an image through [-]. In the latter case, this image is deriv-
able in PVS-Core.

Proof. The first part of the proof is a direct consequence of the stratification theo-
rem. The second part is proved by induction on the height of PVS-Cert derivations.
All cases are straightforward, using the stratification theorem when necessary to
establish a correspondence between stratified versions of PVS-Cert rules and PVS-
Core rules. For instance:

— DECL corresponds either to TYPEDECL, ELTDECL, or ASSUMPTION

— SORT corresponds to PROP only (judgements of the form I" - Type : Kind are
not translated)

— PROD corresponds either to P1, FORALL, or IMPLY

9.2 Expressing PVS-Core Derivations as PVS-Cert Judgements

Theorem 10 shows that a PVS-Cert derivable judgement can testify to the PVS-
Core derivability of another judgement: its erasure. In this section, we show con-
versely that, given any PVS-Core derivation, we can build such a PVS-Cert judge-
ment. For this purpose, we first present an algorithm CERTIFICATE, which trans-
lates a PVS-Core derivation into a PVS-Cert judgement. In a second step, we will
prove that such PVS-Cert judgements are always derivable in PVS-Cert.

Definition 7. For any PVS-Core derivation D, we define recursively the PVS-
Cert stratified judgement CERTIFICATE(D) such that [CERTIFICATE(D)] corre-
sponds to the conclusion of D.

In this definition, we use an injective function h(-) mapping natural numbers to
PVS-Cert proof variables, which can be chosen arbitrarily. We present two cases:
ASSUMPTION, which shows how h(-) is used, and IMPLYELIM. This latter case (as
well as FORALLELIM) is more complex than others as it involves the computation
of a normal form with respect to >, i.e. the erasure of coercions at the head of a
term. The other cases are detailed in the author’s PhD dissertation [1].

I'=P: Prop

- W ASSUMPTION

We consider Dy the derivation of I' - P : Prop. CERTIFICATE(D;) has the
form It = Py : Prop. We consider n the number of declarations of the form

(h: Q) in I, and we define CERTIFICATE(D) = I'1, h(n) : P + WF.
rep=qQ TIFP

I'tQ

We consider Dy and D4 the respective derivations of ' F P = Q and I’ - P.
CERTIFICATE(D3) has the form I's b py : Py and CERTIFICATE(D;) has the
formIn F py 2 Q). As[Q)] = (P = @), its normal form with respect to 1,
has the form ITh : P;.Q1. We define CERTIFICATE(D) = Iy F p1pa : Q1[p2/h].
As all proof terms are deleted through the erasure function, [Q1[p2/h]] = [@1]-
On the other hand, by induction hypothesis, [Q1] = Q, hence the erasure of this
judgement is I' = @, as expected.

IMmPLYELIM

462 F. Gilbert

9.3 Relating Conversion in PVS-Core and PVS-Cert

In order to prove that the outputs of the algorithm CERTIFICATE are derivable in
PVS-Cert (presented in Theorem 11), the main required lemma is the fact that is
the converse of Proposition 3: for any terms M and N which are either expressions,
types, or T'ype and which verify [M] =g [N], then M =3. N. More precisely, this
property will be used in the proof of Theorem 11 to handle the cases of conversion
rules TYPECONVERSION and PROPCONVERSION.

We first establish a modified version of this expected result, using equality and
=, instead of =3 and =g, respectively. The proof is straightforward by induction
on the two involved terms.

Proposition 4. For all terms M and N which are either expressions, types, or
Type, whenever [M] = [N], then M =, N.

Then, we establish the expected converse of Proposition 3 as follows.

Proposition 5. For all terms M and N which are either expressions, types, or
Type, whenever [M] =g [N], then M =g, N.

Proof. We present a proof based on the definition of a simple translation of PVS-
Core terms as PVS-Cert expressions, types, or Type, which does not introduce any
explicit coercion: for instance,

— [z : A.B] = Iz : |A].[B]
— [P = Q] = IIh: [P].]Q] for an arbitrary proof variable h

We first show straightforwardly that the respective images through [-] of two
terms related by =3 are also related by =g. As a consequence, [[M]] =g [[N]]-

On the other hand, it is straightforward to show that [-] is a right inverse of the
erasure function [-]. Hence, [[[M]]] = [M]. By Proposition 4, we conclude that
[[M]] =« M. Following the same reasoning, [[N]] =. N.

As a consequence, M =g, [[M]] =« [[N]] =p« N.

9.4 Soundness of the Synthesis of Certificates

The last proposition needed to prove the soundness of the algorithm CERTIFICATE
is the following. It shows that the operation of normalization through >, (which
erases the coercions 71 () and (-, M) at the head of a term) is safely used in the
definition of CERTIFICATE.

Proposition 6. For any derivable PVS-Cert judgement of the form I' + t :
{Zn..{z1: Prop| Q1}... | Qn}, if t admits a normal form with respect to >, which
has the form v : M. T, then I' = ITv : M. T : Prop is derivable.

Verifiable Certificates for Predicate Subtyping 463

In fact, only the specific case n = 0 is used in the proof of soundness of
CERTIFICATE, but this generalization is preferred as it admits a direct proof by
induction on ¢, which does not involve any specific difficulty.

Last, we present the expected soundness property for CERTIFICATE:

Theorem 11. For any PVS-Core derivation D, CERTIFICATE(D) is derivable in
PVS-Cert.

Proof. The proof is done by induction on D. Most cases are proved without any
specific difficulty. In particular, the cases of conversion rules TYPECONVERSION
and PROPCONVERSION are straightforward using Proposition 5.

The most complex cases correspond to the rules IMPLYELIM and FORALLELIM
which involve, by definition of CERTIFICATE, some normalization with respect to
>,. In such cases, Proposition 6 is used to handle the specific difficulties related to
this normalization. We present the case IMPLYELIM:

I'-P=@Q TFP
I'tQ

ImPLYELIM

We consider Dq and D5 the respective derivationsof ' P = () and ' + P.
CERTIFICATE(D3) has the form I F ps : Py and CERTIFICATE(D;) has the form
INFp Q. As Q)] = (P = Q), its normal form with respect to >, has the
form ITh : P;.Q. In this setting, CERTIFICATE(D) = I F pipa : Q1[p2/h].
By induction hypothesis, It F p; : @} and Iy F ps : P are derivable in PVS-
Cert. By Proposition 3 and the stratification theorem, Iy - Q] : Prop is derivable
in PVS-Cert. Hence, by Proposition 6, I} - ITh : P,.QQ1 : Prop is derivable as
well. As Q) =g« IITh : P1.Q1, we conclude applying the CONVERSION rule that
It b py: ITh : P.QQq is derivable.

On the other hand, using Proposition 4, we can conclude from [I1] = I" = [I%]
that Iy =, I as long as both contexts admit the list of declared proof variables,
in the same order. This is the case as, by straightforward induction on PVS-Core
derivations, this list is h(1), h(2), ..., h(n), where h(-) is the injective function used
in the definition of CERTIFICATE and n is the number of proof variable declarations
in I'y and Iy. Hence, I} =, I5.

As Iy Fpy : ITh : P;.QQ, is derivable, by Theorem 3 and the stratification the-
orem, Iy = ITh : P;.QQ1 : Prop is derivable. Hence, considering the last rule differ-
ent from CONVERSION used in such a derivation (which is necessarily PROD), and
using the stratification theorem, Iy = Py : Prop is derivable as well. As a conse-
quence, using context conversion (mentioned in Sect.4), Iy F py : P is derivable
in PVS-Cert. Hence, applying the rule APP, I} F p1ps : Q1[p2/h] is derivable, as
expected.

464 F. Gilbert

10 Using PVS-Cert as a System of Verifiable Certificates
for PVS-Core

This final section shows how to use the different results presented in this paper to
answer to the main question addressed in the current work: defining a system of
verifiable certificates for PVS-Core.

A PVS-Cert judgement I' = p : P can be used as a certificate for its PVS-
Core erasure [I'] F [P] (Definition 6), which is verifiable using the type-checking
algorithm presented in Sect. 8. On the one hand, this approach is sound: whenever
the type-checking algorithm succeeds, I" F p : P is derivable in PVS-Cert, hence
[I'] F [P] is derivable in PVS-Core by Theorem 10.

On the other hand, valid certificates can be generated for arbitrary PVS-Core
theorems in the following way. Given some PVS-Core judgement A F @Q deriv-
able through some derivation D, the PVS-Cert judgement CERTIFICATE(D) can
be used as a certificate of A + Q. Indeed, using the notations I" - p : P for
CERTIFICATE(D), the following statements hold.

— By definition of CERTIFICATE, [I'] = A and [P] = @, hence this judgement is
a certificate for A - Q.

— By Theorem 11, I' I+ p : Pisderivable, hence the execution of the type-checking
algorithm on this judgement succeeds: this certificate is valid.

These PVS-Cert certificates represent PVS-Core derivations in a very com-
pact way. As each of the different constructions of types, expressions, and proofs in
PVS-Cert corresponds to some PVS-Core derivation rule, the size of a PVS-Cert
certificate is comparable, as a rough estimation, with the size of a corresponding
PVS-Core derivation in which all PVS-Core judgements are deleted.

We finally show that, through the construction of certificates, the PVS-Cert
cut elimination theorem can be used to study meta-theoretical properties of PVS-
Core. This possible use is illustrated with the case of consistency, proved in PVS-
Cert in Theorem 9 using cut elimination.

Theorem 12. The system PVS-Core is consistent: the judgement - Vx : Prop.x
s not derivable.

Proof. If the judgement - Vx : Prop.x admits a PVS-Core derivation D, we con-
sider F p : P = CERTIFICATE(D). By definition, [P] = Vz : Prop.x = [IIx :
Prop.z]. Hence, by Proposition 5, P =g, IIx : Prop.xz. As+ IIz : Prop.x : Prop
is derivable in PVS-Cert, we can apply the conversion rule to conclude that - p :
Ilx : Prop.z is derivable in PVS-Cert, which is impossible by Theorem 9.

References

1. Gilbert, F.: Extending higher-order logic with predicate subtyping: application to
PVS. Ph.D. dissertation, Sorbonne Paris Cité, Inria, CEA LIST (2018)

2. Abel, A., Scherer, G.: On irrelevance and algorithmic equality in predicative type
theory. arXiv preprint arXiv:1203.4716 (2012)

http://arxiv.org/abs/1203.4716

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.

22.

23.

Verifiable Certificates for Predicate Subtyping 465

Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125-154 (1991)

Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. ii. Oxford
University Press, Oxford (1992)

Barras, B., et al.: The Coq proof assistant reference manual: Version 6.1 (1997)
Barthe, G.: Type-checking injective pure type systems. J. Funct. Program. 9(06),
675-698 (1999)

Berardi, S.: Towards a mathematical analysis of the Coquand-Huet calculus of con-
structions and the other systems in Barendregt’s cube. Technical report, Carnegie-
Mellon University, USA and Universita di Torino, Italy (1988)

Bernardo, B.: An implicit calculus of constructions with dependent sums and decid-
able type inference. Ph.D. thesis, Ecole polytechnique, October 2015

Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.
In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 52-66. ACM (1985)

Geuvers, H.: A short and flexible proof of strong normalization for the calculus of con-
structions. In: Dybjer, P., Nordstréom, B., Smith, J. (eds.) TYPES 1994. LNCS, vol.
996, pp. 14-38. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60579-
72

Geuvers, H., Nederhof, M.-J.: Modular proof of strong normalization for the calculus
of constructions. J. Funct. Program. 1(02), 155-189 (1991)

Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures de
Parithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)

Kent, A.M., Kempe, D., Tobin-Hochstadt, S.: Occurrence typing modulo theories.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, vol. 51, pp. 296-309. ACM (2016)

Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
introduction and survey. Theoret. Comput. Sci. 121(1), 279-308 (1993)

Knowles, K., Flanagan, C.: Hybrid type checking. ACM Trans. Program. Lang. Syst.
(TOPLAS) 32(2), 6 (2010)

Luo, Z.: ECC, an extended calculus of constructions. In: Proceedings of Fourth
Annual Symposium on Logic in Computer Science. LICS 1989, pp. 386-395. IEEE
(1989)

Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748-752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8_217

Owre, S., Shankar, N.: The formal semantics of PVS (1999)

Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: ACM SIGPLAN Notices,
vol. 43, pp. 159-169. ACM (2008)

Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: predicate subtyping
in PVS. IEEE Trans. Softw. Eng. 24(9), 709-720 (1998)

Siles, V., Herbelin, H.: Pure type system conversion is always typable. J. Funct. Pro-
gram. 22(2), 153-180 (2012)

Sozeau, M.: Subset coercions in CoQ. In: Altenkirch, T., McBride, C. (eds.) TYPES
2006. LNCS, vol. 4502, pp. 237-252. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74464-1_16

Tait, W.W.: A realizability interpretation of the theory of species. In: Parikh, R. (ed.)
Logic Colloquium, vol. 453, pp. 240-251. Springer, Heidelberg (1975). https://doi.
org/10.1007 /BFb0064875

https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/BFb0064875
https://doi.org/10.1007/BFb0064875

466 F. Gilbert

24. Terlouw, J.: Een nadere bewijstheoretische analyse van GSTT’s. Manuscript (in
Dutch) (1989)

25. Terlouw, J.: Sterke normalisatie in C a la Tait. In: Notes of a Talk Held at the Inter-
city Seminar on Typed Lambda Calculus, Nijmegen, Netherlands (1989)

26. Terlouw, J.: Strong normalization in type systems: a model theoretical approach.
Ann. Pure Appl. Logic 73(1), 53-78 (1995)

27. Werner, B.: On the strength of proof-irrelevant type theories. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 604—618. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771_49

Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or for-
mat, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11814771_49
http://creativecommons.org/licenses/by/4.0/

	Verifiable Certificates for Predicate Subtyping
	1 Introduction
	1.1 Extending Higher-Order Logic with Predicate Subtyping
	1.2 Contributions
	1.3 Related Works

	2 PVS-Core: A Minimal Extension of HOL with Predicate Subtyping
	2.1 Definitions
	2.2 A Minimal System Expressing Predicate Subtyping

	3 PVS-Cert: Verifiable Certificates for PVS-Core
	3.1 Definitions
	3.2 An Extension of -HOL
	3.3 Expressing Predicate Subtyping

	4 Properties of PVS-Cert
	5 Stratification in PVS-Cert
	6 A Type Preserving Reduction
	7 Strong Normalization and Cut Elimination
	7.1 Strong Normalization
	7.2 Cut Elimination in PVS-Cert

	8 Type-Checking in PVS-Cert
	9 Expressing PVS-Core in PVS-Cert
	9.1 An Erasing Function from PVS-Cert to PVS-Core
	9.2 Expressing PVS-Core Derivations as PVS-Cert Judgements
	9.3 Relating Conversion in PVS-Core and PVS-Cert
	9.4 Soundness of the Synthesis of Certificates

	10 Using PVS-Cert as a System of Verifiable Certificates for PVS-Core
	References

